CPU Structure and
Function

Chapter 12,
William Stallings
Computer Organization and Architecture
/™ Edition

CPU Function

e CPU must:;

— Fetch instructions

— Interpret/decode Instructions
— Fetch data

— Process data

— Write data

CPU With Systems Bus

Control DData Address

Bus Bus Bus
System

Bus

Registers

* CPU must have some working space
(temporary storage) - registers

* Number and function vary between
processor designs - one of the major
design decisions

* Top level of memory hierarchy

User Visible Registers

General Purpose
Data

Address
Condition Codes

General Purpose Registers (1)

May be true general purpose

May be restricted

May be used for data or addressing
Data: accumulator (AC)

Addressing: segment (cf. virtual memory),
stack (points to top of stack, cf. implicit
addressing)

General Purpose Registers (2)

* Make them general purpose
— Increased flexibility and programmer options

— Increased Instruction size & complexity,
addressing

* Make them specialized
— Smaller (faster) but more instructions
— Less flexibility, addresses implicit in opcode

How Many GP Registers?

Between 8 - 32
Less = more memory references

More takes up processor real estate
See also RISC

How big?

* Large enough to hold full address
* Large enough to hold full data types

* But often possible to combine two data
registers or two address registers by using
more complex addressing (e.g., page and
offset)

Condition Code Registers — Flags

* Sets of individual bits, flags
—e.g., result of last operation was zero

* Can be read by programs
—e.g., Jump if zero — simplifies branch taking
* Can not (usually) be set by programs

Control & Status Registers

Program Counter (PC)
Instruction Register (IR)

Memory Address Register (MAR) —
connects to address bus

Memory Buffer Register (MBR) — connects
to data bus, feeds other registers

Program Status Word

A set of bits

Condition Codes:

— Sign (of last result)

— Zero (last result)

— Carry (multiword arithmetic)
— Equal (two latest results)

— Overflow

Interrupts enabled/disabled
Supervisor/user mode

Supervisor Mode

Intel ring zero

Kernel mode

Allows privileged instructions to execute
Used by operating system

Not avallable to user programs

Other Registers

* May have registers pointing to:
— Process control blocks (see OS)
— Interrupt Vectors (see OS)

* N.B. CPU design and operating system
design are closely linked

)
1
D2
3
D4
D5
D
¥7

Al
Al
Al
Al
Ad
AS
Ab
AT

AT

Data Registers

Address Registers

Program Status

Program Counter

Status Register

(a) MCos0)

General Registers

AX
BX
CX
DX

Accumulator

Base

Couni

(EETE

Pointer & Index

sSP
BP
o] |
I

s
s
55
ES

Stack Pointer

Base Pointer

Source Index

st ITnclex

Segment

Code

(LETE

Stack

Fxtra

Program Status

Insir Pir

Flags

ih) B&6

EAX
EBX
ECX
EDX

ESP
EBP
ES]
EDI

General Registers

AX

BX

-
=

DX

i

BP

|

DI

Program Status

FLAGS Register

Instruction Pointer

() 80386 - Pentium 11

MC68000 and Intel registers

 Motorola;:

— Largely general purpose registers — explicit
addressing

— Data registers also for indexing
— A7 and A7’ for user and kernel stacks

* Intel
— Largely specific purpose registers — implicit
addressing

— Segment, Pointer & Index, Data/General
purpose

— Pentium Il — backward compatibility

Indirect Cycle

* Same address can refer to different
arguments (by changing the content of the
location the address is pointing to)

* Indirect addressing requires more memory
accesses to fetch operands

* Can be thought of as additional instruction
subcycle

Instruction Cycle with Indirect

Fetch

Interrupt Indirect

Instruction Cycle State Diagram

Indirection Indirection

Operand
fetch

Operand
store

Muliple

operands

Multiple
results

[nstructio
operation
decoding

Operand
address
caleulation

Operand
address
caleulatio

Data
Operation

il
Loterrup

[nstruction complete, Ketumn for string

fetcth next msiruction or vector data

Data Flow (Instruction Fetch)

