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Motivation

Kleene algebras: models for sequential programs, refinement, action systems

process algebras: models for concurrency/communication

e axioms similar to KAs, but based on near-semirings
e z(y+ 2z) = xy + xz absent, hence no language models

e problems with axiomatisation of star

e concurrency (as interleaving) inductively defined on actions/processes

separation logic: models for local reasoning (pointer structures on heap)

e seemingly unrelated
e but separating conjunction yields conditions for sequential /concurrent
executions

idea: add concurrency to Kleene algebra a la separating conjunction



Aggregation and Independency

aggregation algebra: structure (A, +) with operation +: A — A

e p + ¢ denotes system aggregated from parts p and ¢
o first, A absolutely free
e later it will be semigroup or monoid

independence relation: bilinear binary relation R on A
R(p+4q,7) < R(p,r) ANR(q,7),  R(p,q+r) < R(p,q) A R(p,7)

e p independent of ¢ if R(p,q)
e aggregate doesn't depend on system iff its parts don't dependend on it

e system doesn’'t depend on aggregate iff it doesn’t depend on its parts



Examples

. for aggregation algebra (24,U) and X,Y C A, the relation R(X,Y) iff X,Y
disjoint is independence relation

. for digraphs (G, U) under (disjoint) union, R(g1,g2) iff there is no arrow with
source in g and target in g- is independence relation

. for subspaces of some vector space with respect to span, orthogonality is an
independence relation.

. If subtrees t1,ty of tree t are in R if their roots are not on t-path and if ¢; + to
Is least t-subtrees with subtrees ¢1, ¢, then R is no dependence relation
(subtee of 1 4 t5 needn’t be subtree of t1, )



Properties

lemma: for aggregation algebra (A, +) and independence relation R
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Properties

proposition: relations
p~Lq< Vr(R(p,r) < R(q,r))  p=rqs Vr(R(r,p) < R(r,q))
induce same congruence as semilattice identities on A

consequence: aggregates behave like sets with respect to independency



Properties

lemma: for aggregation algebra (A, +) and independence relation R

R(p+q,r) N R(p,q) < R(q,7) N R(p,q+)

proof: diagrams

consequence: writeas (p—q) —r=p— (q—r)



Properties

lemma: for aggregation algebra (A, +) and independence relations R, S
with R C S,

1. R(p+q,7) ANS(p,q) = S(p,q+7) AN R(q,7)
2. R(p,qg+7r)ANS(q,7) = S(p+q,7) N R(p,q)

proofs: use diagrams

consequence: write as



Properties

exchange law: for aggregation algebra (A, +) and independence relations R, S
with R C S and S symmetric

R(p+q,r+s)NS(p,q) ANS(r,s) = R(p,r) NR(q,s) NS(p+ 71,9+ 3)

proof: see diagram or calculate

R(p+q,7+ s)AS(p, q) N S(r, 5)
< R(p,7r) AN R(q,v) AN R(p,s) AN R(q,s) N S(p,q) N S(r,s)
= R(p,7) N S(q,7) AN S(p,s) N R(q,s) N S(p,q) A\ S(r,s)
= R(p,7) AN R(q,s) AN S(r,q) N S(p+17,8) ANS(p,q)
= R(p,r) ANR(q,s) NS(p+71,9) NS(p+1,9)
< R(p,r) ANR(q,8) NS(p+ 71,9+ s)

consequence: writeas (p —q)~ (r—s) < (p~71)— (g~ 3)



Algebraisation

idea:

e interpret dependency arrows as algebraic operations
e lift to powerset level

extension: bistrict independence relations: R(p,0) and R(0,p)

complex product: for aggregation algebra (A, +) and independence relation R
define op : 24 x 24 — 24 by

XorY={p+q:peXNqgeY AR(p,q)}

example: if X.Y are languages, + is string concatenation and R is universal
relation, then oy is language product



Algebraisation

proposition:

1. if (A, +) is semigroup and R bilinear, then (24, 0R) is semigroup
2. if (A4,4,0) is monoid and R bilinear bistrict, then (24,0, {0}) is monoid

proof: simple but tedious (using relation-level “associativity”). . .

