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Abstract
A learning system can be said to learn strings of actions. An evolving population can be said to evolve

strings of genes. We show here that in a broad class of adaptive plans, the string frequencies change
according to the same simple formula whether the strings are strings of actions in time or strings of genes
in space, just as John Holland foresaw. The result is new. We have shown this by first analyzing the
basic case where the Markov property holds in the learning system and then extending the analysis to
cases where it doesn’t. This paper analyzes the basic case, where an action is simply a state transition.
In these adaptive plans, a transition’s frequency increase is proportional to the product of its frequency
and its total value. Its total value is the sum of its pre-value, which reflects payoff received in time steps
before the transition, and its post-value, which reflects payoff received in time steps after the transition.
Total value is time symmetric. Machine learning procedures are correctly based on post-values alone. In
this paper we reframe that learning in terms of total values. Then in these plans, the formulae simplify
and come to resemble those of population genetics and evolutionary computation. The procedures have
not changed, only the analysis. It establishes a formal link between the process of learning and the
process of evolution.

Key Words: adaptive systems, reinforcement learning, evolutionary computation, time symmetric
values, undiscounted value, adaptive Markov chain, actor-critic, temporal difference.

1 Learning and Evolution
A brain learns. A population evolves. In his 1975 book, Adaptation in Natural and Artificial Systems [3],
John Holland placed these adaptive systems and others in a common formal framework. He believed that
learning and evolution are similar adaptive processes.

But a formal approach highlighted problems. Reinforcement Learning [4] deals with conditional proba-
bilities of actions, whereas evolution deals with unconditional probabilities of genes and gene strings. These
different probabilities seeemed to change and adapt differently. Learning and evolution seemed different.
The fields of Reinforcement Learning and Evolutionary Computation separated.

Our work shows that if we take a time symmetric aproach in the formal framework, then the proba-
bility changes are not really different. Learning and evolution are similar. Reinforcement Learning and
Evolutionary Computation can now get back in touch. Holland was right.

Through interaction with the environment, a learning system learns what to do, which actions to take
when and in what combinations. An evolving population, through interaction with the environment, learns
which genes are appropriate when and in what combinations. A learning system can be said to learn strings
of actions. An evolving population can be said to evolve strings of genes. In a broad class of adaptive plans,
which we call Natural Plans, the string frequencies change according to the same simple formula whether
the strings are strings of actions in time or strings of genes in space. We have shown this by first analyzing
the basic case where the Markov property holds in the learning system and then extending the analysis to
cases where it doesn’t. This paper analyzes the basic case, where the Markov property holds and the system
can distinguish the various states. So an action is simply a Markov chain state transition.

In an evolving population of a haploid microorganism, the value υσ of a gene σ is the average of the
values of the individuals in the population that have that gene. The frequency φσ of the gene changes in
this way.

φ′
σ = φσKυσ (1)

In this paper, K is the adaptation rate constant, and ′ is derivative with respect to time.
The equation holds roughly not only when σ is a single gene, but also when it is a string of several

genes, and even when it is an entire genome.1 This is the basis of the hierarchical adaptive structure of
1Sexual recombination distorts this for the longer strings, and there are many complications. What I call value is sometimes

called fitness, but fitness sometimes means reproductive rate.
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evolving populations. It is the basis of Evolutionary Computation. The frequencies of the more valuable
strings increase.

This paper shows that equation (1) also holds in the basic reinforcement learning context, where σ is
a string of successive state transitions. This result is new, and depends on the correct definition of string
total value vσ . The total value vij of state transition i → j is the sum of its pre-value, which reflects
payoff received in time steps before the transition, and its post-value, which reflects payoff received in time
steps after the transition. Total value is time symmetric.2

Machine Learning systems tend to ignore pre-values. They adjust the state transition conditional proba-
bilities Pij on the basis of the post-values cj alone. The broad class of what I call Natural Adaptive Plans
do this. This makes good sense, since two alternative transitions coming from the same state have the same
pre-values. Post-values are usually called simply values.

This paper shows that in any Natural Plan, the change in unconditional transition frequencies Fij follows
a very simple formula F ′

ij = FijKvij based on total value vij . The system is not using pre-values. But
using pre-values and total values in analysis allows us to describe the system’s action simply. The changes
in transition string frequencies follow the simple equation (1), just as in evolving populations.

The Actor-Critic architecture [1] in Reinforcement Learning conceptually separates the system into the
critic, which calculates post-value estimates, and the actor, which uses these estimates to adjust the proba-
bilities.3 Generally speaking, the estimates are noisy and biased.4

This paper deals with only the basic situation. We have an adaptive finite state Markov chain, with a
fixed payoff number attached to each state. When the chain enters a state, the system receives payoff equal
to the payoff number attached to that state. I write m̄ for the average payoff received per time step.

