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What is an Instruction Set?
• The complete collection of instructions that 

are understood by a CPU
• Machine language: binary representation 

of operations and (addresses of) 
arguments

• Assembly language: mnemonic 
representation for humans, e.g., 
OP A,B,C (meaning A <- OP(B,C))



Elements of an Instruction
• Operation code (opcode)

– Do this: ADD, SUB, MPY, DIV, LOAD, STOR
• Source operand reference

– To this: (address of) argument of op, e.g. 
register, memory location

• Result operand reference
– Put the result here (as above)

• Next instruction reference (often implicit)
– When you have done that, do this: BR



Simple Instruction Format
(using two addresses)



Instruction Cycle State Diagram



Design Decisions (1)

• Operation repertoire
– How many ops?
– What can they do?
– How complex are they?

• Data types (length of words, integer 
representation)

• Instruction formats
– Length of op code field
– Length and number of addresses (e.g., implicit 

addressing)



Design Decisions (2)
• Registers

– Number of CPU registers available
– Which operations can be performed on which 

registers? General purpose and specific 
registers

• Addressing modes (see later)
• RISC v CISC



Instruction Types
• Data transfer: registers, main memory, 

stack or I/O
• Data processing: arithmetic, logical
• Control: systems control, transfer of 

control



Data Transfer
• Store, load, exchange, move, clear, set, 

push, pop
• Specifies: source and destination (memory, 

register, stack), amount of data
• May be different instructions for different 

(size, location) movements, e.g., 
IBM S/390: L (32 bit word, R<-M), LH 
(halfword, R<-M), LR (word, R<-R), plus 
floating-point registers LER, LE, LDR, LD
Or one instruction and different addresses, 
e.g. VAX: MOV



Input/Output
• May be specific instructions, e.g. INPUT, 

OUTPUT
• May be done using data movement 

instructions (memory mapped I/O)
• May be done by a separate controller 

(DMA): Start I/O, Test I/O



Arithmetic
• Add, Subtract, Multiply, Divide for signed 

integer (+ floating point and packed 
decimal) – may involve data movement

• May include
– Absolute (|a|)
– Increment (a++)
– Decrement (a--)
– Negate (-a)



Logical
• Bitwise operations: AND, OR, NOT, XOR, 

TEST, CMP, SET
• Shifting and rotating functions, e.g. 

– logical right shift for unpacking: send 8-bit 
character from 16-bit word 

– arithmetic right shift: division and truncation 
for odd numbers

– arithmetic left shift: multiplication without 
overflow 





Systems Control
• Privileged instructions: accessing control 

registers or process table
• CPU needs to be in specific state 

– Ring 0 on 80386+
– Kernel mode

• For operating systems use



Transfer of Control
• Skip, e.g., increment and skip if zero: 

ISZ Reg1, cf. jumping out from loop
• Branch instructions: BRZ X (branch to X if 

result is zero), BRP X (positive), BRN X 
(negative), BRE X,R1,R2 (equal)

• Procedure (economy and modularity): call 
and return



Branch Instruction



Nested Procedure Calls



Use of Stack:
Saving the return address for reentrant procedures



Types of Operand

• Addresses: immediate, direct, indirect, 
stack

• Numbers: integer or fixed point (binary, 
twos complement), floating point (sign, 
significand, exponent), (packed) decimal 
(246 = 0000 0010 0100 0110)

• Characters: ASCII (128 printable and 
control characters + bit for error detection) 

• Logical Data: bits or flags, e.g., Boolean 0 
and 1



Pentium Data Types
• Addressing is by 8 bit unit
• General data types: 8 bit Byte, 16 bit word, 

32 bit double word, 64 bit quad word
• Integer: signed binary using twos 

complement representation
• (Un)packed decimal
• Near pointer: offset in segment
• Bit field
• Strings
• Floating point



Instruction Formats
• Layout of bits in an instruction
• Includes opcode
• Includes (implicit or explicit) operand(s)
• Usually more than one instruction format 

in an instruction set



Instruction Length
• Affected by and affects:

– Memory size
– Memory organization - addressing
– Bus structure, e.g., width
– CPU complexity
– CPU speed

• Trade off between powerful instruction 
repertoire and saving space



Allocation of Bits
• Number of addressing modes: implicit or 

additional bits specifying it
• Number of operands
• Register (faster, limited size and number, 

32) versus memory
• Number of register sets, e.g., data and 

address (shorter addresses)
• Address range
• Address granularity (e.g., by byte)



Number of Addresses
• More addresses

– More complex (powerful?) instructions
– More registers - inter-register operations are 

quicker
– Less instructions per program

• Fewer addresses
– Less complex (powerful?) instructions
– More instructions per program, e.g. data 

movement
– Faster fetch/execution of instructions

• Example: Y=(A-B):[(C+(DxE)]



