
Problems — 1st batch

1. A CPU is driven by 2 GHz clock.

(a) Compute the duration of one clock cycle.

(b) Assume that on average the execution of an instruction takes 4
clock cycles. Compute the performance of the CPU in terms of
MIPS (millions of instructions per second).

(c) Assume that executing a specific program of 400 million instruc-
tions takes 2 seconds. How many clock cycles does it take on
average to execute an instruction of this program?

Solution:

(a) There are 2·109 cycles per second, thus one cycle lasts 1/(2·109) =
0.5 · 10−9 second, i.e., half nanosecond.

(b) The number of instructions executed per second is 2 · 109/4 =
500 · 106 = 500 million, i.e., 500 MIPS.

(c) Executing 400 · 106 instructions takes 4 · 109 cycles. Thus (4 ·
109)/(400 · 106) = (4/400) · 103 = 10 cycles are needed for one
instruction.

2. Consider a machine having 32-bit instructions composed of two fields.
The first byte contains the opcode and the remainder an immediate
operand or an operand address.

(a) What is the maximum number of operations available?

(b) What is the maximum directly addressable memory capacity (as-
suming that every address specifies a byte-long word)?

(c) Discuss the impact on the system speed if the bus has

i. a 24-bit address bus and a 32-bit data bus, and

ii. a 16-bit address bus and a 16-bit data bus.

(d) How many bits are needed for the program counter and the in-
struction register?

Solution:

1



(a) The opcode is 8 bits long, so there can be 28 = 256 different opcodes
(operations).

(b) The address field is 24 bits long, so there are 224 = 24 ·220 = 16·220

different addresses. Since every address represents one byte in
memory, we get 16 MB.

(c) In the first case we need one cycle for instruction fetch and one cy-
cle for address transfer. In the second case, two cycles are needed
to transfer a 24-bit address via an address bus of width 16 bits, and
similarly two cycles are needed to transfer a 32-bit instruction via
a data bus of width 16 bits.

(d) We need a 24 bit (the length of the addresses) PC and a 32 bit
(the length of the instructions) IR.

3. Consider a microprocessor, with a 16-bit data bus, driven by an 8
MHz input clock. Assume that this microprocessor has a bus cycle
whose duration equals four input clock cycles. What is the maximum
data transfer rate across the bus that the microprocessor can sustain
in bits/second (bps)? Hint: Determine the number of bits that can be
transferred per bus cycle.

Solution: There are 8 · 106/4 = 2 · 106 bus cycles per second, each
time transferring 16 bits, thus the maximum transfer rate is 32 Mbps
(megabits per second).

4. Consider a 3.2 GHz CPU where executing data processing (arithmetic
and logical) instructions takes 4 clock cycles and executing data transfer
(load and store) instructions takes 10 clock cycles. When a specific
program of one million instructions runs, 60% of the instructions are
data processing and 40% of the instructions are data transfer. How
long does it take to run this program to completion?

Solution: It takes 4 · 0.6 · 106 + 10 · 0.4 · 106 = 6.4 · 106 cycles, i.e.,
(6.4 · 106)/(3.2 · 109) = 2 · 10−3 seconds, i.e., 2 milliseconds.

5. When an arithmetic instruction is executed the execution time is

• 4 clock cycles if the operands can be fetched from the cache (cache
hit)

• 14 clock cycles if the operands have to be fetched from main mem-
ory (cache miss).

2



The cache hit ratio is 0.6, i.e., 60% of the time the required operands
are in the cache. How many clock cycles are needed on average to
execute the instruction?

Solution: Consider 100 instructions. For 60 instructions we have cache
hits, so we need 60 · 4 = 240 cycles. For 40 instructions we have cache
misses, so we need 40 · 14 = 560 cycles. Altogether we have 800 cycles.
Taking the average (dividing by 100) we get 8 cycles.

6. A given program needs to read 1 MB data from the hard disk. Data
transfer between main memory and the hard disk is done in 1 KB
blocks, and it takes 15 ms to read in a block. Determine how much
CPU-time is needed for the I/O in case of

• programmed I/O

• interrupt-driven I/O

• using DMA.

Assume that all the interrupt service procedures needed take 75 ns and
you can ignore the initial setup. Would it make sense to schedule the
given program while the system is waiting for the read to finish?

Solution: With programmed I/O the CPU is constantly engaged with
the data transfer. Since there are 103 blocks, we get 103 · 15 ms = 15 s.
In the interrupt-driven case, the ISP runs one thousand times (at the
end of the transfer of each 1 KB block), and the CPU otherwise is free
to execute other programs: 103 · 75 ns = 75 µs. With DMA there is
only one interrupt (at the end of the whole data transfer): 75 ns.

The process is probably waiting for input while the read takes place, so
it is unlikely to be able to run. It is better to schedule another process
during the read.

3