Each legal transition has an attached positive availability number sij . The transition probabilities
Pij are the normalized availabilities. The actor adjusts the availabilities in an attempt to increase m̄ .
The actor and critic can distinguish the various states.5 In this simple situation, the post-value estimates
are always unbiased. This paper deals only with the actor, and we assume that when we are in state i ,
the actor receives the correct post-value from the critic. This paper derives formulae for F ′

ij and φ′
σ in

this basic adaptive Markov chain situation.
We have extended these results to more general systems in which the Markov property does not hold.

[6] In such systems a Temporal Difference Critic usually gives biased post-value estimates. Our analysis of
these systems has already helped to make sense of the biases. The adaptive Markov chain results form the
basis of all these extensions. This paper reports only the adaptive Markov chain results.

Section 2 is preparatory material. In it we introduce our terminology and define the probabilities, the
values, and m̄ as functions of the availabilities. We note that in fact they are all differentiable (in fact
rational) functions of the availabilities. We then assume that the availabilities are differentiable functions of
time, and this makes all the quantities differentiable functions of time. We exhibit seven needed equations
that relate the time derivatives of the various quantities. Proof outlines are given for proofs that are not fairly
obvious. Almost everything in section 2 is traditional time-asymmetric material. It is given here mainly to
illustrate our notation. Only at the end of section 2 do we introduce the non-traditional time-symmetric
quantities, the pre-values, total values, and string total values.

Section 3 proves the key equivalence (lemma 6). It says that equation F ′
ij = FijKvij holds if and

only if P ′
ij = PijKhij holds. The forward implication (lemma 3) is easy, but turning the implication

around involves constructing what I call the derivative relation. The construction is in subsection 3.1.
From the key equivalence, the rest follows. Section 4 defines Natural Adaptive Plan and proves Theorem

1. Actually, you could think of the whole paper as a proof of Theorem 1. Theorem 1 gives three equivalent
definitions of Natural Plan. It follows that string frequencies change as in the evolution formula (1).

2 Adaptive Markov Chains
All vectors in this paper are row vectors. Their transposes are column vectors. Each of our vectors will be
a row of N complex numbers. A vector is non-negative if all its entries are non-negative real numbers. A
vector is called stochastic if its entries are all non-negative real numbers and the entries sum to 1. Of course
a vector is nonzero if it has a nonzero entry.

2The pre-value and post-value are both undiscounted. In Reinforcement Learning literature, the word “reward” means payoff,
whereas in Evolutionary Computation literature, “reward” usually means reinforcement.

3The estimates can be implicit, but Temporal Difference critics use explicit estimates.
4Temporal Difference estimates have less noise, but they are usually biased. For a simple example of the bias see [5].
5They have separate parameters for each state and they know which state they are in.
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In most cases we will use the following notation. A vector will be a bold lower case letter, for example,
v . Each entry in the vector will be written using the corresponding italic letter thus, vi . A matrix will
be an upper case italic letter, for example, M . Each of its entries will be written using that same letter
thus, Mij .

The vector e is the vector of all ones. The vector ei is the vector whose i’th entry is 1 and whose other
entries are all 0.

Our matrices will be N ×N matrices of real numbers. A matrix is non-negative if all of its entries are
non-negative real numbers. A matrix is row stochastic if each of its rows is a stochastic vector. So we see
that a matrix A is row stochastic of and only if A is non-negative and Ae⊤ = e⊤ . Of course a row is
nonzero if it has a nonzero entry. Similarly for nonzero column.

To normalize a non-negative vector means to change its entries, dividing each entry by the sum of all the
entries. So the normalized vector is stochastic. To row normalize a non-negative matrix means to normalize
each of its rows, to divide each entry by the corresponding row sum.

If v is a vector, then diag(v) is the diagonal matrix whose ii’th entry is vi , for all i .
We will be discussing a Markov chain that has N states. When I say Markov chain, I will mean a Markov

chain with N states. (N ≥ 2)
Attached to each legal chain transition i → j is a positive real number sij that I call its availability.

If there is no legal transition from i to j then sij = 0 . The matrix S is the N ×N matrix of
availabilities sij . Adaptation will change the availabilities.6

The matrix P is the row normalized S . The number s̄i is the i’th row sum of S . So
Pij = sij s̄

-1
i .

The matrix P is the chain’s transition probability matrix. If i → j is a legal chain transition, then
Pij is the transition probability. By that I mean that Pij is the conditional probability that the next
state is j , given that the current state is i . If i → j is illegal then of course Pij = 0 . The transition
probability of every legal transition is positive. We see that P is row stochastic. We see that P is a rational
function of S .

Our Markov chain will be strongly connected, which means that for any ordered pair of states ⟨i, j⟩ ,
there is a sequence of legal transitions that takes the chain from state i to state j .

We write p̃i for the probability the chain is in state i .
The state probability vector p̃ is a left eigenvector of P with eigenvalue 1. And p̃ e⊤ = 1 .

