
Average Step Convergence of Undiscounted Linear-TD(0)

Tom Westerdale

June 16, 2024

Abstract
The linear-TD(0) method makes successive probabilistic adjustments in its estimates of state values.

In a continuing task context, the step size is constant, and it is constant in this paper. For any step,
we can calculate what the average would be of all the adjustments possible in that step, producing a
notional average step. We show here that the sequence of such average steps converges. This convergence
has already been proved for discounted linear-TD(0). This paper extends that proof to the undiscounted
case, derives limit formulae for both cases, and shows why gradually removing the discount produces
a formula different from the undiscounted limit formula. This paper plugs a gap in the foundations of
adaptation analysis, allowing us to avoid a distorting discount if we wish.

Key Words: reinforcement learning, temporal difference, discount, average step convergence, value
estimation, bucket brigade.

1 Introduction
Linear-TD(0) methods are temporal difference methods that are used in adaptive systems to provide esti-
mates of state values. In each time unit, the adaptive system takes an action, the environment changes its
state, and payoff is received by the system. Payoff depends on state, and the value of the current state is a
measure of how much payoff we expect in the future.1

A Linear-TD(0) method iteratively refines its estimates of state values. In their book, Sutton and Barto
outline a proof that linear-TD(0) converges, provided the values are discounted [6, pp. 206-7]. What this
paper does is extend their proof to the undiscounted case.

By discounting we mean the following. In defining state value, future payoff can be discounted by a
small discount amount δ . This means that payoff n time steps in the future is multiplied by (1− δ)

n .
Linear-TD(0) can be discounted so that it estimates discounted value.

Discount Notation: Reinforcement Learning literature usually writes γ where we write
1− δ . Writing 1− δ makes the tricky parts of the proofs here easier to understand. We will
not use the symbol γ in this paper. Following everyday practice, I call δ the discount.2

Linear-TD(0) methods are key temporal difference methods in the field of Reinforcement Learning. A
proper discussion of them and the context in which they arose is in the Reinforcement Learning book by
Sutton and Barto [6]. Temporal difference methods have a long history in Adaptive Systems research. Arthur
Samuel’s Checkers Player used an early temporal difference method [4]. John Holland’s bucket brigade [3]
has been widely used in Evolutionary Computation, and its pros and cons have long been debated [8]. We
proved average step convergence of the simple bucket brigade on a Markov chain [9]. This simple bucket
brigade captures the essence of temporal difference thinking. Other bucket brigades can be thought of as
elaborations of the simple bucket brigade.

A key event in the development of temporal difference methods was the appearance in 1981 of the seminal
paper by Sutton and Barto [5]. It outlines how to adjust synapse weights on a neuron in such a way that the
neuron becomes a predictor. Sutton and Barto had made a minor but brilliant change to Hebb’s synapse
reinforcement rule [2] [5]. The result was a bucket brigade generalization in which the synapses played the role
of Samuel’s checkerboard features. They later formalized their insight in what they now call linear-TD(0),
and they used the term “temporal difference” to describe all these approaches.

1Terminology in Adaptive Systems is inconsistent. We follow the usual Evolutionary Computation terminology. What we
call payoff is what Reinforcement Learning researchers call reward, and what we call reward is what Reinforcement Learning
researchers call reinforcement. What we call value is what many Evolutionary Adaptation researchers call fitness, yet the term
fitness is often used to mean reproductive rate.

2I will not use the phrase “discount rate”.

1

Discounting is rare in Evolutionary Computation. The simple bucket brigade is undiscounted. It is a
special case of linear-TD(0), but Sutton and Barto’s linear-TD(0) convergence proof works only when linear-
TD(0) is discounted. Here we extend their proof to undiscounted linear-TD(0), and that makes our bucket
brigade convergence proof redundant.

Like Samuel, linear-TD(0) examines features of the current state, the current state of the checkerboard
in Samuel’s case. Samuel used features like center control, back row control, and advancement. For each
state i and feature k there is a fixed value ψik of feature k of state i . The estimated value v̄i of
state i is given by a linear function: v̄i = v1ψi1 + v2ψi2 + v3ψi3 + · · · + vNψiN . The coefficients
v1, v2, v3,, vN are iteratively adjusted in an attempt to improve the estimates. We will give the details
presently, but the basic temporal difference idea is that when the state transition is i→ w , the adjustment
to each vk is ε (v̄w − v̄i)ψik . The small number ε is the step size. There are added details that we
will discuss, but that’s the basic idea.

In this paper, the step size ε is constant. In episodic tasks, one can progressively reduce ε during an
episode and reset it at the start of the next episode, but here we are interested in continuing tasks without
such episodes, and so we will be dealing with a constant step size.

The convergence proof here and in Sutton and Barto’s book is of a weak convergence that I call average
step convergence.3 In the literature on linear-TD(0), there is discussion of the strongest convergence, conver-
gence with probability one as the step size ε goes to zero [1]. The step size has to decrease fast enough and
the discussion says how fast that has to be. This doesn’t help us here, because we have a constant step size.
There is a sort of compromise convergence that would indeed help us. That’s convergence in probability as
the step size goes to zero no matter how slowly it goes to zero. That would tell us that re-designing with a
smaller step size gets the method as close to the limit as we like. Such convergence has been proved for the
simple bucket brigade [10]. I believe such convergence holds for linear-TD(0) in general, but that has not
been proved.

In this paper, we extend Sutton and Barto’s average step convergence proof so that it covers the undis-
counted case. For comparison, we also repeat the shorter discounted case proof, giving it in our notation,
and we exhibit the limit formulae for both cases.4

We then look at what happens to the discounted case formula as δ → 0 . At first sight we seem to
obtain a sort of 0

0 nonsense. In fact we do get a finite formula. It’s different from the undiscounted case
formula, but the difference makes sense.

We then look briefly at the value estimates, which I call false values simply because they are not the true
values. They are very useful, yet they can be very wrong and biased. We write them in terms of what I call
false payoffs and prove a key relation between true and false payoffs. (equation(12)) The biases in temporal
difference value estimates have long bedeviled our work in evolutionary computation, though that work has
been exclusively with the bucket brigade special case.5 The key relation proved here is general and gives us
a handle on these biases.

Finally we finish up by briefly examining other versions of linear-TD(0).

2 Definitions and Notation
2.1 State Value
In this paper, vectors are row vectors. Their transposes are column vectors. Each vector will be written as
a bold lower case letter. Entries in the vector will be the corresponding italic letter. With one exception,
each matrix will be a capital Latin letter. An entry in the matrix will be the same letter, but with a double
subscript.

We have a strongly connected6 finite state Markov chain with N states. (N > 1)
The N ×N matrix P is the state transition probability matrix of the chain. So P is row stochastic.
In this paper, Pij is positive for every legal state transition i→ j .
It is the conditional probability that the next state is j given that the current state is i .
The vector e is the vector that is simply a row of N ones. So e e⊤ = N and P e⊤ = e⊤ .

3We define “average step” in subsection 2.2. We are showing convergence of the average steps. Converence terminology
varies across the literature. I call this convergence “average step convergence” because at least that’s clear.

4The discounted case proof in subsection 3.3 uses Geršgorin’s Theorem. Geršgorin’s Theorem itself is not quite suitable for
the undiscounted case, but we can use its proof [7, page 4] if we suitably modify it. The modified proof is the proof of lemma 1.

5For example, see [8].
6By strongly connected I mean that for any ordered pair of states ⟨i, j⟩ , there is a sequence of legal transitions that takes

the chain from state i to state j .

2

The vector p̃ is the absolute state probability vector. So p̃P = p̃ and p̃ e⊤ = 1 .
The absolute probabilty the chain is in state i is p̃i . Every p̃i is positive.

The matrix D is the diagonal matrix whose ii’th entry is p̃i .
We define F = DP , so Fij = p̃iPij . I call Fij the frequency of transition i→ j .

Associated with each state is a fixed real number called its payoff. When the chain enters a state, we
receive the payoff associated with that state.
The vector m is the vector of state payoffs. The vector m doesn’t change.
The scalar m̄ is the average payoff. That is, m̄ = p̃m⊤.
A state’s excess payoff is the amount by which its payoff exceeds the average payoff.
The vector a is the vector of excess payoffs. That is, a = m− m̄ e .
The average excess payoff is of course zero. p̃ a⊤ = 0 .

