
Chapters 7 & 8
Memory Management

Operating Systems:
Internals and Design Principles, 6/E

William Stallings

Patricia Roy
Manatee Community College, Venice, FL

©2008, Prentice Hall

Memory Management
• Subdividing memory to accommodate

multiple processes – creating “process
image”

• Protection
• Relocation
• Sharing
• Efficient use of memory + reasonable

supply of ready processes to achieve a
high level of multiprogramming

Use of relative address

– Programmer does not know where the
program will be placed in memory when it is
executed

– While the program is executing, it may be
swapped to disk and returned to main
memory at a different location (relocated)

– Memory references in the code must be
translated to actual physical memory address

Addresses

• Relative
– Address expressed as a location relative to

some known point, e.g., 10th instruction in
code

• Physical or Absolute
– Actual location in main memory

Registers Used during Execution

• Base register
– Starting address for the process

• Bounds register
– Ending location of the process

• These values are set when the process is
loaded or when the process is swapped in

Translation

Calculating Absolute Address

• The value of the base register is added to
a relative address to produce an absolute
address

• The resulting address is compared with
the value in the bounds register

• If the address is not within bounds, an
interrupt is generated to the operating
system

Fixed Partitioning

– Any process whose size is less than or equal
to the partition size can be loaded into an
available partition

– If all partitions are full, the operating system
can swap a process out of a partition

Example of Fixed Partitioning

Placement Algorithm

• Equal-size
– Placement is trivial

• Unequal-size
– Can assign each process to the smallest

partition within which it will fit – best fit
– Single queue or queues for each partition
– Processes are assigned in such a way as to

minimize wasted memory within a partition

Examples of Fixed Partitioning

Problems with Fixed Partitioning

– A program may not fit in a partition. The
programmer must design the program with
overlays

– Main memory use is inefficient. Any program,
no matter how small, occupies an entire
partition. This is called internal
fragmentation.

Dynamic Partitioning

• Partitions are of variable length and
number

• Process is allocated exactly as much
memory as required, so there is no
internal fragmentation

Example of Dynamic Partitioning

Example of Dynamic Partitioning (ctd.)

Allocation algorithms
• Best fit: chooses the block that is closest in size

to the request … lot of little holes
• First fit: scans memory form the beginning and

chooses the first available block that is large
enough

• Next fit: scans memory from the location of the
last placement

• Eventually get holes in the memory. This is
called external fragmentation

• Must use compaction to shift processes so that
they are contiguous and all free memory is in
one block

Allocation

Buddy System

• Entire space available is treated as a
single block of 2^U

• If a request of size s such that
2^(U-1) < s <= 2^U

entire block is allocated
– Otherwise block is split into two equal buddies
– Process continues until smallest block greater

than or equal to s is generated
UNIX kernel memory allocation

Tree Representation of Buddy System

So far:

• Memory references are dynamically
translated into physical addresses at run
time

• A process may be swapped in and out of main
memory such that it occupies different regions

• Protection is provided by the use of registers

The Main Idea – Virtual Memory

• Not every piece (page) of a process need
to be loaded in main memory at the
beginning of execution

• Operating system brings into main
memory a few pieces of the program

• Resident set - portion of process that is in
main memory

Types of Memory

• Real memory
– Main memory

• Virtual memory
– Memory on disk
– Allows for effective multiprogramming and

relieves the user of tight constraints of main
memory

Execution of a Program

• An interrupt is generated when an address
is needed that is not in main memory

• Operating system places the process in a
blocking state and issues Read system
call

Execution of a Program (ctd.)