Since the chain is strongly connected, the Frobenius-Perron theorem [2] tells us that:

The set of left eigenvectors of P that have eigenvalue 1 forms a one-dimensional subspace.
The set of right eigenvectors of P that have eigenvalue 1 forms a one-dimensional subspace.

}
(2)

And it tells us that every p̃i is positive.
We define Fij = p̃iPij , so Fij is the frequency or unconditional probability of transition i → j .
We define the matrix P̂ = I − P + e⊤p̃ . We note that P̂ is nonsingular.7

Attached to each state i is a fixed unchanging real number mi called its payoff. As S changes,
P changes, but the payoff vector m remains the same.

When the chain visits state i , we receive payoff equal to mi . So in each time step, the chain changes
state and we receive payoff. I write m̄ for the average payoff we receive per time step. So m̄ = p̃m⊤.

The actor adjusts S , and this changes the probabilities P and all the other quantities including m̄ .
The hope is that m̄ will rise. I use the term excess payoff to mean payoff minus m̄ . The vector a is the
state excess payoff vector, that is, ai = mi − m̄ .

The post-value ci of state i is the expectation of the total excess payoff we would receive on and after
a visit to state i. That is,
ci =

∑
c∞k=0(eiP

ka⊤) (I write
∑
c for Cesaro summation.)

We use Cesaro summation to iron out any periodicity in the chain.
We show below that the Cesaro sum converges and that ci = eiP̂

-1a⊤ .
We define hij = cj − ci + ai . It says how much better i → j is than the average transition from

i . I call it the choice value. We also define the correction factor qi = p̃is̄
-1
i . Our definitions are

summarized in the table below.

6The matrix S is the only matrix whose entries I write with a lower case letter, sij .
7Suppose vP̂ = 0 for some non-zero vector v . Since P̂ e⊤ = e⊤, we have v e⊤ = vP̂ e⊤ = 0 . Therefore,

v(I − P ) = vP̂ = 0 , and v is a left eigenvector of P with eigenvalue 1. So (2) tells us that v = λp̃ for some scalar
λ . Therefore, v = λp̃ = λp̃P̂ = vP̂ = 0 . Contradiction.
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Symbol Meaning Defining Equation
s̄i availability row sum s̄i =

∑
j sij or s̄ = eS⊤

S̄ S̄ = diag(̄s)
Pij probability of i → j Pij = sij s̄

-1
i or P = S̄ -1S

p̃i probability of state i
D D = diag(p̃)
Fij frequency of i → j Fij = p̃iPij or F = DP

P̂ P̂ = I − P + e⊤p̃
m̄ average payoff m̄ = p̃m⊤

ai excess payoff of state i ai = mi − m̄

ci post-value of state i c⊤ = P̂ -1a⊤ =
∑
c∞k=0(P

ka⊤)
hij choice value of i → j hij = cj − ci + ai
qi qi = p̃is̄

-1
i

Since P̂ is nonsingular, the definition c⊤ = P̂ -1a⊤ makes sense. Using that definition we have the
following facts.

p̃ = p̃P = p̃P̂ = p̃P̂ -1 and e⊤ = P e⊤ = P̂ e⊤ = P̂ -1e⊤ (3)

p̃ a⊤ = 0 and p̃ c⊤ = 0 (4)

(I − P ) c⊤ = a⊤ and ci − ai =
∑
j

Pijcj (5)∑
j

Pijhij = 0 (6)

Since (P k − e⊤p̃)P̂ = P k − P k+1 we have
n−1∑
k=0

(P k − e⊤p̃) = (I − Pn) P̂ -1 (7)

From this we have limn→∞
1
n

∑n−1
k=0(P

k − e⊤p̃) = 0 , which gives us

lim
n→∞

1

n

n−1∑
k=0

P k = e⊤p̃ (8)

The definition of Cesaro sum gives us
∑
c∞n=0(P

n − e⊤p̃) = limℓ→∞
1
ℓ

∑ℓ−1
n=0

∑n−1
k=0(P

k − e⊤p̃) ,
and then equations (7) and (8) give us this.

∞∑
n=0

c (Pn − e⊤p̃) = P̂ -1 − e⊤p̃ (9)

Multiplying by a⊤ on the right gives us
∑
c∞n=0(P

na⊤) = P̂ -1a⊤, so the Cesaro sum in the definition
of ci converges and is correct.

We said that P is a rational function of S .
In fact, the following quantities are all rational functions of S .
P, p̃, m̄, a, P̂ , P̂ -1, F, and c.
The only tricky part of showing this is showing that p̃ is a rational function of P .

One way of doing this is via the adj of a matrix.8 We define M = adj(I − P ) .
By (2), the transformation (I −P ) is singular and has a one dimensional kernel. Hence it has a nonzero
(N − 1)× (N − 1) minor and a non-zero cofactor. So M is not the zero matrix.