The column vector c⊤ is the column vector of state values. Its definition is the Cesaro sum
c⊤ =

∑
c∞n=0(P

n a⊤) . The sum converges in the Cesaro sense.7
A discount is a non-negative real number δ less than 1. In defining state value, we can discount future

excess payoff. The column vector of discounted state values is

c⊤δ =

∞∑
n=0

c
(
(1− δ)

n
Pna⊤

)
. (1)

If δ > 0 then the Cesaro sum is the same as the ordinary sum.
If δ = 0 then we say the values are undiscounted, and c⊤0 = c⊤ .

2.2 Linear-TD(0) and its Average Step
There are N̄ basis functions ψ1, ψ2, ψ3, ..., ψN̄ . Each ψk is a real valued function from the set of
states. If i is a state then ψk(i) is the value of its k’th feature. We write ψk(i) as ψik . The matrix
Ψ is the N × N̄ matrix whose ik’th entry is ψik . If the current state is i , then the vector of basis
function values ⟨ψi1, ψi2, ψi3,, ψiN̄ ⟩ is available to the system, and the current payoff mi is available
too. For simplicity, this paper will usually assume that the current excess payoff ai is also available.

To estimate the value of the current state, the system uses a vector v = ⟨v1, v2, v3,vN̄ ⟩ of real
parameters that I call cash balances.8 The estimate v̄i of the value of state i is v̄i =

∑
k vkψik . The

column vector v̄⊤ of state value estimates is then given by v̄⊤ = Ψv⊤ .

I think of N̄ as being smaller than N , though it doesn’t have to be. The vectors e , p̃ , v̄ , a , and
c are what I call long vectors, because they have N entries. The vector v is what I call a short vector,
because it has only N̄ entries.

So e is the long vector whose every entry is 1.
We define ê to be the short vector whose every entry is 1.
We also define ei to be the long vector whose i’th entry is 1 and whose other entries are 0.
And we define êj to be the short vector whose j’th entry is 1 and whose other entries are 0.

We will have big square N ×N matrices and small square N̄ × N̄ matrices.
The matrix I is the N ×N identity matrix.
The matrix I is the N̄ × N̄ identity matrix.
The only difference is the size of the symbol.

In each time step, linear-TD(0) adjusts the vector v⊤ of cash balances. The version of linear-TD(0)
that we will concentrate on adjusts the cash balances in the following way.
If the state transition is i→ w , it simply adds

ε (ai − v̄i + (1− δ) v̄w)ψik (2)

to each cash balance vk .
The ε is a small constant positive real number that we call the step size.
The δ is the discount.9

7For proof in this notation that it converges, see [11]. I write
∑
c for Cesaro sum. In this paper, I call ci a state value, but

elsewhere I’ve called it a post-value because the sum is only of payoffs that occur on or after the visit to the state.
8They are called cash balances in the bucket brigade, a special case of linear-TD(0). For convenience, I use the term cash

balance in any linear-TD(0) method.
9Sutton and Barto [6] frequently use an alternative formulation in which ε (aw − v̄i+(1− δ) v̄w)ψik is the amount added

to vk . The two formulations are entirely equivalent; see subsection 6.2. I think the formulation used here makes the proofs
slightly cleaner.

3

So given that the current cash balance vector is v , the average change in vk is

ε
∑
iw

Fiw(ai − v̄i + (1− δ) v̄w)ψik , (3)

which we can write as
ε êk Ψ

⊤D (a⊤ − v̄⊤ + (1− δ)P v̄⊤) .
We define

Yδ = D (I − (1− δ)P) .

The average change in the column vector v⊤ of cash balances is
εΨ⊤D (a⊤ − v̄⊤ + (1− δ)P v̄⊤) , which we can write as
εΨ⊤D a⊤ − εΨ⊤YδΨv⊤ .

Consider the sequence of column cash balance vectors (v(0))⊤, (v(1))⊤, (v(2))⊤, (v(3))⊤, , where
we derive (v(n+1))⊤ from (v(n))⊤ by taking the average step. That is,

(v(n+1))⊤ = (I − εΨ⊤YδΨ) (v(n))⊤ + εΨ⊤D a⊤ . (4)

We ask whether this sequence converges, and if so, what it converges to. I call this convergence average step
convergence.10 Average step convergence has already been shown for δ > 0 . (See [6, pp. 206-7].) This
paper extends that result to the δ = 0 case. It also relates the two cases. The relationship makes sense,
but it’s not trivial.

3 Basic Convergence Proof
3.1 Positive Definite Matrices

Terminology:
A vector is tidy if all its entries are the same.
A vector is messy if it is not tidy.

The notion of positive definiteness is usually applied to symmetric real matrices. But like Rich Sutton,
we apply that notion to all square real matrices, symmetric or not.

Positive Definite:
A square real matrix A is positive definite if
for any nonzero real vector x , the scalar xAx⊤ is positive.

Almost Positive Definite:
A square real matrix A is almost positive definite if
for any real vector x , the scalar xAx⊤

is positive if x is messy, and is zero if x is tidy.

Theorem 1
If A is a square real matrix that is positive definite, then all its eigenvalues are in the positive half plane.

Proof:
Suppose A is a real positive definite matrix and suppose z is a left eigenvector of A with eigenvalue λ .

Then there are two real vectors x and y , not both zero, such that z = x+ iy . (i =
√
−1)

Define z∗ = (x − iy)⊤ . Then z z∗ is a positive real number. We have these real parts.
(Re(λ))z z∗ = Re(λ z z∗) = Re(zA z∗) = xAx⊤ + yAy⊤ .
This is a positive real since both terms are non-negative and at least one is positive. So Re(λ) > 0 .
�
So positive definite matrices are nonsingular, since zero is not an eigenvalue.

10That’s not what it’s called in the literature, but I find the terminology in the literature confusing.

4

3.2 Undiscounted Y is Almost Positive Definite.
Notation: In this subsection all vectors are long vectors.

We call call an N ×N real matrix A nice just if it has these four nice properties.
(1) Every diagonal entry of A is positive.
(2) Every off-diagonal entry of A is either negative or zero.
(3) For every legal transition i→ j between two different states, the entry Aij is negative.
(4) eA = 0 and Ae⊤ = 0 .

We define Y = D (I − P) . In this subsection only, we define
S = Y + Y ⊤ .
Statements (1), (2), and (3) hold when A is I − P . So matrix Y is nice, and matrix S is nice.

Since S is symmetric, its eigenvalues are real. We select an eigenvector y of S with eigenvalue λ .
Let yk be an entry in y whose modulus is not exceeded by the modulus of any other entry in y . Define
z = y -1k y .

Three properties of the vector z
(1) Every entry in z has modulus less than or equal to 1.
(2) At least one entry in z is the number 1.
(3) z is an eigenvector of S with eigenvalue λ .

Lemma 1
If for distinct states i and k we have
zi = 1 and Sik ̸= 0 , then :
(1) λ ≥ 0 ,
(2) λ = 0 =⇒ zk = 1 .

Proof:
Suppose for distinct states i and k we have zi = 1 and Sik ̸= 0 .
We will use the three z properties. And since S is nice, we will use the four nice properties for S .
We have

∑
j Sij = eiS e⊤ = 0 , so

Sii =
∑
j ̸=i

(-Sij) . (5)

The sum is over all j that are not equal to i .
We also have

∑
j Sijzj = eiS z⊤ = ei(λ z

⊤) = λzi = λ . Therefore,

Sii − λ =
∑
j ̸=i

(-Sij) zj (6)

We have
∣∣∣∑j ̸=i(-Sij) zj

∣∣∣ ≤
∑

j ̸=i(-Sij) |zj | ≤
∑

j ̸=i(-Sij) . By (5) and (6) this is |Sii − λ| ≤ Sii .
Since Sii is positive, we have λ ≥ 0 .

