
Chapters 10 and 11,
William Stallings

Computer Organization and Architecture
7th Edition

Instruction Sets:
Characteristics and Functions

Addressing Modes

What is an Instruction Set?
• The complete collection of instructions that

are understood by a CPU
• Machine language: binary representation

of operations and (addresses of)
arguments

• Assembly language: mnemonic
representation for humans, e.g.,
OP A,B,C (meaning A <- OP(B,C))

Elements of an Instruction
• Operation code (opcode)

– Do this: ADD, SUB, MPY, DIV, LOAD, STOR
• Source operand reference

– To this: (address of) argument of op, e.g.
register, memory location

• Result operand reference
– Put the result here (as above)

• Next instruction reference (often implicit)
– When you have done that, do this: BR

Simple Instruction Format
(using two addresses)

Instruction Cycle State Diagram

Design Decisions (1)

• Operation repertoire
– How many ops?
– What can they do?
– How complex are they?

• Data types (length of words, integer
representation)

• Instruction formats
– Length of op code field
– Length and number of addresses (e.g., implicit

addressing)

Design Decisions (2)
• Registers

– Number of CPU registers available
– Which operations can be performed on which

registers? General purpose and specific
registers

• Addressing modes (see later)
• RISC v CISC

Instruction Types
• Data transfer: registers, main memory,

stack or I/O
• Data processing: arithmetic, logical
• Control: systems control, transfer of

control

Data Transfer
• Store, load, exchange, move, clear, set,

push, pop
• Specifies: source and destination (memory,

register, stack), amount of data
• May be different instructions for different

(size, location) movements, e.g.,
IBM S/390: L (32 bit word, R<-M), LH
(halfword, R<-M), LR (word, R<-R), plus
floating-point registers LER, LE, LDR, LD
Or one instruction and different addresses,
e.g. VAX: MOV

Input/Output
• May be specific instructions, e.g. INPUT,

OUTPUT
• May be done using data movement

instructions (memory mapped I/O)
• May be done by a separate controller

(DMA): Start I/O, Test I/O

Arithmetic
• Add, Subtract, Multiply, Divide for signed

integer (+ floating point and packed
decimal) – may involve data movement

• May include
– Absolute (|a|)
– Increment (a++)
– Decrement (a--)
– Negate (-a)

Logical
• Bitwise operations: AND, OR, NOT, XOR,

TEST, CMP, SET
• Shifting and rotating functions, e.g.

– logical right shift for unpacking: send 8-bit
character from 16-bit word

– arithmetic right shift: division and truncation
for odd numbers

– arithmetic left shift: multiplication without
overflow

Systems Control
• Privileged instructions: accessing control

registers or process table
• CPU needs to be in specific state

– Ring 0 on 80386+
– Kernel mode

• For operating systems use

Transfer of Control
• Skip, e.g., increment and skip if zero:

ISZ Reg1, cf. jumping out from loop
• Branch instructions: BRZ X (branch to X if

result is zero), BRP X (positive), BRN X
(negative), BRE X,R1,R2 (equal)

• Procedure (economy and modularity): call
and return

Branch Instruction

Nested Procedure Calls

Use of Stack:
Saving the return address for reentrant procedures

Types of Operand

• Addresses: immediate, direct, indirect,
stack

• Numbers: integer or fixed point (binary,
twos complement), floating point (sign,
significand, exponent), (packed) decimal
(246 = 0000 0010 0100 0110)

• Characters: ASCII (128 printable and
control characters + bit for error detection)

• Logical Data: bits or flags, e.g., Boolean 0
and 1

Pentium Data Types
• Addressing is by 8 bit unit
• General data types: 8 bit Byte, 16 bit word,

32 bit double word, 64 bit quad word
• Integer: signed binary using twos

complement representation
• (Un)packed decimal
• Near pointer: offset in segment
• Bit field
• Strings
• Floating point

Instruction Formats
• Layout of bits in an instruction
• Includes opcode
• Includes (implicit or explicit) operand(s)
• Usually more than one instruction format

in an instruction set

Instruction Length
• Affected by and affects:

– Memory size
– Memory organization - addressing
– Bus structure, e.g., width
– CPU complexity
– CPU speed

• Trade off between powerful instruction
repertoire and saving space

Allocation of Bits
• Number of addressing modes: implicit or

additional bits specifying it
• Number of operands
• Register (faster, limited size and number,

32) versus memory
• Number of register sets, e.g., data and

address (shorter addresses)
• Address range
• Address granularity (e.g., by byte)

Number of Addresses
• More addresses

– More complex (powerful?) instructions
– More registers - inter-register operations are

quicker
– Less instructions per program

• Fewer addresses
– Less complex (powerful?) instructions
– More instructions per program, e.g. data

movement
– Faster fetch/execution of instructions

• Example: Y=(A-B):[(C+(DxE)]

3 addresses
Operation Result, Operand 1, Operand 2

– Not common
– Needs very long words to hold everything
SUB Y,A,B Y <- A-B
MPY T,D,E T <- DxE
ADD T,T,C T <- T+C
DIV Y,Y,T Y <- Y:T

2 addresses
One address doubles as operand and result

– Reduces length of instruction
– Requires some extra work: temporary storage
MOVE Y,A Y <- A
SUB Y,B Y <- Y-B
MOVE T,D T <- D
MPY T,E T <- TxE
ADD T,C T <- T+C
DIV Y,T Y <- Y:T