PC contains address of next instruction
Address moved to MAR

Address placed on address bus
Control unit requests memory read

Result placed on data bus, copied to MBR,
then to IR

Meanwhile PC incremented by 1

Data Flow (Fetch Diagram)

CPU

—— > MAR

Memory

Control
Unit

e

Address Data Control
Bus Bus Bus
MBR = Memory bulfer register
MARK = Memory address register
IR = Instruction register
PC = Program counter

Data Flow (Data Fetch)

e |[R IS examined

* If Indirect addressing, indirect cycle Is
performed

— Rightmost n bits of MBR (address part of
Instruction) transferred to MAR

— Control unit requests memory read
— Result (address of operand) moved to MBR

Data Flow (Indirect Diagram)

CPU

“S{MAR

Memory

Control
Unit

I MBR

Address Data Control
Bus Bus Bus

Data Flow (Execute)

* May take many forms, depends on
Instruction being executed

* May Include
— Memory read/write
— Input/Output
— Register transfers
— ALU operations

Data Flow (Interrupt)

Current PC saved to allow resumption
after interrupt

Contents of PC copied to MBR

Special memory location (e.g., stack
pointer) loaded to MAR

MBR written to memory according to
content of MAR

PC loaded with address of interrupt
handling routine

Next instruction (first of interrupt handler)
can be fetched

Data Flow (Interrupt Diagram)

CPU

ﬁ Memory

Control
Unit

™ MBR

Address Data Control
Bus Bus Bus

Prefetch

Fetch involves accessing main memory

Execution of ALU operations do not
access main memory

Can fetch next instruction during execution
of current instruction, cf. assembly line

Called instruction prefetch

Improved Performance

 But not doubled:

— Fetch usually shorter than execution (cf.
reading and storing operands)

* Prefetch more than one instruction?

— Any jump or branch means that prefetched
Instructions are not the required instructions

* Add more stages to improve performance

Two Stage Instruction Pipeline

Instruction Result
Execute

Instruction
Fetch

(a) Simplifed view

Wait New add ress Wait

Instruction

Discard
(b) Expanded view

o 01 A W

Pipelining (six stages)
Fetch instruction
Decode instruction
Calculate operands (i.e., EAS)
Fetch operands
Execute instructions
Write result

Overlap these operations

Timing Diagram for Instruction Pipeline

Operation (assuming independence)

Instruction 1
Instruction 2
Instruction 3
Instruction 4
Instruction 5
Instruction 6
Instruction 7
Instruction 8

Instruction 9

Time

>
1121314516789]|10]111]112113|14
FI | DI |CO| FO | EI | WO
FI | DI |CO| FO| EI | WO
FI | DI |CO| FO| EI | WO
FI | DI |CO| FO | EI | WO
FI | DI |CO| FO | EI | WO
FI | DI |CO| FO| EI | WO
FI | DI |CO| FO | EI | WO
FI | DI |CO| FO | EI | WO
FI | DI |CO| FO | EI | WO

The Effect of a Conditional Branch/Interrupt

Instruction 1

Instruction 2

Instruction 3
Instruction 4

Instruction 5

Instruction 6
Instruction 7
Instruction 15

Instruction 16

on Instruction Pipeline Operation

T
ime > p Branch F‘enalty >

314 |5|6|7]|8]|9]110111]112]113[14

oeolrolewl | [[[| |
o [eolrol e [l T T 11

Six Stage .mIm
Instruction !

Pipeline

Update Write
WO (o eramds I

Speedup
Factors
with
Instruction * ° -+ = = -

Pipelining: s

N k/(n + k- 1) :: n=30 meamoions
(Ideally) = T

g

M bt of siages

Dealing with Branches

1.Prefetch Branch Target
2.L.oop buffer

3.Branch prediction

4.Delayed branching (see RISC)

Prefetch Branch Target

* Target of branch is prefetched in addition
to instructions following branch

* Keep target until branch is executed
* Used by IBM 360/91

Loop Buffer

Very fast memory

Maintained by fetch stage of pipeline
Check buffer before fetching from memory
Very good for small loops or jumps

cf. cache

Branch Prediction (1)

* Predict never taken
— Assume that jJump will not happen
— Always (almost) fetch next instruction