Now suppose λ = 0 . Write xj for the real part of zj . Then the right sides of (5) and (6) are
equal, so

∑
j ̸=i(-Sij)(1− zj) = 0 , and

∑
j ̸=i(-Sij)(1− xj) = 0 . Since xj ≤ |zj | ≤ 1 , every

term in the last sum is non-negative. Hence every term is zero. In particular, (-Sik)(1 − xk) = 0 , so
xk = 1 . This and |zk| ≤ 1 give us zk = 1 .
�

Let’s call a state i green if zi = 1 , and let’s call i red if zi ̸= 1 . By z property (2),
there is at least one green state.

By strong connectivity, there is from every state at least one legal transition to a different state.
Since S is nice, if i→ k is a legal transition from state i to a different state k then Sik ̸= 0 .

Lemma 1 has two conclusions.
Conclusion (1) tells us that if a state i is green and i→ k is a legal transition from it to a different

state, then λ ≥ 0 . Well in fact there does exist a green state and a legal transition from it to a different
state, so conclusion (1) tells us the following simple fact.
λ ≥ 0

Conclusion (2) deals with the rather special situation that obtains when λ = 0 . In that case, if state
i is green and i → k is a legal transition from i to a different state k , then state k is green too.

5

So any state that a green state is connected to by a transition is also green. It follows that since the chain
is strongly connected, every state is green, and z = e . So conclusion (2) tells us the following.
λ = 0 =⇒ z = e

Conversely, suppose z = e . Then λz = zS = eS = 0 , so λ = 0 .
So we have these results.

λ = 0 if and only if z = e .
λ = 0 if and only if y is tidy.

The tidy eigenvectors of S have zero eigenvalues, and
the messy eigenvectors of S have positive eigenvalues.

Since S is symmetric, there is a set of orthogonal real eigenvectors z1, z2, z3, , zN that span the
space. I’ll call that set of eigenvectors our basis, and I’ll write λk for the eigenvalue of zk . Now e is
an eigenvector with eigenvalue 0, so since S is symmetric, if λk > 0 then zk is orthogonal to e .
So the basis vectors can’t all be messy since then they would all be orthogonal to e and wouldn’t span the
space. So there is a tidy basis vector, and obviously it must be the only one. Let’s re-order the basis vectors
so z1 is the tidy vector. Then λ1 is zero, but every other eigenvalue λk is positive.

Now take an arbitrary real vector and write it x =
∑

k bkzk .
By taking real parts we make every scalar bk real. Then we have
xS x⊤ =

∑
k b

2
kλkzkz

⊤
k ,

since the other terms are zero.
Each zkz

⊤
k is a positive real since each zk is a real nonzero vector.

The eigenvalues λk are non-negative so every term in the sum is non-negative, and so is xS x⊤ .
Suppose xS x⊤ is zero. Then every term in the sum must be zero. Now λ1 is zero, but the other

eigenvalues λk are positive, so every bk is zero except possibly b1 . So we see that x = b1z1 , and
so x is tidy.

Conversely, if x is tidy then xS x⊤ is zero, since eS = 0 . So we see that
S is almost positive definite.

Since xS x⊤ = 2xY x⊤ , we conclude:

Y is almost positive definite.

3.3 Discounted Yδ is Positive Definite.
Note that
Yδ = D (I − (1− δ)P) = Y + δF
and Y0 = Y .
In this subsection only, we define
S = Yδ + Y ⊤

δ .
Both Yδ and S have nice properties (1), (2), and (3) in the definition of nice matrix.
eS = 2 δ p̃ S e⊤ = 2 δ p̃⊤

Now suppose δ > 0 .

We now look at the eigenvalues of S . Since S is symmetric, the eigenvalues are real.
Let’s look at the i’th row of S .∑

j Sij = eiS e⊤ = ei(2δ p̃
⊤) = 2δ p̃i > 0

Sii >
∑

j ̸=i(−Sij) (The sum is over all j that are not equal to i .)
Sii >

∑
j ̸=i |Sij |

The Geršgorin disk for row i is the closed disk in the complex plane whose center is Sii and whose radius
is

∑
j ̸=i |Sij | . We see by the last inequality that every Geršgorin disk is entirely within the positive

half plane. The Geršgorin set is the union of the Geršgorin disks, and we see that it is entirely within the
positive half plane. By Geršgorin’s theorem, every eigenvalue is in the Geršgorin set. So every eigenvalue of
S is in the positive half plane. Every eigenvalue is a positive real.

Since S is symmetric, there is a set of real orthogonal eigenvectors z1, z2, z3, , zN that span the
space. I’ll call that set of eigenvectors our basis. I’ll write λk for the eigenvalue of zk .

Now take an arbitrary nonzero real vector and write it x =
∑

k bkzk .
By taking real parts we make every scalar bk real. Since x is nonzero, at least one bk is nonzero.
We have
xS x⊤ =

∑
k b

2
k λk zk z

⊤
k , since the other terms are zero.

6

Each zk z
⊤
k is a positive real since each zk is a real nonzero vector.

The eigenvalues λk are all positive.
And every b2k is of course non-negative.
Furthermore, at least one bk is nonzero, so at least one b2k is positive. So we see that
xS x⊤ > 0 .
The x was an arbitrary nonzero vector, so S is positive definite.

Since xS x⊤ = 2xYδ x
⊤ we conclude:

If δ > 0 then Yδ is positive definite.

3.4 Happy and Sad Vectors
If we have a complex vector z , we can of course write it as w+ i r , where w and r are real vectors
(and i is

√
−1). We call w the real part of z , and we call r the imaginary part of z .

We define these sets of short vectors.
H = {y|yΨ⊤ is tidy} K = {y|yΨ⊤ = 0}
I call K the kernel and call its members kernel vectors. I call the members of H happy vectors.
It’s easy to see that if y is a happy vector then its real and imaginary parts are both happy. And if y is
a kernel vector then its real and imaginary parts are both kernel vectors.

We see that H and K are both subspaces and that K ⊆ H .
Let’s look at Ψ⊤ as a linear transformation from H . So H is its domain, K is its kernel, and its

range is a subspace of tidy vectors. If H ̸= K then there is a nonzero tidy vector in the range, every
tidy vector is in the range, and the dimension of the range is 1. So the dimension of H is one more than
the dimension of K .

Either H = K or the dimension of H is one more than the dimension of K .

Note that H ̸= K if and only if e is in the range of Ψ⊤ .
To say that vectors z and w are orthogonal means of course that zw∗ = 0 , where ∗ means

complex conjugate transpose. If at least one of the two vectors is real, then they are orthogonal if and only if
zw⊤ = 0 . Usually when I refer to two vectors being orthogonal, one of the vectors will be real. I shall
sometimes use the special term orthogonal* . Vectors z and w are orthogonal* if they are orthogonal
and at least one of them is real. The * is simply a reminder that because one of them is real, orthogonality
in this case is equivalent to zw⊤ = 0 .

The norm ∥w∥ of vector w is of course the square root of ww∗ . If w is real then its norm is
the square root of ww⊤ . To say that real w has norm 1 is to say that ww⊤ = 1 . The norm of a
vector I sometimes call its length.

Lemma 2
The subspace H has an orthonormal basis in which every basis vector is real.

Proof:
By induction.
Here is the induction step.

Suppose there is an orthonormal set of real vectors E = {η1,η2,η3,,ηℓ} that is a subset of
H but does not span H . Using the Gram-Schmidt process, we obtain a nonzero member z of H that
is orthogonal* to every ηj in E .

The real part and the imaginary part of z are both in H . The real part is either zero or it’s
orthogonal* to every member of E . The same is true for the imaginary part. They can’t both be zero,
so select a nonzero part. It’s a real vector in H that is orthogonal* to every member of E .
Now adjust its length to 1.
�

By virtually the same proof, K also has an orthonormal basis in which every basis vector is real.
Now suppose H ̸= K . Look at the induction step in the proof of lemma 2, and let {η1,η2,η3,,ηℓ}

be a real orthonormal basis of K . The induction step gives us a new basis vector ηℓ+1 , and adding
that vector to the basis gives us a basis of the whole of H . We see that ηℓ+1 Ψ

⊤ is a nonzero tidy
real vector, so ηℓ+1 Ψ

⊤ = β e , where β is a nonzero real scalar. If β is negative, let’s change ηℓ+1 ,
multiplying it by −1. It’s still just as good a basis vector, and now β is positive. We shall use an H basis
constructed in this way.