1 address
Implicit second address, usually a register

(accumulator, AC)
LOAD D AC <- D
MPY E AC <- ACxE
ADD C AC <- AC+C
STOR Y Y <- AC
LOAD A AC <- A
SUB B AC <- AC-B
DIV Y AC <- AC:Y
STOR Y Y <- AC

0 (zero) addresses

All addresses implicit, e.g. ADD
– Uses a stack, e.g. pop a, pop b, add
– c = a + b

Addressing Modes
• Immediate
• Direct
• Indirect
• Register
• Register Indirect
• Displacement (Indexed)
• Stack

Immediate Addressing
• Operand is part of instruction
• Operand = address field
• e.g., ADD 5 or ADD #5

– Add 5 to contents of accumulator
– 5 is operand

• No memory reference to fetch data
• Fast
• Limited range

Direct Addressing
• Address field contains address of operand
• Effective address (EA) = address field (A)
• e.g., ADD A

– Add contents of cell A to accumulator
– Look in memory at address A for operand

• Single memory reference to access data
• No additional calculations needed to work

out effective address
• Limited address space (length of address

field)

Direct Addressing Diagram

Address AOpcode

Instruction

Memory

Operand

Indirect Addressing (1)
• Memory cell pointed to by address field

contains the address of (pointer to) the
operand

• EA = (A)
– Look in A, find address (A) and look there for

operand
• E.g. ADD (A)

– Add contents of cell pointed to by contents of
A to accumulator

Indirect Addressing (2)
• Large address space
• 2n where n = word length
• May be nested, multilevel, cascaded

– e.g. EA = (((A)))
• Multiple memory accesses to find operand
• Hence slower

Indirect Addressing Diagram

Address AOpcode

Instruction

Memory

Operand

Pointer to operand

Register Addressing (1)
• Operand is held in register named in

address field
• EA = R
• Limited number of registers
• Very small address field needed

– Shorter instructions
– Faster instruction fetch

Register Addressing (2)
• No memory access
• Very fast execution
• Very limited address space
• Multiple registers helps performance

– Requires good assembly programming or
compiler writing – see register renaming

• cf. direct addressing

Register Addressing Diagram

Register Address ROpcode

Instruction

Registers

Operand

Register Indirect Addressing
• Cf. indirect addressing
• EA = (R)
• Operand is in memory cell pointed to by

contents of register R
• Large address space (2n)
• One fewer memory access than indirect

addressing

Register Indirect Addressing Diagram

Register Address ROpcode

Instruction

Memory

OperandPointer to Operand

Registers

Displacement Addressing
• EA = A + (R)
• Address field hold two values

– A = base value
– R = register that holds displacement
– or vice versa

• See segmentation

Displacement Addressing Diagram

Register ROpcode

Instruction

Memory

OperandDisplacement

Registers

Address A

+

Relative Addressing
• A version of displacement addressing
• R = Program counter, PC
• EA = A + (PC)
• i.e., get operand from A cells away from

current location pointed to by PC
• cf. locality of reference & cache usage

Base-Register Addressing
• A holds displacement
• R holds pointer to base address
• R may be explicit or implicit
• e.g., segment registers in 80x86

Indexed Addressing
• A = base
• R = displacement
• EA = A + R
• Good for iteration, e.g., accessing arrays

– EA = A + R
– R++

• Sometimes automated: autoindexing
(signalled by one bit in instruction)

Stack Addressing
• Operand is (implicitly) on top of stack
• e.g.

– ADD Pop top two items from stack and add
and push result on top

PowerPC Addressing Modes
• Load/store architecture (see next slide):

– Displacement and indirect indexed
– EA = base + displacement/index
– with updating base by computed address

• Branch address
– Absolute
– Relative (see loops): (PC) + I
– Indirect: from register

• Arithmetic
– Operands in registers or part of instruction
– For floating point: register only

PowerPC Memory Operand
Addressing Modes

	Chapters 10 and 11, William Stallings Computer Organization and Architecture 7th Edition
	What is an Instruction Set?
	Elements of an Instruction
	Simple Instruction Format (using two addresses)
	Instruction Cycle State Diagram
	Design Decisions (1)
	Design Decisions (2)
	Instruction Types
	Data Transfer
	Input/Output
	Arithmetic
	Logical
	PowerPoint Presentation
	Systems Control
	Transfer of Control
	Branch Instruction
	Nested Procedure Calls
	Use of Stack: Saving the return address for reentrant procedures
	Types of Operand
	Pentium Data Types
	Instruction Formats
	Instruction Length
	Allocation of Bits
	Number of Addresses
	3 addresses
	2 addresses
	1 address
	0 (zero) addresses
	Addressing Modes
	Immediate Addressing
	Direct Addressing
	Direct Addressing Diagram
	Indirect Addressing (1)
	Indirect Addressing (2)
	Indirect Addressing Diagram
	Register Addressing (1)
	Register Addressing (2)
	Register Addressing Diagram
	Register Indirect Addressing
	Register Indirect Addressing Diagram
	Displacement Addressing
	Displacement Addressing Diagram
	Relative Addressing
	Base-Register Addressing
	Indexed Addressing
	Stack Addressing
	PowerPC Addressing Modes
	PowerPC Memory Operand Addressing Modes