• Piece of process that contains the logical
address is brought into main memory
– Operating system issues a disk I/O Read

request
– Another process is dispatched to run while the

disk I/O takes place
– An interrupt is issued when disk I/O complete

which causes the operating system to place
the affected process in the Ready state

Improved System Utilization

• More processes may be maintained in
main memory
– Only load in some of the pieces of each

process
– With so many processes in main memory, it is

very likely a process will be in the Ready state
at any particular time

• A process may be larger than all of main
memory

Principle of Locality

• Program and data references within a
process tend to cluster

• Only a few pieces of a process will be
needed over a short period of time

• Possible to make intelligent guesses about
which pieces will be needed in the future

• This suggests that virtual memory may
work efficiently

Thrashing

• To many faults: e.g. swapping out a piece
of a process just before that piece is
needed

• The processor spends most of its time
swapping pieces rather than executing
user instructions

Paging

• Partition memory into small equal fixed-
size chunks and divide each process into
the same size chunks

• The chunks of a process are called pages
and chunks of memory are called page
frames

Page Table

• Operating system maintains a page table
for each process
– Contains the frame location for each page

resident in memory
– Memory address consist of a page number

and offset within the page
– Cf. indexed addressing

Page Table

Segmentation

• All segments of all programs (code, data,
stack) do not have to be of the same
length

• Addressing consist of two parts - a
segment number and an offset

• Since segments are not equal,
segmentation is similar to dynamic
partitioning

Segmentation

• Simplifies handling of growing data
structures

• Lends itself to sharing data among
processes, e.g. by sharing data segment

• Lends itself to specific protection policies,
different access rights to different
segments

Translation with Paging

Translation with Segmentation

Support Needed for Virtual
Memory

• Hardware must support paging and/or
segmentation – suitable (indexed,
displacement) addressing modes

• Operating system must be able to manage
the movement of pages and/or segments
between secondary memory and main
memory

Paging
• Each process has its own page table
• Each page table entry contains the frame

number corresponding to the page in main
memory (if any – partial map)

• A bit is needed to indicate whether the
page is in main memory or not

• Page tables are also stored in virtual
memory

• When a process is running, part of its
page table is in main memory

Page Table Entry

Modify Bit in Page Table

• Modify bit is needed to indicate if the page
has been altered since it was last loaded
into main memory

• If no change has been made, the page
does not have to be written to the disk
when it needs to be replaced

Size of Page Table

• 4GB virtual address space and 4KB pages
• 1 million pages and, say, 4 byte page
entries
• 4MB page table in memory – although it can
be paged

Size of Multilevel Page Table

• 4GB virtual address space, 4KB pages
• First 10 bits (PTE in root), next 10 bits (PTE
in 2nd level table), last 12 bits (offset in page)
• Root page table: 1K entries, 4KB size
• Second level page tables: 1K entries, 4KB
size
• Only the root and one 2nd level table have to
be in memory at a time!

Inverted Page Table
• Used on PowerPC, UltraSPARC, and IA-

64 architecture
• Page number portion of a virtual address

is mapped into a hash value
• Hash value points to inverted page table

entry -> corresponding frame
• Fixed proportion of real memory (number

of frames) is required for the table
regardless of the number of processes

• Single table, but longer look-up

Inverted Page Table Entry

• Page number
• Process identifier
• Control bits
• Chain pointer

Translation Lookaside Buffer

• Each virtual memory reference can cause
two physical memory accesses
– One to fetch the page table
– One to fetch the data

• To overcome this problem a high-speed
cache is set up for page table entries
– Called a Translation Lookaside Buffer (TLB)

• Contains page table entries that have
been most recently used

Translation Lookaside Buffer (ctd.)

• Given a virtual address, processor
examines the TLB

• If page table entry is present (TLB hit), the
frame number is retrieved and the real
address is formed

• If page table entry is not found in the TLB
(TLB miss), the page number is used to
index the process page table

Translation Lookaside Buffer (ctd.)

• First checks if page is already in main
memory
– If not in main memory a page fault is issued

• The TLB is updated to include the new
page entry

Page Size

• Smaller page size, less amount of internal
fragmentation

• Smaller page size, more pages required
per process

• More pages per process means larger
page tables

• Larger page tables means large portion of
page tables in virtual memory

Page Size
• Small page size, large number of pages

will be found in main memory
• As time goes on during execution, the

pages in memory will all contain portions
of the process near recent references.
Page faults low.