7

In what follows, I shall use the letter η to mean the vector in our basis of H that is not in K .
If H ̸= K then
ηΨ⊤ = β e .
β > 0
If H = K then there is no vector η and no scalar β .

Let E = {η1,η2,η3,,ηℓ} be our orthonormal basis of H .
We define the real symmetric matrix H .

H =

ℓ∑
j=1

η⊤
j ηj . (7)

If E = ∅ (H is a singleton) then the matrix H has every entry zero.

Note that ηjH = ηj for any basis vector ηj .
Therefore, since H is a linear transformation we have this.
If y ∈ H , then yH = y .

We also define
K =

∑
j η

⊤
j ηj ,

where in the sum we use just the vectors in the K basis.
Then just as for H , we have
if y ∈ K then yK = y . We also have these.
If H = K then H = K .
If H ̸= K then H = K + η⊤η ,
where η is of course the basis vector that is not in the basis of K .
Both H and K are symmetric, so we have this.

If y is a happy vector then yH = y and H y⊤ = y⊤ .
If y is a kernel vector then yK = y and K y⊤ = y⊤ .

We call a short vector sad if it is orthogonal to every happy vector. Equivalently, a vector is sad if it is
orthogonal* to every basis vector ηk in E . Let S be the subspace of sad vectors.

We see that if x is a sad vector then
xH = 0 and H x⊤ = 0 .

Suppose x is a short vector. We have xH Ψ⊤ = x (
∑

k η
⊤
k ηk)Ψ

⊤ =
∑

k(xη⊤
k)(ηk Ψ

⊤) .
We see that each (xη⊤

k) is a complex scalar and each (ηk Ψ) is a tidy vector, so xH Ψ⊤ is a
tidy vector and xH is a happy vector.

We also have (I −H)y⊤ = 0 for any happy vector y ,
so x (I −H)y⊤ = 0 for any happy vector y . Therefore,
x (I −H) is a sad vector.

We call xH the happy part of x , and we call x (I −H) the sad part of x . Suppose we
write x as the sum z + y of a sad vector z and a happy vector y . Then xH = y and
x (I −H) = z . The happy part is y and the sad part is z . A short vector can be written as the
sum of a sad vector and a happy vector in one and only one way. We see that if a short vector is real then
its sad part and happy part are both real.

We define the subspace of antikernel vectors. A vector is an antikernel vector just if it is orthogonal to
every kernel vector. Every short vector can be written as the sum of an antikernel vector and a kernel vector
in one and only one way. If x is a short vector then xK is its kernel part and x (I − K) is its
antikernel part. Note that if z is an antikernel vector then zK = 0 and K z⊤ = 0 .

3.5 B0 and Aδ are Positive Definite
We define
Aδ = Ψ⊤Yδ Ψ + K
Bδ = Ψ⊤Yδ Ψ + H

In particular, we have
B0 = Ψ⊤Y Ψ+H .

8

If y ∈ K then Aδ y
⊤ = y⊤ .

If y ∈ H then B0 y
⊤ = y⊤ .

In this susbsection, x will be a nonzero real short vector.
We have

xH x⊤ =
∑

j(xη⊤
j)(ηjx

⊤) ≥ 0 .
Furthermore, if x is happy, then
xH x⊤ = xx⊤ > 0 .

Now Y is almost positive definite, so xΨ⊤Y Ψx⊤ is non-negative.
Furthermore, if x is not happy then xΨ⊤ is messy and xΨ⊤Y Ψx⊤ is positive.

The scalar xB0 x
⊤ can be written as the following sum.

xΨ⊤Y Ψx⊤ + xH x⊤

Both terms are non-negative. If x is happy then the second term is positive, and if x is not happy then
the first term is positive. So in any case the sum is positive. We conclude:

B0 is positive definite.

Also, we have xK x⊤ =
∑

k(xη
⊤
k) (ηk x

⊤) ≥ 0 . If x is in K then xK x⊤ = xx⊤ > 0 .
Now suppose δ > 0 . Then Yδ is positive definite. So xΨ⊤Yδ Ψx⊤ is non-negative, and

furthermore, if x /∈ K then xΨ⊤Yδ Ψx⊤ is positive.
The scalar xAδ x

⊤ can be written as the following sum.
xΨ⊤YδΨx⊤ + xK x⊤

Both terms are non-negative. If x ∈ K then the second term is positive, and if x /∈ K then the first
term is positive. So in any case the sum is positive. We conclude:

If δ > 0 then Aδ is positive definite.

Still assume δ > 0 .
If H ̸= K then Bδ = Aδ + η⊤η , where η is the happy basis vector that isn’t in K .
xBδ x

⊤ = xAδ x
⊤ + (xη⊤)(η x⊤)

The second term on the right is non-negative, and Aδ is positive definite,
so Bδ is positive definite when δ > 0 . When δ = 0 we have Bδ = B0 , and we said that’s positive
definite. So whether δ is zero or not,

Bδ is positive definite.

Remember that positive definite matrices are nonsingular. We shall see that in some cases A0 is singular,
and this makes our story complicated.

3.6 The Undiscounted Case
So by theorem 1, all the eigenvalues of B0 are in the positive half plane. So they are all inside some circle
tangent to the imaginary axis at the origin. We are going to move that circle. We define
Q = I − εB0 ,
where ε is a small positive real.
We see that if ε is small enough, the the eigenvalues of Q will all be inside the unit circle.
We insist that ε be that small or smaller. The ε will be our step size.

So all the eigenvalues of Q are inside the unit circle.
The spectral radius of Q is less than 1.

Note that B0 = 1
ε (I −Q) , so since B0 is nonsingular we have

B -1
0 = ε (I −Q)

-1 .

Note that if y is happy then Qy⊤ = (1− ε)y⊤ .

Let ηk be a basis vector of H . Then ηkΨ
⊤ is a tidy vector, so

ηkΨ
⊤Y = 0 and ηkΨ

⊤D a⊤ = 0 .
Therefore, H Ψ⊤Y = 0 and H Ψ⊤D a⊤ = 0 .

We look at the sequence of successive cash balance column vectors.
(v(0))⊤, (v(1))⊤, (v(2))⊤, (v(3))⊤,
The average step equation is this.
(v(n+1))⊤ = (I − εΨ⊤Y Ψ)(v(n))⊤ + εΨ⊤D a⊤

Multiplying by H on the left gives us H (v(n+1))⊤ = H (v(n))⊤ .

9

So the happy part of the column vectors is unchanged along the sequence, so for each n we can write
(v(n))⊤ = (x(n))⊤ + y⊤ , where (x(n))⊤ is the sad part and y⊤ is the common happy part.
We also have I − εΨ⊤Y Ψ = Q+ εH .
Making these substitutions in the average step equation gives us this.
(x(n+1))⊤ + y⊤ = (Q+ εH) ((x(n))⊤ + y⊤) + εΨ⊤D a⊤

We use Qy⊤ = (1− ε)y⊤ and H y⊤ = y⊤ and H (x(n))⊤ = 0 . We obtain
(x(n+1))⊤ = Q (x(n))⊤ + εΨ⊤D a⊤ .
By induction on n we have
(x(n))⊤ = ε

(∑n−1
k=0 Q

k
)
Ψ⊤D a⊤ + Qn(x(0))⊤ .

We saw that (I −Q)
-1 exists, so the equation becomes

(x(n))⊤ = ε (I −Qn) (I −Q)
-1
Ψ⊤D a⊤ + Qn(x(0))⊤ .

Since the spectral radius of Q is less than 1, we have limn→∞Qn = 0 and
limn→∞(x(n))⊤ = ε (I −Q)

-1
Ψ⊤D a⊤ = B -1

0 Ψ⊤D a⊤ .
We define

u⊤ = B -1
0 Ψ⊤D a⊤ .

If we begin with (v(0))⊤ = x⊤ + y⊤ , where x⊤ is the sad part and y⊤ is the happy part,
then the limit is u⊤ + y⊤ .

We note that u⊤ is sad. We can easily show this directly. Let y be any happy vector. Then there
is a complex scalar α such that yΨ⊤ = α e . We have yΨ⊤Y = α eY = 0 , so we have
yB0 = y and yB -1

0 = y . Therefore, yu⊤ = yB -1
0 Ψ⊤D a⊤ = yΨ⊤D a⊤ = α eDa⊤ = 0 .