proposition:
1. if (A, +) is semigroup and R bilinear, then (24, U, o, 0) is dioid
2. if (A4,4,0) is monoid and R bilinear bistrict, then (24, U, o, 0, {0})
is dioid with 1

proof: set theory. . .

remark: even infinite distributivity laws hold



Algebraisation

theorem: if (A, +,0) is monoid and R bilinear bistrict, then (24, U, o, 0, {0}, *)
is Kleene algebra, where
X =|Jx’

i>0
as in language theory
proof:
e X ™ exists by completeness of semilattice reduct of dioid

e verifying KA star axioms is routine

discussion: KA deals with sequentiality in the sense that parts of a system can be
aggregated “before” other parts only if the former don’'t depend on the latter



Modelling Concurrency

idea: make independency relation symmetric

e complex product X ogY ={p+qg:pe X ANqeY ANS(p,q)}
only aggregates elements that are mutually independent
e in that case, p and ¢ can be executed concurrently

lemma: if (A, +) is semigroup and S bilinear symmetric, then (24,05) is
commutative semigroup

theorem: if (A, +,0) is monoid and S bilinear bistrict symmetric,
then (24,U, 05,0, {0}, *) is commutative Kleene algebra

remark: commutative KAs have been studied by Conway/Pilling



Concurrent Kleene Algebras

idea: combine sequential and concurrent composition

definition:

e bisemigroup : (5, e,0) with (S,e) and (.5, 0) semigroups

e bimonoid: (S, e,0,1) with (S,e,1) and (S, 0,1) monoids

e trioid: (S,+,e,0,0,1) with (S,+4,,0,1) and (S, +,0,0) dioids

e bi-Kleene algebra: (S, +,e,0,*,*,0,1) with (S, +,e,*,0,1)
and (S, +,0,*,0,1) KAs

theorem: if (A, +,0) is monoid, R, .S bilinear bistrict, then

e (24,U,0R,05,0,{0}) is trioid
o (29,U,0R,05,%,%,0,{0}) is bi-KA



Concurrent Kleene Algebras

but: structure of R, S not taken into account

e S symmetric, hence og commutative
e RC S hence XopY C XogVY

lemma: if (A, +) semigroup and R, .S bilinear with R C S, then

1. (xogy)orz Cxog(yorz)
2. zop (yogz) C (rory)os=z

proof: use R(p+q,7)ANS(p,q) = S(p,q+7r) A R(q,r) and its dual



Concurrent Kleene Algebras

exchange law: if (A, +) semigroup, R, S bilinear, R C S and S symmetric, then

(wogx)or (yosz) C(wogry)os (xogz)

proof: use R(p+ q,7+ s) A S(p,q) AN S(r,s) = R(p,7) AN R(q,s) NS(p+ 71,9+ s)

remark: lifting of relational properties to algebraic properties



Concurrent Kleene Algebras

definition:

e concurrent semigroup: ordered bisemigroup (S, e,0) that satisfies

rey < xoy, roy=youxw,
(roy)ez<zo(yez), we(yoz)<(zey)oz
(woz)e(yoz) < (wey)o(xexz)

e concurrent monoid: ordered bimonoid (S, e, 0, 1) that satisfies
rey<woy,  zoy=yowx, (woxz)e(yoz)<(wey)o(ze:z)

lemma: (zoy)ez<zxo(yez)andzxe(yoz) < (rey)oz hold
in concurrent monoids



Concurrent Kleene Algebras

concurrent Kleene algebra: bi-KA (S, +,e,0,* * 0,1) over concurrent monoid

therefore: CKAs consist of KA and commutative KA that interact as follows:
e sequential composition includes concurrent composition

e exchange law holds

theorem: if (A, +,0) monoid, R, S bilinear bistrict, R C S and S symmetric,
then (24,U, o, og,*,*,0,{0}) is concurrent Kleene algebra
proof:

e again only monoid case is interesting (see above lemmas)
e stars exist/defined due to infinite distributivity laws