Now for any square matrix A we have (adj(A))A = A (adj(A)) = |A| I . So we have
M (I − P ) = (I − P )M = 0 , and consequently we have MP = M and PM = M . So

8If A is a square matrix, then we get the ij’th co-factor of A by deleting the i’th row and j’th column, taking the determinant
of what is left, and then changing its sign if i+ j is odd. We get adj(A) as follows. We take A , and for each element we
replace it with the corresponding co-factor. Thus the ij’th element is replaced by the ij’th co-factor. When we are all done,
we transpose the matrix. Suppose we look at the (N − 1) × (N − 1) minors of A . We see that the ij’th minor either
equals the ij’th co-factor or equals its negation. So there is a non-zero (N − 1) × (N − 1) minor if and only if there is a
non-zero co-factor.
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M has the property that any nonzero row is a left eigenvector of P with eigenvalue 1, and hence9 is a
scalar multiple of p̃ . And any nonzero column is a right eigenvector of P with eigenvalue 1, and hence
is a scalar multiple of e⊤ . So every row is identical, and since M is not the zero matrix, every row is
nonzero and is a multiple of p̃ . So p̃ is a rational function of P .

Note that if A is a nonsingular square matrix then A-1 is a rational function of A since it is
|A|-1(adj(A)) .

The rest is obvious. All the quantities are rational functions of S .
We now suppose that each entry sij in S is a continuous and differentiable function of some real

parameter t , which we can think of as time. It follows that all our quantities are continuous and
differentiable functions of t . We write ′ to mean derivative with respect to t . So the entries in the
matrix S′ are the derivatives s′ij , and the entries in the vector p̃′ are the derivatives p̃′i , and so
forth. The following equations show how the derivatives S′, S̄′, P ′, p̃′, F ′, and m̄′ are related.

S̄′ = diag(e (S′)⊤) . (10)
p̃′ = eF ′ . (11)

F ′ = D′P +DP ′ (12)
P ′ = D−1(F ′ −D′P ) (13)
P ′ = S̄−1(S′ − S̄′P ) . (14)

p̃′ = p̃P ′P̂−1 (15)
m̄′ = p̃ S̄ -1(S′ − S̄′P ) c⊤ . (16)

Equations (10) and (11) are obvious. Equations(12) and (13) are just the product rule applied to
F = DP , and equation (14) is the product rule applied to S̄P = S . To derive equation (15) we first
note that since p̃ e⊤ = 1 , we have p̃′e⊤ = 0 . Therefore if we use the product rule on p̃ = p̃P we
can obtain p̃′ = p̃P ′ + p̃′P = p̃P ′ + p̃′P − p̃′e⊤p̃ . Then transposing a couple of terms yields
p̃′P̂ = p̃P ′ and then (15). Now m̄ = p̃m⊤ , so m̄′ = p̃′ m⊤ = p̃′(a⊤ + m̄ e⊤) = p̃′ a⊤ . So
multiplying (15) on the right by a⊤ gives us m̄′ = p̃P ′c⊤ . This and equation (14) give us equation
(16).

We said that m̄ is a differentiable function of the availabilities sij . We would like a formula for the
partial derivative ∂m̄

∂sij
. We proceed as follows.

We choose any legal transition x → y . In the availability matrix we keep all entries sij constant
except for the xy’th entry. The xy’th entry will be equal to the time parameter t . So t determines the
xy’th entry, which determines m̄ . The current time t is sxy , so the current availability matrix is S .
The current time derivative m̄′ is ∂m̄

∂sxy
. The time derivative S′ is e⊤x ey , and the time derivative

S̄′ is e⊤x ex .
We plug those values into equation (16) and obtain a formula for ∂m̄

∂sxy
.

∂m̄
∂sxy

= (p̃ S̄ -1e⊤x )(eyc⊤ − exP c⊤)

We see that p̃ S̄ -1e⊤x = qx . And equation (5) tells us that P c⊤ = c⊤ − a⊤ .
Therefore, our formula simplifies to ∂m̄

∂sxy
= qxhxy .

The chosen transition could have been any legal transition.
Therefore, for any legal transition i → j we have

∂m̄

∂sij
= qihij . (17)

We now define the non-traditional time symmetric quantities.
We call a square matrix row-column compatible if every row sum equals the corresponding column sum.

The matrix F is row-column compatible. The i’th row sum and the i’th column sum of F are both p̃i .
We note that P is the row normalized F . Let the matrix B be the row normalized F⊤. The entry
Bij is the conditional probability that the previous state was j , given that the current state is i . The
matrix B is the transition probability matrix of a different chain. I call it the backward chain and call the
original chain the forward chain. The state probabilities and state payoffs in the backward chain are the
same as in the forward chain. (The backward chain is sometimes called the time reversed chain.)

The pre-value bi of state i is the expectation of the total excess payoff we receive on and before a visit
to state i. Pre-value in the forward chain is post-value in the backward chain. bi =

∑
c∞k=0(eiB

ka⊤)

9by (2)
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Total value is pre-value plus post-value.
So we have the following additional definitions.