3.7 The Discounted Case
Now assume δ > 0 .

We now proceed just as in the undiscounted case. We define
Qδ = I − εAδ ,
and we insist that ε be small enough that the spectral radius of Qδ is less than 1.

A-1
δ = ε (I −Qδ)

-1 .
If y ∈ K then Qδ y

⊤ = (1− ε)y⊤ .
We look at the sequence of successive cash balance column vectors. (v(0))⊤, (v(1))⊤, (v(2))⊤, The

average step equation is this.
(v(n+1))⊤ = (I − εΨ⊤YδΨ) (v(n))⊤ + εΨ⊤D a⊤

Multiplying by K and using K Ψ⊤ = 0 gives us K (v(n+1))⊤ = K (v(n))⊤ . The kernel part is
constant along the sequence. We write (v(n))⊤ = (x(n))⊤ + y⊤ , where (x(n))⊤ is the antikernel part
and y⊤ is the common kernel part. Making this substitution and I − εΨ⊤Yδ Ψ = Qδ + εK gives us
(x(n+1))⊤ = Qδ (x

(n))⊤ + εΨ⊤D a⊤ .
Just as in the undiscounted case, we inductively obtain a formula for (x(n))⊤ and then let n→ ∞ .
We obtain limn→∞(x(n))⊤ = u⊤

δ , where u⊤
δ = ε (I −Qδ)

-1
Ψ⊤D a⊤ .

u⊤
δ = A-1

δ Ψ⊤D a⊤ .

Of course this limit holds only if δ > 0 .

4 Decreasing δ

We now ask what happens to u⊤
δ if δ → 0 .

The matrix Bδ is nonsingular for δ ≥ 0 , and the inverse of a nonsingular matrix is a continuous
function of the matrix.11 So B -1

δ is a continuous function of δ , and B -1
δ → B -1

0 as δ → 0 .
If H = K then Aδ = Bδ and u⊤

δ = B -1
δ Ψ⊤D a⊤ , so obviously u⊤

δ → u⊤ .

So in the rest of this section we will assume H ̸= K . Now what happens to u⊤
δ ?

In that case we have
H = K + η⊤η ,
ηΨ⊤ = β e ,
β > 0 .
Bδ = Aδ + η⊤η

11If matrix A is nonsingular then A -1 = |A| -1 adj(A) . By adj(A) I mean the adjugate of A .

10

4.1 Tiniest Eigenvalue of Aδ

We first show that 0 is a simple eigenvalue of A0 .
We define two subspaces:
Y is the vectors that are scalar multiples of η .
B is the vectors that are orthogonal* to η .
Since η is happy, we have these simple facts.
ηK = 0 K η⊤ = 0 ηH = η H η⊤ = η⊤ ηΨ⊤Y = 0 Y Ψη⊤ = 0
Therefore we have these.
ηA0 = 0 A0 η

⊤ = 0 ηB0 = η B0 η
⊤ = η⊤

If x ∈ B then (xB0)η
⊤ = x (B0 η

⊤) = xη⊤ = 0 , so xB0 ∈ B .
So we see that the linear transformation B0 maps B into itself,
and also maps Y into itself. In fact, it is the identity transformation on Y .

Furthermore, if x ∈ B we have xB0 = xA0 + xη⊤η = xA0 .
Transformation A0 agrees with B0 on the subspace B .
Transformation A0 maps the whole Y subspace to the zero vector.

Consider a basis in which η is the first basis element and in which all the other basis elements are
members of B . Let’s write B0 and A0 using that basis. The matrix B0 is block diagonal with just
two blocks, a 1× 1 block and an (N̄ − 1)× (N̄ − 1) block. The 1× 1 block is just the number 1. The
matrix A0 is similarly block diagonal with the same (N̄ −1)× (N̄ −1) block, but here the 1×1 block
is just the number 0.

The eigenvalues of B0 are the eigenvalues of the big block plus the number 1. The eigenvalues of A0 are
the same big block eigenvalues plus the number 0. Matrix B0 is nonsingular, so none of its eigenvalues are
zero. So none of the big block eigenvalues are zero. Therefore, 0 is a simple eigenvalue of A0 . By simple
I mean that its multiplicity is 1.

0 is a simple eigenvalue of A0 .

Definition:
The tiniest eigenvalue of a matrix is a simple eigenvalue
that is closer to zero than any other eigenvalue.

Of course not every matrix has a tiniest eigenvalue. If the matrix is real and has a tiniest eigenvalue then
the tiniest eigenvalue must be real. If it weren’t real then its complex conjugate would be another eigenvalue
the same distance from zero. We see that A0 has a tiniest eigenvalue, and it’s 0.

We know that the eigenvalues of a matrix are continuous functions of the matrix entries, so the eigenvalues
of Aδ are continuous functions of δ . So there is some interval [0, ν] of reals such that if δ is in
the interval then Aδ has a tiniest eigenvalue. The upper boundary ν is a small positive number. Several
times during this discussion I will decrease the value of ν , shortening the interval. But I will always keep
ν positive. During our discussion, we will assume without saying it that δ is in the interval.

So I can simply say that Aδ has a tiniest eigenvalue. I will call it λ . The eigenvalue λ is a continuous
function of δ .

4.2 Eigenvectors with Eigenvalue λ

We define Mδ = Aδ − λI . Since λ is a simple eigenvalue, the eigenvectors of Aδ with eigenvalue
λ form a one dimensional subspace. That subspace is the kernel of the transformation Mδ . So the range
of Mδ has dimension N̄ − 1 . So Mδ has a nonzero (N̄ − 1) × (N̄ − 1) minor, and a nonzero
cofactor. So adj(Mδ) is not the zero matrix.12

Select indices i and j such that the ij’th entry in adj(M0) is nonzero. Remember those indices.
So we see that the entry ei (adj(Mδ)) e

⊤
j is a continuous function of δ , and that it is nonzero when

δ = 0 . If necessary, we now reduce the size of ν , keeping it positive, so that as long as δ is in the
now shorter interval, the entry will be nonzero. The i’th row will be nonzero and so will the j’the column.
(That is, they both have a nonzero entry.)

Let the vector z be the normalized i’th row of adj(Mδ) and let z̈⊤ be the normalized j’th column.
So z and z̈⊤ are both real unit vectors, and they are continuous functions of δ .

Now Mδ is singular, so we have (adj(Mδ))Mδ = |Mδ| I = 0 . So the i’th row of adj(Mδ) is
in the kernel of Mδ , and consequently it is a left eigenvector of Aδ with eigenvalue λ . So we

12By adj(Mδ) I mean the adjugate of Mδ .

11

see that z is a left eigenvector of Aδ with eigenvalue λ . By the same argument beginning with
Mδ (adj(Mδ)) = |Mδ| I = 0 , we see that z̈⊤ is a right eigenvector of Aδ with eigenvalue λ .

Let’s write z0 for the vector z when δ = 0 . When δ = 0 , the eigenvalue λ is 0 and both
z0 and η are left eigenvectors of A0 with eigenvalue λ . Since λ is a simple eigenvalue, the space of
such eigenvectors is one dimensional, so there is a scalar α such that η = α z0 . Since z0 and η are
both real unit vectors, α must be either +1 or −1. We define the unit vector ζ = α z . Of course if
δ = 0 then ζ = α z0 = η .

So ζ is a real unit vector that is a continuous function of δ . It is a left eigenvector of Aδ with
eigenvalue λ . If δ = 0 then ζ = η .

In exactly the same way, we define the column vector ζ̈⊤ . It is a real unit column vector and it is
a continuous function of δ . It is a right eigenvector of Aδ with eigenvalue λ . If δ = 0 then
ζ̈⊤ = η⊤ .

So ζ ζ̈⊤ is a real scalar that is a continuous function of δ . And it’s 1 if δ = 0 . So if necessary
we can reduce ν yet again and ensure that if δ is in the interval [0, ν] then ζ ζ̈⊤ > 0 . We define
α̂ = (ζ ζ̈⊤)

-1 .
So α̂ is positive, and if δ = 0 then α̂ = 1 .

