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A lattice expansion is a pair of an underlying lattice L and a set
{f1, f,...} of e-operations on L.

(L, fi,fpy...)

An e-operation f on LL is a n-any monotone function wrt the order
type € = (€1,...,€,), where each ¢; is either 1 or 0.
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EXAMPLE

The lattice operations V and A are (1, 1)-operations.
The involution — is a 0-operation.

The implication — is a (9, 1)-operation.
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LATTICE EXPANSIONS IN THIS TALK

To get a syntactic description of canonical inequalities, we focus
on lattice expansions only with e-additive operations and
e-multiplicative operations.

An e-additive operation f is a coordinate-wise join-preserving
function wrt the order type €. An e-multiplicative operation g is a
coordinate-wise meet-preserving function wrt the order type €.

EXAMPLE

The lattice operation V is (1, 1)-additive.

The implication — is (9, 1)-multiplicative, because we have
e (avb)—c=(a—c)AN(b— c), and
ea—(bAc)=(a— b)A(a— c).



EXAMPLES OF OUR LATTICE EXPANSIONS

Boolean algebras

Modal algebras

Heyting algebras

Distributive modal algebras

FL-algebras

B.Cno-algebras

To avoid a possible complication, we consider a lattice expansion
L= (L,/, r,c) only, where [ is (1,1)-additive, r is
(9, 1)-multiplicative and c is a constant.
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THE CANONICAL EXTENSION

The canonical extension of L = (L, /,r,c) is L= (L, l;, r, c),
where

1. L is the canonical extension of L,

2. I, ak.a. /9, is approximated from below by filters (closed
elements),

3. rl, ak.a. r™, is approximated from above by ideals (open
elements),

4. c is the constant.

Approximation...? Let’s recall the construction of canonical
extensions. (on blackboards)
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CANONICAL EXTENSIONS OF ¢-OPERATIONS

We extend / and r as partial functions onto the intermediate level.
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CANONICAL EXTENSIONS OF ¢-OPERATIONS

We extend / and r as partial functions onto the intermediate level.
1. I: FxF—F,
I(F,G):={aelL|feF,geG. I(f,g)<a}
2. 1'IxT—Z,I(I,))y:={aecll]iel,jed a<lI(ij)}
3.rIxF—F r(l,F):={acl|iel,feF.r(if)<a}
4. r:FxI—TI,r(F,l):={acl|feF,iel a<r(f,i)}
We define /; and r! as approximations as follows.
L. (e, B) = A{I(F,G) | Feal, G e B}
2. ri(a,B) == v({r(F,1)| Feall € p})
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DEFINITION (CANONICAL INEQUALITY)

Let s, t be terms. An inequality s < t is canonical on a lattice
expansion L, if
LEs<t < LEs<t

THEOREM
An inequality s < t is canonical, if it has consistent variable
occurrence.

Consistent variable occurrence...? (on blackboards)



CONSISTENT VARIABLE OCCURRENCE

EXAMPLE

I(r(x, 1y, 2)), I(y, r(x,2)) < r(I(z, r(x,y)), r(I(y, x), z)) has
consistent variable occurrence.

Labelling and signing (on blackboards)

ty ZZ:X‘C‘tu\/tu|/(tu,tu)‘t/\
tn ZZ:X‘C|tm/\tm|r(tu,tm)|t\/
ty =X ‘ C| ty V ty | /(t\/,C) | /(C, t\/)

ta :::X‘C|t/\/\t/\|r(t\/,C)|r(C,t/\)
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GHILARDI & MELONI'S PARALLEL COMPUTATION

Their idea is simple.

Extend term functions on L to the intermediate level.

But, how?

The intermediate level is two-sorted (filters and
ideals).

Their answer is
Let's compute a term function t both as a filter and
as an ideal, in parallel.
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GHILARDI & MELONI'S PARALLEL COMPUTATION

Intuitively speaking,

t: Fx---xF—=F
t: Ix---xIT—1T

But, this is not really precise...

t: (FI|IZ) x - x(F|T)—F
t(FIHIIw--,Fn”In)

t: (Z|F) x - x(Z||F)—T
t(h||Fi,---, InllFn)



OUTCOMES OF THE PARALLEL COMPUTATION

THEOREM (ROUGH BASIS)

Let t be each term. For all a1, ... ,an, € L, and all F; < o and all
li > a;j (1 <i<n) we have

t(Fillh, .-, Fallln) < tloa,...,an) < t(h||Fi, ..., || Fn)



A VERY SIMPLE EXAMPLE

The inequality ¢ < I(r(r(x,y), x), x) is canonical.



A VERY SIMPLE EXAMPLE

The inequality ¢ < I(r(r(x,y), x), x) is canonical.

SKETCH.
For arbitrary «, 8 € L, we want to show

c < I(r(r(a, B), ), ).



A VERY SIMPLE EXAMPLE

The inequality ¢ < I(r(r(x,y), x), x) is canonical.

SKETCH.
For arbitrary «, 8 € L, we want to show

c < I(r(r(a, B), ), ).

It suffices to show ¢ < Y for any ideal Y > I(r(r(«, ), @), a).



A VERY SIMPLE EXAMPLE

The inequality ¢ < I(r(r(x,y), x), x) is canonical.

SKETCH.
For arbitrary «, 8 € L, we want to show

c < I(r(r(a, B), ), ).

It suffices to show ¢ < Y for any ideal Y > I(r(r(«, ), @), a).

Thanks to the parallel computation, for all F < « and | > 3,

I(r(r(F,1),F),F) <Y



A VERY SIMPLE EXAMPLE

The inequality ¢ < I(r(r(x,y), x), x) is canonical.

SKETCH.
For arbitrary «, 8 € L, we want to show

c < I(r(r(a, B), ), ).

It suffices to show ¢ < Y for any ideal Y > I(r(r(«, ), @), a).

Thanks to the parallel computation, for all F < « and | > 3,

I(r(r(F,1),F),F)<a<yY



A VERY SIMPLE EXAMPLE

The inequality ¢ < I(r(r(x,y), x), x) is canonical.

SKETCH.
For arbitrary «, 8 € L, we want to show

c < I(r(r(a, B), ), ).

It suffices to show ¢ < Y for any ideal Y > I(r(r(«, ), @), a).

Thanks to the parallel computation, for all F < « and | > 3,

I(r(r(f,i),f),f)<a<y



A VERY SIMPLE EXAMPLE

The inequality ¢ < I(r(r(x,y), x), x) is canonical.

SKETCH.
For arbitrary «, 8 € L, we want to show

c < I(r(r(a, B), ), ).

It suffices to show ¢ < Y for any ideal Y > I(r(r(«, ), @), a).

Thanks to the parallel computation, for all F < « and | > 3,

c < I(r(r(f,i),f),f)<a<y



CONCLUDING REMARKS

e A connection to Jénsson's work t? and t”.

o <t<t"