Symbol Meaning Defining Equation
Bij backward probability Bij = Fji p̃

-1
i or B = D -1F⊤

B̂ B̂ = I −B + e⊤p̃

bi pre-value of state i b⊤ = B̂ -1a⊤ =
∑
c∞k=0(B

ka⊤)
vij total value of i → j vij = bi + cj
v̄i total value of state i v̄i = bi − ai + ci

These quantities too are obviously rational functions of S .
It is straightforward to show the following unsurprising facts.

(I −B)b⊤ = a⊤ and bi − ai =
∑
j

Bijbj (18)∑
j

Fijvij = p̃iv̄i and
∑
i

Fijvij = p̃j v̄j (19)∑
i

p̃iv̄i = 0 and
∑
ij

Fijvij = 0 (20)

We can extend the notion of the total value of a transition and define what we can call the total-value of
a string of transitions. We write υσ to mean the total-value of string σ . To avoid introducing unnecessary
notation, I shall avoid giving a formal definition and proving the facts about it. I shall merely illustrate with
an example and leave the proofs of the generalizations to the reader.

We choose an illustrative string σ .

σ = (α → β)(β → i)(i → j)(j → δ)(δ → ε) (21)

The frequency φσ of string σ is this.
φσ = p̃αPαβPβiPijPjδPδε .
The total value of σ is this.
υσ = bα + aβ + ai + aj + aδ + cε
The pre-value bα and the post-value cε embody the interaction of σ with the environment, with the
preceding and following strings.

These definitions make sense. For example, suppose we select a random five transition string, selecting
each string σ with probability φσ . Then Fij is the probability that the third transition in the selected
sequence is i → j . To see that this is the case, note that in general we have p̃iPij = Fij = Bjip̃j ,
so if σ is the example sequence above, then we can write the string frequency φσ as
BβαBiβFijPjδPδε .
Now summing over α, β, ε, and δ gives us Fij . The transition frequency is the sum of the frequencies of
the strings it is in, just as in population genetics.10

3 Adaptation
3.1 The Derivative Relation
Our task now is to show that the matrix P ′ determines F ′ , and that conversely, F ′ determines P ′ .
We do this by defining a relation from the possible P ′ matrices to the possible F ′ matrices and then
showing it is one to one.

Select any availability matrix S . This matrix will remain fixed throughout section 3. We will examine
various different S′ matrices.

Since S is fixed throughout section 3, the following quantities are also fixed.
S̄, P , p̃, P̂ , P̂ -1, D, F , B, ci, bi, hij , vij .

Although those quantities are fixed, their derivatives can differ depending on what S′ is. We are
particularly interested in P ′ and F ′ .

10Furthermore, using equation (5) on our example string σ , we have
∑

ε Pδευσ = bα + aβ + ai + aj + cδ . In this way,
using equations (5) and (18), we can show that the total value of a substring is the average of the total values of the strings it
is in, just as in population genetics.
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Let S be the set of real N × N matrices that have a zero in every entry that corresponds to an
illegal transition. It is easy to see that any S′ matrix must be a member of S . In fact, any member of
S could be an S′ matrix. The set S is the set of possible S′ matrices.

Now suppose we select an S′ from the set S . Our selected S′ gives us a matrix P ′ and a matrix
F ′ via equations (10), (14), (15), and (12). Let’s investigate what that P ′ and F ′ might be.

Let P be the set of all real N ×N matrices in which every row sum is zero and in which every entry
corresponding to an illegal transition is zero. Obviously any P ′ must be a member of P . We now show
that any member of P might be P ′ .

Lemma 1
If A ∈ P then there is an S′ in S such that P ′ = A .

Proof:
Let S′ = S̄A . We see that S′ ∈ S .
Since Ae⊤ = 0 , we have S̄′e⊤ = S′e⊤ = S̄A e⊤ = 0 . But S̄′ is diagonal, so S̄′ = 0 .
Plugging this and S′ = S̄A into equation (14) gives us P ′ = A .
�

So we see that P is exactly the set of all possible matrices P ′ .
Let’s be quite clear what we have said. Remember that S is fixed. We have said that if we take any

member A of P , that A could be P ′ . By that I mean that there is an S′ that gives us a P ′ equal
to A with S having the value of our fixed S .

Now let F be the set of all real N ×N matrices that are row column compatible, whose entries all
sum to zero, and in which every entry corresponding to an illegal transition is zero. It is easy to see that
every possible F ′ matrix must be a member of F . We now show it could be any member.

Lemma 2
If G ∈ F then there is an S′ in S such that F ′ = G .

Proof:
Given G ∈ F , let Ḡ be the diagonal matrix whose diagonal entries are the row sums of G .
Since G is row column compatible, they are also the column sums.
So we have Ḡe⊤ = Ge⊤ and eḠ = eG , and we also have (G− ḠP ) e⊤ = 0 .