4.3 Limit of Projected Eigenvector
We define a projection G onto the subspace of vectors orthogonal* to η .
G = I − η⊤η .
We are interested in the projection of the vector 1

λζ onto that subspace. What happens to the projected
vector 1

λζG as δ → 0 ? As δ decreases, the vector 1
λζ gets longer and longer, but it also gets more

and more orthogonal to the subspace. So, does the projected vector get longer and longer, or does it get
shorter and shorter? In this subsection, we show that it converges to a finite vector, but one that is usually
not zero.

We define the vector
τ = p̃Ψ .
The real scalar ζ η⊤ is a continuous function of δ , and it is 1 when δ = 0 . So if we reduce ν yet
again we can ensure that ζ η⊤ is positive for all δ in the interval [0, ν] . We define the vector
v = (ζ η⊤)

-1
ζ .

v η⊤ = 1
And v is a left eigenvector of Aδ with eigenvalue λ . If δ = 0 then v = η .

Now from Yδ = Y0 + δF , we have Aδ = A0 + δΨ⊤F Ψ . Since ηΨ⊤ = β e , we have
ηAδ = δ ηΨ⊤F Ψ = δ β eFΨ = δ β p̃Ψ = δ β τ and
Aδ η

⊤ = δΨ⊤F Ψη⊤ = δ βΨ⊤F e⊤ = δ βΨ⊤p̃⊤ = δ β τ⊤ .

ηAδ = δ β τ and Aδ η
⊤ = δ β τ⊤ (8)

Then since vAδ = λv , we have λ = λv η⊤ = vAδ η
⊤ = δ β (v τ⊤) .

λ = δ β (v τ⊤) (9)

We have ηΨ⊤ = β e . If we multiply by p̃⊤ on the right, we obtain
η τ⊤ = β ,
and this is positive. So if δ = 0 then v = η , and v τ⊤ is β , which is positive. So if we again
appropriately reduce ν , we can ensure that v τ⊤ is positive for any δ in the interval [0, ν] .
So v τ⊤ > 0 and β > 0 . Therefore, (9) tells us that for any δ in the interval:

λ is positive if δ is positive.
λ is zero if δ is zero.

We define the vector
ωδ = v − (v τ⊤)

-1
τ .

This vector is a continuous function of δ , since v is.
From (8) and the definition of G , we have
GAδ = Aδ − η⊤(ηAδ) = Aδ − δ β η⊤τ
vGAδ = vAδ − δ β (v η⊤) τ = λv − δ β τ
Using (9) and the last equation gives us

12

λωδ = λv − λ (v τ⊤)
-1
τ = λv − δ β τ = vGAδ .

Since Gη⊤ = 0 and Bδ = Aδ + η⊤η , we have GBδ = GAδ and
vGBδ = λωδ .

Now suppose δ > 0 .
Then λ > 0 , so the equation the end of the last paragraph can be written
1
λvG = ωδ B

-1
δ .

By the definition of v we have (ζ η⊤)v = ζ , so multiplying the last equation by (ζ η⊤) gives
1
λζG = (ζ η⊤)ωδ B

-1
δ .

We now let δ → 0 .
We see that
ω0 = η − β -1τ and

lim
δ→0

1
λ ζG = ω0B

-1
0 . (10)

4.4 Tidying up
Still assuming δ > 0 , we can show
(Aδ + (1− λ) α̂ ζ̈⊤ζ) (A-1

δ + (1− 1
λ) α̂ ζ̈⊤ζ) = I

simply by multiplying out and using these facts.
Aδ A

-1
δ = I Aδζ̈

⊤ = λ ζ̈⊤ ζ A-1
δ = 1

λ ζ ζ ζ̈⊤ = α̂
Therefore, we have this.
(A-1

δ + (1− 1
λ) α̂ ζ̈⊤ζ) = (Aδ + (1− λ) α̂ ζ̈⊤ζ)

-1

A-1
δ = (Aδ + (1− λ) α̂ ζ̈⊤ζ)

-1
− α̂ ζ̈⊤ζ + 1

λ α̂ ζ̈⊤ζ
We multiply by G on the right and obtain this nice equation.
A-1

δ G = (Aδ + (1− λ) α̂ ζ̈⊤ζ)
-1
G− α̂ ζ̈⊤ζG+ α̂ ζ̈⊤(1λ ζG)

We now let δ → 0 . We have the following limits.
λ→ 0 α̂→ 1 ζ̈⊤ → η⊤ ζ → η Aδ → A0

(Aδ + (1− λ) α̂ ζ̈⊤ζ) → B0 and B0 is nonsingular, so (Aδ + (1− λ) α̂ ζ̈⊤ζ)
-1

→ B -1
0 .

From these limits and (10) we see that our nice equation becomes
limδ→0A

-1
δ G = B -1

0 G+ η⊤ω0B
-1
0 .

We have ηB0 = η , and so η = ηB -1
0 .

ω0B
-1
0 = η − β -1τ B -1

0

limδ→0A
-1
δ G = B -1

0 G+ η⊤η − β -1η⊤τ B -1
0

We multiply on the right by Ψ⊤D a⊤ and use
ηΨ⊤D a⊤ = β eD a⊤ = 0 and GΨ⊤D a⊤ = Ψ⊤D a⊤ .
limδ→0A

-1
δ Ψ⊤D a⊤ = B -1

0 Ψ⊤D a⊤ − β -1η⊤τ B -1
0 Ψ⊤D a⊤

Since u⊤
δ = A-1

δ Ψ⊤D a⊤ and u⊤ = B -1
0 Ψ⊤D a⊤ , we have

limδ→0 u
⊤
δ = u⊤ − β -1η⊤(τ u⊤) .

We define
u⊤
0 = limδ→0 u

⊤
δ .

Then we have
u⊤
0 = u⊤ − (τ u⊤)β -1η⊤ .

5 Value Estimates
5.1 Value Estimate Notation
We said that the vector of value estimates was v̄⊤ = Ψv⊤ . But the average value p̃ c⊤ is zero
so we would like the average estimate p̃ v̄⊤ to be zero too. So to get better estimates we adjust the
estimates by subtracting the average estimate from each estimate. So a better vector of estimates is
v̈⊤ = v̄⊤ − (p̃ v̄⊤) e⊤ = (I − e⊤p̃) v̄⊤ . We now have p̃ v̈⊤ = 0 .
Note that (v̈j − v̈i+ ai) = (v̄j − v̄i+ ai) , so it makes no difference if TD(0) uses v̈⊤ instead of v̄⊤ .

The vector v might be u or uδ . Then we can write ū , ü , ūδ , and üδ .

13

5.2 The Sad Terms
In our formulae for limit cash balance column vectors we have sad terms and happy terms. It is really only
the sad terms that are important. To obtain our column vector of state value estimates, we multiply the
limit column vector by Ψ on the left. So a term that is in the kernel has no effect at all. A happy term
that is not in the kernel, when multiplied by Ψ , becomes a tidy vector, so it does change the estimates,
but the change in each estimate is the same. The estimates of the values ci become uniformly too high
or too low. Our adjustment gets rid of such a change, but in many adaptation applications this uniform
change makes no difference anyway. For example, what I call the choice value of transition i→ j is this.
cj − ci + ai . In estimating choice value, the uniform changes cancel out.

If H ̸= K then our formula for u⊤
0 is this. u⊤ − (τ u⊤)β -1η⊤ The second term is happy.

ū⊤
0 = Ψu⊤

0 = Ψu⊤ − (τ u⊤)β -1 (Ψη⊤) = ū⊤ − (p̃Ψu⊤)β -1 (β e⊤) = ū⊤ − (p̃ ū⊤) e⊤

And we see that ū0 is already adjusted. ü0 = ū0 . The happy term uniformly raises (or lowers) the
estimates by just enough to make the average of the estimates zero.

