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Let L be a lattice and C a complete lattice with L isomorphic to a
sublattice of C. Then C is a completion of L and

@ C is a dense completion if any element of C can be expressed as
both a meet of joins and join of meets of elements of L,

@ C is a compact completion if for any filter F, and ideal /, of L if
AF <\/[Ithen FNI#0.

If C is both a dense and compact completion of L it is called a canonical
extension of L.

Theorem (Gehrke & Harding, 2001)

Every bounded lattice L has a canonical extension, and this is unique up
to an isomorphism which fixes L.
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History of canonical extensions:

1951 Jonsson & Tarski: canonical extensions for Boolean algebras with
operators

1994 Gehrke & Jonsson: bounded distributive lattices with operators

2000 Gehrke & Jonsson: bounded distributive lattices with monotone
operations

2001 Gehrke & Harding: bounded lattice expansions
2004 Gehrke & Jonsson: distributive lattices with arbitrary operations
2005 Dunn, Gehrke, Palmigiano: partially ordered sets

2009 Moshier & Jipsen: topological duality theorem for bounded lattices
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Construction of the canonical extension
Using the filters, (L), and ideals, Z(L), of L, form F(L) UZ(L). This is
the intermediate structure, ordered by:
e FI< R << RKLCH
o h<*hL < LCh
o F<* I — FnNnI#0
0 /|<"F <= xel,ye F=x<y
(IM(L),<* ) is the intermediate structure.

The canonical extension, L?, is the MacNeille completion of the
intermediate structure.

That is, L% = IM(L).
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Filter and ideal elements of L’

p=A\F, where F € F(L), is a filter element

u=\1, where | € Z(L), is an ideal element

F(L%) : filter elements of L’

I(L%) : ideal elements of L°

F(L%) is order isomorphic to (F(L),2 ), and I(L?) is order isomorphic to
(Z(L), < ).

a:F(L) — C, Fr— /\ e[F]
B:I(L) — C, I—\/e[l]

This gives (]—"(L) UZ(L),<* ) order isomorphic to (F(L‘;) UI(L%),< )
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Example

do

di

by
bo
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Example

do 4o
di dai
e C

b1 bl
b() bO
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Example

do 4o a0
ai a1 aL
dso
c
[ ]
[ 5.

by by by
bo bo bo
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Canonical extensions destroy existing infinite meets and joins:

ao ao ao

dooy

300, 300,

I boo, boo,

bec,
! [ !
bo bo bo
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The intermediate structure
@ Intermediate structure first described by Ghilardi and Meloni (1997).

@ Used by Dunn, Gehrke and Palmigiano (2005) to describe canonical
extensions of posets.

@ Gehrke and Priestley (2008) use the intermediate structure to
explain why the canonical extension is functorial.

This is done using the following concept.

Definition (Erné, 1991)

An order-preserving map f : P — @ is cut-stable if for all g1, g € Q,
q1 % g2 —

3p1,p2 € Psit. py £ p2and £1(1q1) € 1pr and £ (1q2) C Ipo.
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Theorem (Erné, 1991)

The category of complete lattices with complete lattice homomorphisms
is a full reflective subcategory of the category of posets with cut-stable
maps.

Define the extension of a map f : L — M to IM(f) : IM(L) — IM(M):

V{f(a) : JlaCx,ae L} if xeZ(L)

M) = {/\{f(a) faCx,ael}if xe F(L)

Theorem (Gehrke & Priestley, 2008)

For f : L — M a lattice homomorphism, the extension
IM(f) : IM(L) — IM(M) is a cut-stable map.
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Algebraicity of canonical extensions

Gehrke and Jénsson (1994) showed that the canonical extension of a
distributive lattice is always doubly algebraic. That is, both L% and (L%)?
are algebraic.

The following example is originally due to Harding (1998). It is a
non-distributive lattice whose canonical extension is not algebraic. The
result below helps us to construct its canonical extension.

Lemma (Gehrke & Vosmaer)

If a lattice L satisfies ACC, then L° = F(L?). Dually, if L satisfies DCC,
then L° = I(L%).
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X2

X1

X0
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Define the following: F L [ if F <* [ and | £* F.
Fil={xeF :3yelxly}

LF={yel:3xeF,y Lx}

If F 1| and either F | I or I, F is finite, then both F \/ | and F N\ | exist. \
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Consider the embeddings ey : (F(L),2 ) — (IM(L),<* ), F— F and
e : (Z(L),C ) — (IM(L),<*), I — I. Then ey preserves arbitrary
meets and finite joins, and ey preserves arbitrary joins and finite meets.
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Consider the embeddings ey : (F(L),2 ) — (IM(L),<* ), F— F and
e : (Z(L),C ) — (IM(L),<*), I — I. Then ey preserves arbitrary
meets and finite joins, and ey preserves arbitrary joins and finite meets.

Question: Is the canonical extension of a lattice always the same as the
intermediate structure?

Answer: No!
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A distributive lattice whose canonical extension is not the intermediate

structure:
7
(0,1)
(0,0)
(_2a 0)
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A distributive lattice whose canonical extension is not the intermediate

structure:
[ (0w
o (-lw)
(0,1)
(0,0)
(_2a0)
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A distributive lattice whose canonical extension is not the intermediate

structure:
[ (0w
o (-lw)
(0,1)
(0,0) } - (Fww)
(_2a0)
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Distributivity of canonical extensions
The canonical extension of a distributive lattice is always distributive. By
contrast, the MacNeille completion does not always preserve distributivity.

Counter-example due to Funayama (1944) makes use of the concept of
neutral elements.

Definition (Ore, 1935)

An element a of a lattice L is neutral if, for any x, y € L, the lattice
generated by {a, x, y} is distributive.

The neutral elements of a lattice L form a distributive sublattice of L.

Hence the MacNeille completion, L of a distributive lattice L is
distributive if and only if every element of L is neutral.
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Consider the following lattices

do a0

di ai

by by
b() bO

Ly Ly L3

LetL:leL2><L3.
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L=L; xLyxLg



s
BB

(aOapaCO)

(b07 q, dO)

Distributive sublattice of L. The MacNeille completion of this is not distribu-
tive.



(aOapaCO)

(b07 q, dO)

This is the MacNeille completion of the sublattice of L. This completion is not
distributive.



s
BB

(awapa CO) .
(bw,p7 CO)

The intermediate structure.

(aOapaCO)

(b07 q, dO)

(0107pa CUJ)

(be, g, do)



(aOapaCO)

(bwa q, d())

(b07 q, dO)

The canonical extension.



Further work:

Use the intermediate structure to find when L% will be:
@ algebraic;
@ continuous;

@ meet-continuous.
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