3 addresses
Operation Result, Operand 1, Operand 2

– Not common
– Needs very long words to hold everything
SUB Y,A,B Y <- A-B
MPY T,D,E T <- DxE
ADD T,T,C T <- T+C
DIV Y,Y,T Y <- Y:T



2 addresses
One address doubles as operand and result

– Reduces length of instruction
– Requires some extra work: temporary storage 
MOVE Y,A Y <- A
SUB Y,B Y <- Y-B
MOVE T,D T <- D
MPY T,E T <- TxE
ADD T,C T <- T+C
DIV Y,T Y <- Y:T



1 address
Implicit second address, usually a register 

(accumulator, AC)
LOAD D AC <- D
MPY E AC <- ACxE
ADD C AC <- AC+C
STOR Y Y <- AC
LOAD A AC <- A
SUB B AC <- AC-B
DIV Y AC <- AC:Y
STOR Y Y <- AC



0 (zero) addresses

All addresses implicit, e.g. ADD
– Uses a stack, e.g. pop a, pop b, add
– c = a + b



Addressing Modes
• Immediate
• Direct
• Indirect
• Register
• Register Indirect
• Displacement (Indexed) 
• Stack



Immediate Addressing
• Operand is part of instruction
• Operand = address field
• e.g., ADD 5 or ADD #5

– Add 5 to contents of accumulator
– 5 is operand

• No memory reference to fetch data
• Fast
• Limited range



Direct Addressing
• Address field contains address of operand
• Effective address (EA) = address field (A)
• e.g., ADD A

– Add contents of cell A to accumulator
– Look in memory at address A for operand

• Single memory reference to access data
• No additional calculations needed to work 

out effective address
• Limited address space (length of address 

field)



Direct Addressing Diagram

Address AOpcode

Instruction

Memory

Operand



Indirect Addressing (1)
• Memory cell pointed to by address field 

contains the address of (pointer to) the 
operand

• EA = (A)
– Look in A, find address (A) and look there for 

operand 
• E.g. ADD (A)

– Add contents of cell pointed to by contents of 
A to accumulator



Indirect Addressing (2)
• Large address space 
• 2n where n = word length
• May be nested, multilevel, cascaded

– e.g. EA = (((A)))
• Multiple memory accesses to find operand
• Hence slower



Indirect Addressing Diagram

Address AOpcode

Instruction

Memory

Operand

Pointer to operand



Register Addressing (1)
• Operand is held in register named in 

address field
• EA = R
• Limited number of registers
• Very small address field needed 

– Shorter instructions
– Faster instruction fetch



Register Addressing (2)
• No memory access
• Very fast execution
• Very limited address space
• Multiple registers helps performance

– Requires good assembly programming or 
compiler writing – see register renaming

• cf. direct addressing



Register Addressing Diagram

Register Address ROpcode

Instruction

Registers

Operand



Register Indirect Addressing
• Cf. indirect addressing
• EA = (R)
• Operand is in memory cell pointed to by 

contents of register R
• Large address space (2n)
• One fewer memory access than indirect 

addressing



Register Indirect Addressing Diagram

Register Address ROpcode

Instruction

Memory

OperandPointer to Operand

Registers



Displacement Addressing
• EA = A + (R)
• Address field hold two values

– A = base value
– R = register that holds displacement
– or vice versa

• See segmentation



Displacement Addressing Diagram

Register ROpcode

Instruction

Memory

OperandDisplacement

Registers

Address A

+



Relative Addressing
• A version of displacement addressing
• R = Program counter, PC
• EA = A + (PC)
• i.e., get operand from A cells away from 

current location pointed to by PC
• cf. locality of reference & cache usage



Base-Register Addressing
• A holds displacement
• R holds pointer to base address
• R may be explicit or implicit
• e.g., segment registers in 80x86



Indexed Addressing
• A = base
• R = displacement
• EA = A + R
• Good for iteration, e.g., accessing arrays

– EA = A + R
– R++

• Sometimes automated: autoindexing 
(signalled by one bit in instruction)



Stack Addressing
• Operand is (implicitly) on top of stack
• e.g. 

– ADD Pop top two items from stack and add 
and push result on top



PowerPC Addressing Modes
• Load/store architecture (see next slide):

– Displacement and indirect indexed
– EA = base + displacement/index
– with updating base by computed address

• Branch address
– Absolute
– Relative (see loops): (PC) + I 
– Indirect: from register

• Arithmetic
– Operands in registers or part of instruction
– For floating point: register only



PowerPC Memory Operand 
Addressing Modes
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