• Secondary memory is designed to
efficiently transfer large blocks of data so a
large page size is better in this respect

Segment Tables

• Starting address corresponding segment
in main memory

• Each entry contains the length of the
segment

• A bit is needed to determine if segment is
already in main memory

• Another bit is needed to determine if the
segment has been modified since it was
loaded in main memory

Segment Table Entries

Combined Paging and
Segmentation

• Paging is transparent to the programmer
• Segmentation is visible to the programmer
• Each segment is broken into fixed-size

pages

Fetch Policy

• Determines when a page should be
brought into memory

• Demand paging only brings pages into
main memory when a reference is made to
a location on the page
– Many page faults when process first started

• Pre-paging brings in more pages than
needed
•More efficient to bring in pages that reside

contiguously on the disk

Placement Policy

• Determines where in real memory a
process piece is to reside

• Important in a pure segmentation system,
cf. fragmentation

• Less important with paging, but NUMA
(non-uniform memory access)

Replacement Policy
• Which page is to be replaced?
• Page removed should be the page least

likely to be referenced in the near future
• Most policies predict the future behaviour

on the basis of past behaviour
• Frame Locking

– Associate a lock bit with each frame, if frame
is locked, it may not be replaced

– Kernel of the operating system, key control
structures, I/O buffers

Optimal policy

– Selects for replacement that page for which
the time to the next reference is the longest

– Impossible to have perfect knowledge of
future events

– Used as benchmark

First-in, first-out (FIFO)

– Treats page frames allocated to a process as
a circular buffer

– Pages are removed in round-robin style
– Simplest replacement policy to implement
– Page that has been in memory the longest is

replaced
– These pages may be needed again very soon

Least Recently Used (LRU)

– Replaces the page that has not been
referenced for the longest time.

– By the principle of locality, this should be the
page least likely to be referenced in the near
future.

– Each page could be tagged with the time of
last reference. This would require a great deal
of overhead.

Clock Policy

– Additional bit called a use bit
– When a page is first loaded in memory, the

use bit is set to 1
– When the page is referenced, the use bit is

set to 1
– When it is time to replace a page, the first

frame encountered with the use bit set to 0 is
replaced.

– During the search for replacement, each use
bit set to 1 is changed to 0

Clock Policy

Clock Policy

Clock with Modified Bit

• Used (u) and modified (m) bits
• 1st round: look for page with u=0 and m=0,
do not modify u
• 2nd round: look for page with u=0 and m=1,
clear u
•3rd round: repeat 1st round, then 2nd round
•Saves on writes to hard disk

Resident Set Size

• Fixed-allocation
– Gives a process a fixed number of pages

within which to execute
– When a page fault occurs, one of the pages of

that process must be replaced
• Variable-allocation

– Number of pages allocated to a process
varies over the lifetime of the process

Fixed Allocation, Local Scope

• Decide ahead of time the amount of
allocation to give a process

• If allocation is too small, there will be a
high page fault rate

• If allocation is too large there will be a
small number of programs in main
memory
– Processor idle time
– Swapping

Variable Allocation, Global
Scope

• Easiest to implement
• Adopted by many operating systems

(UNIX)
• Operating system keeps list of free frames
• Free frame is added to resident set of

process when a page fault occurs
• If no free frame, replaces one from any

process

Variable Allocation, Local Scope

• When new process added, allocate
number of page frames based on
application type, program request, or other
criteria – working set

• When page fault occurs, select page from
the resident set of the process that causes
the fault

• Re-evaluate allocation from time to time
• Windows

Cleaning Policy

• Demand cleaning
– A page is written out only when it has been

selected for replacement
• Pre-cleaning

– Pages are written out in batches

Cleaning Policy

• Best approach uses page buffering
– Replaced pages are placed in two lists

• Modified and unmodified
– Pages in the modified list are periodically

written out in batches
– Pages in the unmodified list are either

reclaimed if referenced again or lost when its
frame is assigned to another page

Load Control

Determines the number of processes that
will be resident in main memory

 Small number of processes: many
occasions when all processes will be
blocked and much time will be spent in
swapping

 Too many processes: thrashing
 Swapper or medium-term scheduler

Multiprogramming

Process Suspension

• Lowest priority process
• Faulting process

– This process does not have its working set in
main memory so it will be blocked anyway

• Last process activated
– This process is least likely to have its working

set resident

Process Suspension

• Process with smallest resident set
– This process requires the least future effort to

reload
• Largest process

– Obtains the most free frames
• Process with the largest remaining

execution window

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