Define S′ = S̄D−1(G− ḠP ) . We see that S′ ∈ S .
From the last two equations we have S′e⊤ = 0 . But we have S̄′e⊤ = S′e⊤ , so S̄′e⊤ = 0 .
Since S̄′ is diagonal, this means that S̄′ = 0 .
We now put our values for S′ and S̄′ in equation (14). It becomes
P ′ = D−1(G− ḠP ) .

So we have this.
p̃P ′ = e (G− ḠP ) = eG− eḠP = eG− eGP = eG(I − P )
Since eGe⊤ = 0 , we can write
p̃P ′ = eG(I − P ) = eG(I − P ) + (eGe⊤)p̃ = eGP̂ .
p̃P ′P̂−1 = eG
By equation (15), this becomes p̃′ = eG .
Now eD′ = p̃′ and eḠ = eG , so we have eD′ = eḠ .
Since D′ and Ḡ are diagonal, we have
D′ = Ḡ .

We insert our values of P ′ and D′ in equation (12).
F ′ = ḠP +D(D−1(G− ḠP )) = G
�

So we see that F is exactly the set of all possible matrices F ′ .

Remember that we have a fixed S and we are investigating what P ′ and F ′ are for different matrices
S′ . We define a relation from P to F that I call the derivative relation.

Derivative Relation:
Suppose A ∈ P and G ∈ F .
Matrix A is related to matrix G just if there is an S′ in S that
both gives us a P ′ equal to A and also gives us an F ′ equal to G .
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In the above definition, when I said “if there is an S′ in S that” I meant if there is at least one
such S′ . If there is one there are probably lots.

Lemmas 1 and 2 tell us that the domain of the derivative relation is the whole of P and that the range
of the derivative relation is the whole of F .

Equations (15), (12), (11), and (13) tell us that whatever S′ is, we have
F ′ = (diag(p̃P ′P̂ -1) )P +DP ′ and
P ′ = D -1(F ′ − ( diag(eF ′) )P ) .
So if A is related to G by the derivative relation, then we have
G = (diag(p̃AP̂ -1) )P +DA and
A = D -1(G− ( diag(eG) )P ) .
In other words, A determines G , and G determines A . The derivative relation is one to one.

The derivative relation is a function from P one to one and onto F .

If at the start of section 3 we had selected a different fixed S then we would probably have had a
different derivative relation. The set P would have been the same, and the set F would have been the
same, and the new different derivative relation would still have been a function from P one to one and
onto F .

So in a sense we can say that the fixed matrix S determines the derivative relation. We selected a
particular S at the start of this section and we are sticking with it. Our derivative relation is fixed and
unchanging.

3.2 The Key Equivalence
Now at last we are ready to prove the Key Equivalence, lemma 6. We begin with the easy part, the forward
implication.

Whatever S′ is, it gives us a P ′ and F ′ for which the following lemma holds.

Lemma 3
If for all ij we have F ′

ij = FijKvij ,
then for all ij we have p̃′i = p̃iKv̄i and P ′

ij = PijKhij .

Proof:
In this proof I will assume K = 1 . The reader can supply a more general K .
So we assume F ′

ij = Fijvij and prove both p̃′i = p̃iv̄i and P ′
ij = Pijhij .

We know that
∑

j Fij = p̃i , so taking derivatives and using the assumption and equation (19) gives
us p̃′i =

∑
j F

′
ij =

∑
j Fijvij = p̃iv̄i .

p̃′i = p̃iv̄i (22)

Now we derive an expression for P ′
ij . Applying the product rule to Fij = p̃iPij gives us

F ′
ij = p̃′iPij + p̃iP

′
ij . From this and the assumption and (22) we obtain

p̃iP
′
ij = F ′

ij − p̃′iPij = Fijvij − p̃iv̄iPij = p̃iPij(vij − v̄i) = p̃iPijhij .

P ′
ij = Pijhij . (23)

�

Now what we are going to do is turn the implication in Lemma 3 round the other way and say that if
P ′
ij = PijKhij for all ij then F ′

ij = FijKvij for all ij . In a sense, it’s obvious that the reverse
implication follows directly from the fact that the derivative relation is one to one, but because this reverse
implication is central we are going to be pedantic about proving it.
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Lemma 4
Suppose for some positive real number K we define the matrices P ∗ and F ∗ as follows;
P ∗
ij = PijKhij for all ij

F ∗
ij = FijKvij for all ij

Then the following three things are true:
(A) P ∗ ∈ P
(B) F ∗ ∈ F
(C) P ∗ is related to F ∗ by the derivative relation.