— VAX will not prefetch after branch if a page
fault would result (OS v CPU design)

* Predict always taken
— Assume that jump will happen (at least 50%)
— Always fetch target instruction

Branch Prediction (2)

* Predict by Opcode

— Some Iinstructions are more likely to result in a
jump than others

— Can get up to 75% success
* Taken/Not taken switch

— Based on previous history
— Good for loops

* Delayed branch — rearrange instructions
(see RISC)

Branch Prediction State Diagram (two bits)

Not Taken

Taken Predict

Taken

Predict
Taken

Taken

Taken

Not Taken

Predict
Mot Taken

Not Taken

Predict Not Taken

Not Taken

Taken

Branch Prediction Flowchart

Yes

Real next
conditional
branch instr

I

Predict taken

Remxl next
conditional
branch instr

h 4

Predict taken

Branch
taken?

™o

Reml next
conditional
branch instr

!

Predict not taken

Reml next
conditional
branch instr

¥

Predict not taken

Mo

1.

1.

1.

1.

1.

Intel 80486 Pipelining
Fetch
Put in one of two 16-byte prefetch buffers
Fill buffer with new data as soon as old data consumed
Average 5 instructions fetched per load (variable size)
Independent of other stages to keep buffers full

Decode stage 1

Opcode & address-mode info

At most first 3 bytes of instruction needed for this

Can direct D2 stage to get rest of instruction
Decode stage 2

Expand opcode into control signals

Computation of complex addressing modes
Execute

ALU operations, cache access, register update

Writeback

Update registers & flags
Results sent to cache

Pentium 4 Registers

{5} Integer Unit
Type MNumber Length (biks) Purpose
General B 32 General-puipose user registens
Segment] La Contain segment selectors
Flags L 32 State and contmw] bits
Lrstuiction Pointer L 32 Lnstruction poimer
i b) Floating-Point Unit
Type Number Length (bits) Purpose
Humeric B B0 Hold floating-point numbers
Contml L La Contral bits
Status L L6 Stats bits
Tag Word L L& Specifies contents of numenc
registers
Lrstuiction Pointer L 48 Foints to 1metmction interm pted
by exception
Data Poirter L +8 Points to opemnd intermipted by

exception

EFLAGS Register

1 11 16 /13 0
I'I’";'A."q-"R NI 1O |ODILT|S|Z) (Al |P] |C
Dip|g|C/M{F| |T|PL |F|F|F|F|F|F| |F| |F| |F

D

VIP
VIE

AC
VM
RE

IOPL
OF

ldentification flag

Virtual interrupt pending
Virtual interrupt flag
Alignment check

Virtual 8086 mode
Resurmne flag

Nested task flag

110 privilege level
Overflow flag

DE = Direction flag

IE = Interrupt enable flag
TE = Trap flag

SE = Sign flag

LB = Zeroflag

AF = Auxiliary carry flag
PE = Parily flag

CE = Carry flag

Control Registers

g
P
g |
CR4 s B
: o B
CE3 Page Directory Base Clw
T
CR2 Page Bault Linear Address

PAE
PSE
DE
TSD
vl
VME
PCD
PWT

Performance Counter Enable

= Page Global Enable

Machine Check Enable

= Physical Address Extlension

Page Size Bxlensions

Debug Extensions

Time Stamp Disable

Protected Mode Virtual Interrupt
Virtual 2036 Mode BExlensions
Page-level Cache Disable

Page-level Wriles Transparent

PG
cD
N'W
AM
wp
NE
ET
TS
EM
MEP

Paging

Cache Dizable

Not Write Through
Alignment Mask
Write Protect
Murmeric Error
Extension Type
Task Swilched
EBronulation

Monitor Coprocessor
Protection Enable

Pentium Interrupt Processing

* Interrupts (hardware): (non-)maskable

* Exceptions (software): processor detected
(error) or programmed (exception)

* Interrupt vector table
— Each interrupt type assigned a number
— Index to vector table
— 256 * 32 bit interrupt vectors (address of ISR)

* 5 priority classes: 1. exception by previous
Instruction 2. external interrupt, 3.-5. faults
from fetching, decoding or executing
Instruction