5.3 What if Ψ = I ?
From equation (1) we have p̃ c⊤δ = 0 and
(I − (1− δ)P) c⊤δ = a⊤ .
Yδ c

⊤
δ = D a⊤

Now assume N̄ = N and Ψ = I .
Linear-TD(0) then becomes what Evolutionary Computation literature calls a simple bucket brigade on a
Markov chain. In that case we have:
K = 0 η = N - 1

2 e H = 1
N e⊤e τ = p̃ β = N - 1

2 Aδ = Yδ
Aδ c

⊤
δ = D a⊤

If δ > 0 then Aδ is nonsingular and c⊤δ = A-1
δ D a⊤ . In other words, u⊤

δ = c⊤δ .

Now suppose δ = 0 . We have:
Y c⊤ = D a⊤ B0 = Y + 1

N e⊤e

Define χ = 1
N e c⊤ . We now have:

B0 c
⊤ = D a⊤ + χ e⊤ B0 e

⊤ = e⊤ B0 (c
⊤ − χ e⊤) = D a⊤

c⊤ − χ e⊤ = B -1
0 D a⊤ = u⊤

τ u⊤ = p̃ u⊤ = − χ β -1 η⊤ = e⊤

u⊤
0 = u⊤ − (τ u⊤)β -1 η⊤ = (c⊤ − χ e⊤) − (−χ) e⊤ = c⊤

So we see that whether δ is zero or positive, we have:

If Ψ = I , then u⊤
δ = c⊤δ .

The simple bucket brigade on a Markov chain converges to the correct values.13

5.4 False Payoffs in the Undiscounted Case
We said we have v̈⊤ = (I − e⊤p̃)Ψv⊤ . Note that if v is happy then v̈⊤ = 0 . Now let’s look at
the undiscounted case and suppose v is the limit vector u+ y , where y is happy.
So v̈⊤ in the limit is ü⊤ , where
ü⊤ = (I − e⊤p̃)Ψu⊤ .

The vector ü⊤ is a vector of our estimates üi of values ci . The estimates can be very biased and
wrong. To call them approximations would be misleading. I call üi the false value of i .

We have p̃ ü⊤ = 0 , and we define
â⊤ = (I − P) ü⊤ .
I call âi the false payoff of i .
We see that â⊤ = (I − P) (I − e⊤p̃)Ψu⊤ = (I − P)Ψu⊤ , so we have
â⊤ = (I − P)Ψu⊤ .

We define the matrix
P̂ = I − P + e⊤p̃ .

13That statement was proved directly in [9] for the undiscounted case.

14

We note that P̂ is nonsingular.14 We note that p̃ c⊤ = 0 and a⊤ = (I − P) c⊤ .
We have P̂ c⊤ = a⊤ and
c⊤ = P̂ -1 a⊤ =

∑
c∞n=0(P

n a⊤) .
We can think of P̂ -1 a⊤ as an alternative definition of c⊤ .
We also have P̂ ü⊤ = â⊤ and p̃ â⊤ = 0 , so
ü⊤ = P̂ -1 â⊤ =

∑
c∞n=0(P

n â⊤) .
(The Cesaro sum converges for the same reasons

∑
c∞n=0(P

n a⊤) coverges.15)
The false values ü⊤ are what the true values c⊤ would be if the excess payoffs a⊤ were the false

payoffs â⊤ . If you change the payoffs to the false payoffs, then the values become the false values.
This paper does not discuss adaptation. Adaptation is the process of changing the probabilities P in

an attempt to increase m̄ . Often adaptation is on the basis of state values c⊤ . But when we base our
adaptation on estimates ü⊤ given to us by TD(0) rather than on the true values c⊤ , it’s as if TD(0) has
changed the true payoffs a⊤ into false payoffs â⊤ . This change is a problem inherent in all temporal
difference methods.16 What makes this all non-trivial is that there is an interesting relation between the
true payoffs a⊤ and the false payoffs â⊤ , which we now show.

Since u is sad, we have , H u⊤ = 0 , so
Ψ⊤D a⊤ = (B0) (B

-1
0 Ψ⊤D a⊤) = (Ψ⊤Y Ψ+H) (u⊤) = Ψ⊤Y Ψu⊤ .

Ψ⊤D a⊤ = Ψ⊤Y Ψu⊤ (11)

Ψ⊤D â⊤ = Ψ⊤D (I − P)Ψu⊤ = Ψ⊤Y Ψu⊤ = Ψ⊤D a⊤

Ψ⊤D â⊤ = Ψ⊤D a⊤
∑
i

p̃iψij âi =
∑
i

p̃iψijai (12)

I regard ψijai as the payoff received by feature j when we are in state i . So the average payoff
received by feature j in each step is

∑
i p̃iψijai . We see from (12) that in the change from true

payoffs to false payoffs, the average is unchanged. In a sense, the change conserves payoff at each feature.
The change is a problem, but the conservation is encouraging.

In a sense, â is the only long vector that conserves payoff at each feature in the sense of equation (12).
We show this as follows. Suppose z is a long real vector such that
Ψ⊤D z⊤ = Ψ⊤D a⊤ .
And suppose p̃ z⊤ = 0 , and suppose there is a short real vector v such that
z⊤ = (I − P)Ψv⊤ .
Write v as the sum of sad vector x and happy vector y .
We see that in the last equation, the y drops out and we have
z⊤ = (I − P)Ψx⊤ .
Ψ⊤D z⊤ = Ψ⊤D (I − P)Ψx⊤ = Ψ⊤Y Ψx⊤ = B0 x

⊤

By (11) we have
Ψ⊤D a⊤ = B0 u

⊤ .
Since Ψ⊤D z⊤ = Ψ⊤D a⊤ , we have B0 x

⊤ = B0 u
⊤ , so x⊤ = u⊤ . We then have

z⊤ = (I − P)Ψx⊤ = (I − P)Ψu⊤ = â⊤ .

6 Other Linear-TD(0) Methods
6.1 Using m⊤ Instead of a⊤

What if the method uses m⊤ instead of a⊤ ? Then the average step equation (4) becomes
(v(n+1))⊤ = (I − εΨ⊤YδΨ) (v(n))⊤ + εΨ⊤Dm⊤ .

Suppose δ > 0 .
Then our convergence proof still works, but with m⊤ place of a⊤ .
We write (v(n))⊤ = (x(n))⊤ + y⊤ , where (x(n))⊤ is the antikernel part and y⊤ is the kernel part.

14Suppose vP̂ = 0 for some non-zero vector v . Since P̂ e⊤ = e⊤, we have v e⊤ = vP̂ e⊤ = 0 . Therefore,
v(I − P) = vP̂ = 0 , so v is an eigenvector of P with eigenvalue 1. So is p̃ , and the Frobenius Perron theorem
tells us that the space of such eigenvectors is one dimensional. Therefore, v = λp̃ for some scalar λ . Therefore,
v = λp̃ = λp̃P̂ = vP̂ = 0 . Contradiction.

15Change the payoffs to â⊤ and then use the proof in [11].
16Or if you prefer, the change is one way of viewing a problem that is inherent in all temporal difference methods.

15

limn→∞(x(n))⊤ = A-1
δ Ψ⊤Dm⊤ = u⊤

δ + m̄A-1
δ τ⊤

What is this awkward term m̄A-1
δ τ⊤ ?

If y is a kernel vector, then yAδ = y and yA-1
δ = y . Therefore we have

y (m̄A-1
δ τ⊤) = m̄ (yA-1

δ) (τ⊤) = m̄ (y) (Ψ⊤p̃⊤) = 0 , so the awkward term is an antikernel vector.
If H = K , then the awkward term is sad.

If H ̸= K then we can use equations in section 4.
Equation (8) tells us that the awkward term is this.
m̄A-1

δ τ⊤ = δ -1β -1m̄η⊤ .
In this case the awkward term is happy.
When calculating the vector of estimated values we multiply on the left by Ψ and the happy awkward term
becomes δ -1 m̄ e⊤ . Since this is tidy, adjustment will get rid of it. But if δ is small the tidy term is
huge, and this can cause calculation problems. We now look at the even worse case when δ = 0 .

Now suppose δ = 0 .
Most of our previous convergence proof works with m⊤ in place of a⊤ , but one part doesn’t. We
multiplied the average step equation by H and obtained H (v(n+1))⊤ = H (v(n))⊤ . We no longer
get this. On the other hand, we do get K (v(n+1))⊤ = K (v(n))⊤ . So if H = K then we do get
H (v(n+1))⊤ = H (v(n))⊤ , and our proof works with m⊤ in place of a⊤ . We obtain
limn→∞(v(n))⊤ = B -1

0 Ψ⊤Dm⊤ = u⊤ + m̄B -1
0 τ⊤ .