Proof:
Assume that P ∗ and F ∗ are defined as in the lemma’s supposition.
We note that in both P ∗ and F ∗ , every entry corresponding to an illegal transition is zero.
By equation (6), every row sum in P ∗ is zero.
Therefore, P ∗ ∈ P . (conclusion (A))
Equation (19) can be written

∑
j Fjivji = p̃iv̄i =

∑
j Fijvij ,

so we see that F ∗ is row column compatible.
Equation (20) tells us that the entries in F ∗ all sum to zero.
Therefore, F ∗ ∈ F . (conclusion (B))

Now since F ∗ ∈ F , lemma 2 tells us that there is some derivative matrix
S′ in S such that F ′ = F ∗ .
We will use that derivative S′ matrix. It gives us P ′ and F ′ .
We have F ′ = F ∗ , so for all ij we have F ′

ij = FijKvij .
Lemma 3 then tells us that for all ij we have P ′

ij = PijKhij .
That means P ′ = P ∗ .
So S′ gives us a P ′ equal to P ∗ and also gives us an F ′ equal to F ∗ .
This means by definition that P ∗ is related to F ∗ by the derivative relation. (conclusion (C))
�
Whatever S′ is, it gives us a P ′ and F ′ for which the following lemma holds.

Lemma 5
If for all ij we have P ′

ij = PijKhij ,
then for all ij we have F ′

ij = FijKvij .

Proof:
Suppose we have an S′ such that P ′

ij = PijKhij for all ij .
With that same K , we define the matrix F ∗ such that
F ∗
ij = FijKvij for all ij .

Our S′ gives us F ′ , and we ask what matrix that is.
Lemma 4 holds with P ∗ = P ′ , so P ′ is related to F ∗ by the derivative relation.
And of course P ′ is also related to F ′ by the derivative relation.
The derivative relation is one to one, so F ′ = F ∗ .
It follows that
F ′
ij = F ∗

ij = FijKvij for all ij .
�

This is lemma 3 reversed.
In a sense lemma 5 is obvious, but in another sense it’s astonishing.

Let’s re-write it using the definitions of hij and vij .

If P ′
ij = PijK(cj − ci + ai) for all ij ,

then F ′
ij = FijK(bi + cj) for all ij .

The astonishing part is the pre-values bi , which appear in the implication’s consequent but not in the
antecedent.

In lemma 3 the implication is the other way round, and all the proof of lemma 3 has to do is find a way
of getting rid of the pre-values by having them cancel one another. But in lemma 5 the pre-values pop into
existence, created out of thin air.

We can now sum up the results of this subsection.
Whatever S′ is, it gives us a P ′ and F ′ for which the following lemma holds.
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Lemma 6 The Key Equivalence
The equation F ′

ij = FijKvij holds for all ij
if and only if
the equation P ′

ij = PijKhij holds for all ij .

Proof:
The forward implication is lemma 3.
The backward implication is lemma 5.
�

Let’s look at lemma 6. It holds whatever S′ is. At the start of section 3 we selected an arbitrary matrix
S . That S determines each Fij , vij , Pij , and hij , so it determines the right hand sides of the equations
in the lemma. It also determines the derivative relation.

If at the start of section 3 we had selected a different S , then we would have had different Fij , vij ,
Pij , and hij . Sets P and F would have been the same, but the derivative relation would have been
different. But lemma 6 would still hold whatever S′ is.

So whatever S we select, lemma 6 holds whatever S′ is. In other words, whatever S and S′ are,
lemma 6 holds. We can now forget about the derivative relation. Lemma 6 always holds.

4 Natural Adaptive Plans
We now define a class of adaptive plans that I call Natural Plans.11

Natural Adaptive Plan
There are numbers β1, β2, β3, ...., βN such that

for all ij we have s′ij = sijK(βi + cj) .

Plan s′ij = sijKcj and plan s′ij = sijKhij are both Natural Plans.12

We first show that Natural Plans tend to increase payoff.

Lemma 7
In any Natural Plan,
m̄′ = K

∑
ij Fijh

2
ij .

Proof:
If we write

∑
ij to mean sum over all legal transitions i → j , then we have

m̄′ =
∑

ij
∂m̄
∂sij

s′ij .
Using equation (17) and the definition of Natural Plan, this becomes
m̄′ =

∑
ij qihijsijK(βi + cj) .

If there is no legal transition from i to j , then sij = 0 ,
so we see that the last equation holds for all ij .
We now use qisij = p̃iPij and cj = hij + ci − ai .
m̄′ = K

∑
ij p̃iPijhij(hij + ci − ai + βi)

m̄′ = K
∑

ij p̃iPijh
2
ij + K

∑
i p̃i(ci − ai + βi)

∑
j Pijhij

Equation (6) tells us that the second term on the right is zero.
�

Lemma 7 is an analog of Fisher’s Fundamental Theorem of Natural Selection.
We see that m̄′ can be zero only if hij is zero for every legal transition i → j .

Equation (17) says that this can happen only if the ground is level.
So in a Natural Plan, the climb rate m̄′ is positive unless the ground is level. The quantity m̄ is a

function of S , and we are heading uphill on that function unless the ground is level.

We now show that it is the Natural Plans for which the equations in the Key Equivalence hold.

