
Chapter 12, 
William Stallings 

Computer Organization and Architecture
7th Edition

CPU Structure and 
Function



CPU Function
• CPU must:

– Fetch instructions
– Interpret/decode instructions
– Fetch data
– Process data
– Write data



CPU With Systems Bus



Registers
• CPU must have some working space 

(temporary storage) - registers
• Number and function vary between 

processor designs - one of the major 
design decisions

• Top level of memory hierarchy



User Visible Registers
• General Purpose
• Data
• Address
• Condition Codes



General Purpose Registers (1)
• May be true general purpose
• May be restricted
• May be used for data or addressing
• Data: accumulator (AC)
• Addressing: segment (cf. virtual memory), 

stack (points to top of stack, cf. implicit 
addressing)



General Purpose Registers (2)
• Make them general purpose

– Increased flexibility and programmer options
– Increased instruction size & complexity, 

addressing
• Make them specialized

– Smaller (faster) but more instructions
– Less flexibility, addresses implicit in opcode



How Many GP Registers?
• Between 8 - 32
• Less = more memory references
• More takes up processor real estate
• See also RISC



How big?
• Large enough to hold full address
• Large enough to hold full data types
• But often possible to combine two data 

registers or two address registers by using 
more complex addressing (e.g., page and 
offset)



Condition Code Registers – Flags
• Sets of individual bits, flags

– e.g., result of last operation was zero
• Can be read by programs

– e.g., Jump if zero – simplifies branch taking
• Can not (usually) be set by programs



Control & Status Registers
• Program Counter (PC)
• Instruction Register (IR)
• Memory Address Register (MAR) – 

connects to address bus
• Memory Buffer Register (MBR) – connects 

to data bus, feeds other registers



Program Status Word
• A set of bits
• Condition Codes:

– Sign (of last result)
– Zero (last result)
– Carry (multiword arithmetic)
– Equal (two latest results)
– Overflow

• Interrupts enabled/disabled
• Supervisor/user mode



Supervisor Mode
• Intel ring zero
• Kernel mode
• Allows privileged instructions to execute
• Used by operating system
• Not available to user programs



Other Registers
• May have registers pointing to:

– Process control blocks (see OS)
– Interrupt Vectors (see OS)

• N.B. CPU design and operating system 
design are closely linked





MC68000 and Intel registers
• Motorola:

– Largely general purpose registers – explicit 
addressing

– Data registers also for indexing
– A7 and A7’ for user and kernel stacks

• Intel
– Largely specific purpose registers – implicit 

addressing
– Segment, Pointer & Index, Data/General 

purpose
– Pentium II – backward compatibility



Indirect Cycle

• Same address can refer to different 
arguments (by changing the content of the 
location the address is pointing to)

• Indirect addressing requires more memory 
accesses to fetch operands

• Can be thought of as additional instruction 
subcycle



Instruction Cycle with Indirect



Instruction Cycle State Diagram



Data Flow (Instruction Fetch)
• PC contains address of next instruction
• Address moved to MAR
• Address placed on address bus
• Control unit requests memory read
• Result placed on data bus, copied to MBR, 

then to IR
• Meanwhile PC incremented by 1



Data Flow (Fetch Diagram)



Data Flow (Data Fetch)

• IR is examined
• If indirect addressing, indirect cycle is 

performed
– Rightmost n bits of MBR (address part of 

instruction) transferred to MAR
– Control unit requests memory read
– Result (address of operand) moved to MBR



Data Flow (Indirect Diagram)



Data Flow (Execute)

• May take many forms, depends on 
instruction being executed

• May include
– Memory read/write
– Input/Output
– Register transfers
– ALU operations



Data Flow (Interrupt)
• Current PC saved to allow resumption 

after interrupt
• Contents of PC copied to MBR
• Special memory location (e.g., stack 

pointer) loaded to MAR
• MBR written to memory according to 

content of MAR
• PC loaded with address of interrupt 

handling routine
• Next instruction (first of interrupt handler) 

can be fetched



Data Flow (Interrupt Diagram)



Prefetch
• Fetch involves accessing main memory
• Execution of ALU operations do not 

access main memory
• Can fetch next instruction during execution 

of current instruction, cf. assembly line
• Called instruction prefetch



Improved Performance
• But not doubled:

– Fetch usually shorter than execution (cf. 
reading and storing operands)

• Prefetch more than one instruction?
– Any jump or branch means that prefetched 

instructions are not the required instructions
• Add more stages to improve performance



Two Stage Instruction Pipeline



Pipelining (six stages)
1. Fetch instruction
2. Decode instruction
3. Calculate operands (i.e., EAs)
4. Fetch operands
5. Execute instructions
6. Write result

• Overlap these operations



Timing Diagram for Instruction Pipeline 
Operation (assuming independence)



The Effect of a Conditional Branch/Interrupt 
on Instruction Pipeline Operation



Six Stage 
Instruction 
Pipeline



Speedup 
Factors

with 
Instruction
Pipelining:
nk/(n+k-1)
(ideally)



Dealing with Branches

1.Prefetch Branch Target
2.Loop buffer
3.Branch prediction
4.Delayed branching (see RISC)



Prefetch Branch Target
• Target of branch is prefetched in addition 

to instructions following branch
• Keep target until branch is executed
• Used by IBM 360/91



Loop Buffer
• Very fast memory
• Maintained by fetch stage of pipeline
• Check buffer before fetching from memory
• Very good for small loops or jumps
• cf. cache



Branch Prediction (1)
• Predict never taken

– Assume that jump will not happen
– Always (almost) fetch next instruction 
– VAX will not prefetch after branch if a page 

fault would result (OS v CPU design)
• Predict always taken

– Assume that jump will happen (at least 50%)
– Always fetch target instruction



Branch Prediction (2)
• Predict by Opcode

– Some instructions are more likely to result in a 
jump than others

– Can get up to 75% success
• Taken/Not taken switch

– Based on previous history
– Good for loops

• Delayed branch – rearrange instructions 
(see RISC)



Branch Prediction State Diagram (two bits)



Branch Prediction Flowchart



Intel 80486 Pipelining
1. Fetch

– Put in one of two 16-byte prefetch buffers
– Fill buffer with new data as soon as old data consumed
– Average 5 instructions fetched per load (variable size)
– Independent of other stages to keep buffers full

1. Decode stage 1
– Opcode & address-mode info
– At most first 3 bytes of instruction needed for this
– Can direct D2 stage to get rest of instruction

1. Decode stage 2
– Expand opcode into control signals
– Computation of complex addressing modes

1. Execute
– ALU operations, cache access, register update

1. Writeback
– Update registers & flags
– Results sent to cache



Pentium 4 Registers



EFLAGS Register



Control Registers



Pentium Interrupt Processing
• Interrupts (hardware): (non-)maskable
• Exceptions (software): processor detected 

(error) or programmed (exception)
• Interrupt vector table

– Each interrupt type assigned a number
– Index to vector table
– 256 * 32 bit interrupt vectors (address of ISR)

• 5 priority classes: 1. exception by previous 
instruction 2. external interrupt, 3.-5. faults 
from fetching, decoding or executing 
instruction