But if δ = 0 and H ̸= K then our convergence proof doesn’t work. My guess is that in this case
the sequence doesn’t converge unless m̄ = 0 .

6.2 TD(0)-future Methods
We define b⊤ = P a⊤ . Then we have∑

w Fiwbi = p̃ibi = p̃i
∑

w Piwaw =
∑

w Fiwaw , and therefore,
ε
∑

iw Fiwbiψik = ε
∑

iw Fiwawψik .

ε
∑
iw

Fiw(bi − v̄i + (1− δ) v̄w)ψik = ε
∑
iw

Fiw(aw − v̄i + (1− δ) v̄w)ψik . (13)

There is a class of TD(0) methods that I call TD(0)-future methods.
In these methods, if the state transition is i→ w , the increment to vk is
ε (aw − v̄i + (1− δ) v̄w)ψik

rather than formula (2). Sutton and Barto [6] frequently use these methods.
The TD(0)-future average change in vk then is the right side of (13) rather than (3). Let’s use the left

side of (13). That’s just (3) with each ai replaced by bi . So as far as average steps go, TD(0)-future
behaves just like ordinary linear-TD(0) behaves except that the excess payoffs are b⊤ rather than a⊤ .
All our convergence arguments also work for TD(0)-future, and the limit formulae are the same except that
a⊤ is replaced by b⊤, and m⊤ is replaced by b⊤ + m̄ e⊤ , which is P m⊤ .

Instead of limit vectors u⊤
δ and u⊤ , we have

z⊤δ = A-1
δ Ψ⊤D b⊤ and z⊤ = B -1

0 Ψ⊤D b⊤ .
Our cash balance vector v might be z or zδ , so we can write z̄ , z̈ , z̄δ , and z̈δ .

The TD(0)-future method is not trying to estimate the values c⊤δ =
∑
c∞n=0((1− δ)

n
Pn a⊤) . It’s

trying to estimate the future values w̄⊤
δ =

∑
c∞n=0((1− δ)

n
Pn b⊤) . We see that c⊤δ = a⊤+ (1−δ) w̄⊤

δ .
So we would like our new estimates to be related as follows.
ü⊤
δ = a⊤ + (1− δ) z̈⊤δ and ü⊤ = a⊤ + z̈⊤ .

We shall see that if a ∈ Ran(Ψ⊤) then we do have that relationship.
Suppose a ∈ Ran(Ψ⊤) and δ > 0 .

Then there is a kernel vector x and an antikernel vector y such that
Ψ(x⊤ + y⊤) = a⊤ . And so we have Ψy⊤ = a⊤ .
Aδ y

⊤ = (Ψ⊤Yδ Ψ+K)y⊤ = Ψ⊤Yδ a
⊤ = Ψ⊤D (I − (1− δ)P)a⊤ = Ψ⊤D a⊤ − (1− δ)Ψ⊤D b⊤

We multiply by A-1
δ on the left. y⊤ = u⊤

δ − (1− δ) z⊤δ
Now we multiply by Ψ on the left. a⊤ = ū⊤

δ − (1− δ) z̄⊤δ
So we see that the vector a⊤ + (1− δ) z̈⊤δ − ü⊤

δ is tidy.
Multiplying that tidy vector by p̃ on the left gives zero, so the tidy vector itself is zero, and we have

If a ∈ Ran(Ψ⊤) and δ > 0 , then ü⊤
δ = a⊤ + (1− δ) z̈⊤δ .

Suppose a ∈ Ran(Ψ⊤) .
Then there is a sad vector x and a happy vector y such that

16

Ψ(x⊤ + y⊤) = a⊤ . We multiply by (I − P) .
(I − P)Ψx⊤ + (I − P)Ψy⊤ = (I − P)a⊤

The vector Ψy⊤ is tidy, so the second term is zero, and we have
(I − P)Ψx⊤ = a⊤ − b⊤ . We multiply on the left by Ψ⊤D .
Ψ⊤Y Ψx⊤ = Ψ⊤D (a⊤ − b⊤) . Since H x⊤ = 0 , this becomes
B0 x

⊤ = Ψ⊤D (a⊤ − b⊤) .
x⊤ = B -1

0 Ψ⊤D (a⊤ − b⊤) = u⊤ − z⊤ .
(x⊤ + y⊤) + z⊤ − u⊤ = y⊤ Now multiply by Ψ on the left.
a⊤ + z̄⊤ − ū⊤ = Ψy⊤

Since Ψy⊤ is a tidy vector, we see that the vector a⊤ + z̈⊤ − ü⊤ is also tidy.
Multiplying that tidy vector by p̃ on the left gives zero, so the tidy vector itself is zero, and we have

If a ∈ Ran(Ψ⊤) then ü⊤ = a⊤ + z̈⊤ .

6.3 Ensuring H ̸= K and a ∈ Ran(Ψ⊤)

If one of the basis functions simply returns the number 1, that is, if there is a k such that ψik = 1 for
all i , then e ∈ Ran(Ψ⊤) , and H ̸= K . The payoff mi of the current state i is available to
the system, so we can arrange that one of the basis functions simply returns that payoff. Then there is a
k such that ψik = mi for all i . Then m ∈ Ran(Ψ⊤) . If we also have e ∈ Ran(Ψ⊤) , then
a ∈ Ran(Ψ⊤) .

7 What’s New Here?
The proof of average step convergence of undiscounted linear-TD(0) is new. Though its basic idea is the same
as the proof of the discounted case, the lack of discount necessitates an added trick to show convergence. The
resulting limit formula is of course simpler than in the discounted case. It relates to true values undistorted by
discounts, and when used in adaptation it facilitates analysis, though we do not here analyze the adaptation.

Another approach to the undiscounted case is to take the discounted limit formula and let δ → 0 . We
do that here and that is new. The two approaches yield different formulae, but the difference makes sense.

There is a large body of Reinforcement Learning work on linear-TD(0), but mostly on the discounted
version. And there is a large body of Evolutionary Computation work on the simple bucket brigade, which
is a special case of undiscounted linear-TD(0). By showing convergence of undiscounted linear-TD(0), the
work here plugs a gap in our knowledge and brings these two bodies of work together.

We then define what I call false payoffs and use the undiscounted limit formula to prove equation (12),
which relates true and false payoffs. This too is new. It gives us a handle on the biases that bedevil
linear-TD(0) and other temporal difference methods.

References
[1] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic algorithms. Automatica,

45(11):2471–2482, 2009.

[2] D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Wiley, New York, 1949.

[3] J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard. Induction: Processes of Inference,
Learning and Discovery. MIT Press, Cambridge, MA, 1986.

[4] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM J. of Res. Develop.,
13:210–229, 1959.

[5] R. S. Sutton and A. G. Barto. Toward a modern theory of adaptive networks: Expectation and
prediction. Psychological Review, 88(2):135–170, 1981.

[6] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction, Second edition.
MIT Press, Cambridge, Mass., 2018.

[7] Richard S. Varga. Geršgorin and His Circles, volume SSCM-36. Springer Series in Computational
Mathematics, Heidelberg, 2004.

17

[8] T. H. Westerdale. A defense of the bucket brigade. In J. David Schaffer, editor, Proceedings of the
Third International Conference on Genetic Algorithms, pages 282–290, San Mateo, CA, 1989. Morgan
Kaufmann.

[9] T. H. Westerdale. Quasimorphisms or queasymorphisms? Modeling finite automaton environments.
In Gregory J. E. Rawlins, editor, Foundations of Genetic Algorithms, pages 128–147, San Mateo, CA,
1991. Morgan Kaufmann.

[10] Tom Westerdale. Bucket Brigade Convergence on Markov Chains. pages 1–50, 2022.
unpublished. URL https://www.dcs.bbk.ac.uk/~tom/convergence.pdf.

[11] Tom Westerdale. Learning Resembles Evolution – the Markov Case. pages 1–12, 2024.
unpublished. URL https://www.dcs.bbk.ac.uk/~tom/briefsymmetric.pdf.

18