11Natural in the sense of a natural population.
12This paper does not discuss plan implementation. There are various implementations of these Natural Plans, but it doesn’t

work to simply add Kcj to the availability sij of the current transition i → j . That implements the plan s′ij = FijKcj ,
which is not a Natural Plan.
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Lemma 8
If there are numbers β1, β2, β3, ...., βN such that for all ij we have s′ij = sijK(βi + cj) ,
then for all ij we have P ′

ij = PijKhij .

Proof:
As usual, we simplify by assuming K = 1 .
We assume s′ij = sij(βi + cj) and prove P ′

ij = Pijhij .
Now we have s̄i =

∑
j sij , so using equation (5) gives us this.

s̄′i =
∑

j s
′
ij =

∑
j sij(βi + cj) = s̄i

∑
j Pij(βi + cj) = s̄i(βi +

∑
j Pijcj) = s̄i(βi + ci − ai)

We have sij = s̄iPij , so
s′ij = s̄′iPij + s̄iP

′
ij . Substituting for s′ij and s̄′i gives us

sij(βi + cj) = s̄i(βi + ci − ai)Pij + s̄iP
′
ij .

Dividing by s̄i gives us Pij(βi + cj) = Pij(βi + ci − ai) + P ′
ij , which simplifies to Pijhij = P ′

ij .
�

Lemma 9
If for all ij we have P ′

ij = PijKhij ,
then there are numbers β1, β2, β3, ...., βN such that for all ij we have s′ij = sijK(βi + cj) .

Proof:
Again we assume K = 1 . We assume P ′

ij = Pijhij for all ij .
For each i , we define βi = s̄′is̄

-1
i − ci + ai . Then βi + cj = s̄′is̄

-1
i + hij .

Since sij = s̄iPij , we have
s′ij = s̄′iPij + s̄iP

′
ij = s̄′is̄

-1
i sij + s̄iPijhij = sij(s̄

′
is̄

-1
i + hij) = sij(βi + cj)

�
From lemmas 8, 9, and 6, we see that we have

Theorem 1
The following three conditions are equivalent. Either all three conditions hold or none of them do.
(1) F ′

ij = FijKvij for all ij .
(2) P ′

ij = PijKhij for all ij .
(3) There are numbers β1, β2, β3, ...., βN such that s′ij = sijK(βi + cj) for all ij .

Theorem 1 gives us three equivalent definitions of Natural Plan.

Lemma 3 tells us that in any Natural Plan we have p̃′i = p̃iKv̄i .

Now let’s look at string frequencies.
Suppose σ is the example string we gave in (21). There we gave the expressions for the string’s frequency

φσ and total value vσ . We have the following.
φσ = p̃αPαβPβiPijPjδPδε

log(φσ) = log(p̃α) + log(Pαβ) + log(Pβi) + log(Pij) + log(Pjδ) + log(Pδε)

φ′
σ

φσ
=

p̃′α
p̃α

+
P ′
αβ

Pαβ
+

P ′
βi

Pβi
+

P ′
ij

Pij
+

P ′
jδ

Pjδ
+

P ′
δε

Pδε

Now suppose we are using a Natural Plan. Then the last equation becomes
φ−1
σ φ′

σ = Kv̄α +Khαβ +Khβi +Khij +Khjδ +Khδε .
K−1φ−1

σ φ′
σ = v̄α + hαβ + hβi + hij + hjδ + hδε

= (bα − aα + cα) + (cβ − cα + aα) + (ci − cβ + aβ) + (cj − ci + ai) + (cδ − cj + aj) + (cε − cδ + aδ)
= bα + aβ + ai + aj + aδ + cε
= υσ

φ′
σ = φσKυσ (24)

It is easy to see that if we are using a Natural Plan, then Equation (24) holds in general for any string σ of
any length.

The converse is also true. If equation (24) holds in general for any string σ then the plan we are using
must be Natural since equation F ′

ij = FijKvij is a special case of equation (24). So we have:
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Corollary 1
An adaptive plan is Natural if and only if
φ′
σ = φσKυσ for every transition string σ .

Corollary 1 amounts to a fourth definition of Natural Plan.

Equation (24) is the same as equation (1).

Strings of transitions are strings in time, and strings of genes are strings in space, but their frequencies
here are changing in the same way. Learning and evolution are similar processes.

5 Time Symmetry
This paper analyses only the cases where the Markov property holds. The results form the basis of analysis
of more complicated cases, but that is beyond the scope of this paper. This paper can be thought of as a
proof of theorem 1 and corollary 1.

In retrospect, theorem 1 looks almost obvious, but it long eluded us. To compare changes in transition
frequencies with changes in gene frequencies we needed a usable formula for F ′

ij , the change in uncondi-
tional transition frequency. All our formule for F ′

ij were terribly complicated until we realized we should
incude pre-values in the analysis. Then everything simplified. The time-symmetric approach works.

This paper shows that in the basic case, where the Markov property holds, string frequencies change
according to the same simple formula whether the strings are strings of actions in time or strings of genes
in space.

Learning and Evolution are similar processes.
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