Sequential and Concurrent Compositions

aggregation algebra: distributive lattice (A, +,-,0) with operator f : A — A
example: f (pre)image operator on relational structure

composition operations:

e fine-grain concurrent composition X *Y with R, (p,q) < p-q¢q=0
(dependencies between X and Y ignored)

e weak sequential composition X;Y with R.(p,q) < R.(p,q) A f(p) - ¢ =0
(no dependency of X on Y)

e disjoint parallel composition X||Y with Rj|(p,q) < R.(p,q) Ap- f(q) =0
(no dependency in either direction)

e alternation X &Y with Rg(p,q) ©p=0Vq¢g=0
(at most one of X, Y executed)



Sequential and Concurrent Compositions

lemma:

2. all compositions are bilinear bistrict
3. all except R. are symmetric

consequence for (A,
(2A . C’ (Z)

777 Y

+,-,0, f) and any concurrent composition relation R¢,
{0}) is CKA

Y

remark: sometimes dual order needs to be taken

question: is independency model canonical?



Shuffle Dioids

shuffle dioid: dioid (S, +,-,0,1) finitely generated by finite > and with
shuffle operation ® : S — S satisfying

lr=z=2X1, ar @ by = a(r @ by) + blaxr ® y),
TR (Y+z2)=2Qy+r®2

analogy: process algebras such as ACP, CCS
related model: regular languages under regular operations plus shuffle

eQw={w}=wXe, av ® bw = {a(v ® bw), b(av ® w)},
X®Y:U{v®w:v€X/\w€Y}



Shuffle Dioids

lemma: (S, +,®,0,1) is commutative dioid.
proof: by induction, e.g.,

ar Qby =a(lxr @by) +blar R y) = by ®ax) + alby ® ) = by ® ax

lemma: zy <zx®y

proof: e.g. axby < a(zx ® by) < a(x ® by) + blar ® y) = ax ® by



Shuffle Dioids

lemma: exchange law (w ® z)(y ® 2z) < wy Q@ 2z

proof: e.g.

(aw @ bx)(y ® z)= a(w @ bx)(y @ 2) + blaw @ z)(y @ 2)
< a(wy ® bxz) + blawy ® xz)
= awy Q bxrz

theorem: shuffle dioids (regular languages with shuffle) are concurrent semirings



Free Concurrent Semirings

question: are regular languages with shuffle the free CKAs?

fact: in language model, exchange law is essentially inequation:

(a ®a)(b®b) ={aabb} < {aabb,abab} = ab ® ab

lemma: in every CKA, v(z @ wy) + wvr ® y) < ve @ wy
proof: by ATP

intuition: algebraic version of shuffle induction



Free Concurrent Semirings

but: converse inequality fails in CKA
proof: In CKA S ={a} with0<a<1,aa=aand a®a =1,

al®al=a®a=1>a=aa+aa=a(l®al)+a(al ®1)

consequence: CKA is strict superclass of shuffle dioids

question: how can we eliminate ® in CKA?



Free Concurrent Semirings

lemma: following equation doesn’t hold in CKA, but it holds in shuffle semirings:

Ty ey <z @r(yy)

proof: consider CKA over {a, b} defined by 0 < a < b < 1 and tables

0O a b 1 ®|10 a b 1
00 0 0 O 0(0 O 0 O
al0 a a a a0 1 b a
b0 a a b b 10 b b b
110 a b 1 110 a b 1

then bR =a0®Ra=1>D=bRa=bRbb=bRb(bXb)



Free Concurrent Semirings

proof continued: but in regular languages with shuffle, in

Ty ey <z @y @y)

e at least one x must first be eaten before consuming ¥ in lhs
e this can be simulated by rhs

consequence: regular languages with shuffle are not free CKAs!

questions:

e what are free CKAs?
e can CKA be extended to characterize shuffle languages?



Conclusion

CKA: extension of KA to concurrent setting

e two models (independency/aggregation, shuffle languages)

e formalisms like Hoare logic and rely/guarantee calculus can be modelled
interesting questions:

e free algebras
e decidability
® expressivity



