
Chapter 6
Concurrency: Deadlock and 

Starvation

Operating Systems:
Internals and Design Principles, 6/E

William Stallings

Patricia Roy
Manatee Community College, Venice, FL

©2008, Prentice Hall



Deadlock

• Permanent blocking of a set of processes 
that either compete for system resources 
or communicate with each other

• No efficient solution
• Involve conflicting needs for resources by 

two or more processes



Deadlock in Traffic



Non-deadlock - Joint Progress Diagram



Deadlock in a Computer – Fatal Region



Deadlock Definition

• Formal definition :
A set of processes is deadlocked if each process in 
the set is waiting for an event that only another 
process in the set can cause.

• Usually the event is release of a currently held 
resource

• None of the processes can …
– run
– release resources
– be awakened



Reusable Resources

• Used by only one process at a time and 
not depleted by that use

• Processes obtain resources that they later 
release for reuse by other processes



Reusable Resources

• Processors, I/O channels, main and 
secondary memory, devices, and data 
structures such as files, databases, and 
semaphores

• Deadlock occurs if each process holds 
one dedicated resource and requests 
another held by another process



Reusable Resources



Reusable Resources

• Space is available for allocation of 
200Kbytes, and the following sequence of 
events occur

• Deadlock occurs if both processes 
progress to their second request

• But virtual memory

P1

. . .

. . .
Request 80 Kbytes;

Request 60 Kbytes;

P2

. . .

. . .
Request 70 Kbytes;

Request 80 Kbytes;



Consumable Resources

• Created (produced) and destroyed 
(consumed)

• Interrupts, signals, messages, and 
information in I/O buffers

• Deadlock may occur if a Receive message 
is blocking

• May take a rare combination of events to 
cause deadlock



Example of Deadlock

• Deadlock occurs if Receive is blocking

P1

. . .

. . .
Receive(P2);

Send(P2, M1);

P2

. . .

. . .
Receive(P1);

Send(P1, M2);



Conditions for Deadlock

• Mutual exclusion
– Only one process may use a resource at a 

time
• Hold-and-wait

– A process may hold allocated resources while 
awaiting assignment of others



Conditions for Deadlock

• No preemption
– No resource can be forcibly removed from a 

process holding it
• Circular wait

– A closed chain of processes exists, such that 
each process holds at least one resource 
needed by the next process in the chain



Resource Allocation Graphs

• Directed graph that depicts a state of the 
system of resources and processes



Resource Allocation Graphs



Resource Allocation Graphs



Deadlock Prevention

• Mutual Exclusion
– Spooling

• Hold and Wait
– Require that a process request all of its 

required resources at one time
– Requests would be granted/denied 

simultaneously



Deadlock Prevention (cont.)

• No Preemption
– Process must release resource and request 

again
– OS may preempt a process and require it to 

release its resources
• Circular Wait

– Define a linear ordering of resources
– Require that processes request resources 

according to the ordering



Deadlock Avoidance

• A decision is made dynamically whether 
the current resource allocation request 
will, if granted, potentially lead to a 
deadlock

• Requires knowledge of future process 
requests



Two Approaches to 
Deadlock Avoidance

• Do not start a process if its demands might 
lead to deadlock

• Do not grant an incremental resource 
request to a process if this allocation might 
lead to deadlock



Resource Allocation Denial

• Referred to as the Banker’s Algorithm
• State of the system is the current 

allocation of resources to process
• Safe state is where there is at least one 

sequence of execution of processes that 
does not result in deadlock

• Unsafe state is a state that is not safe



Determination of a Safe State



Determination of a Safe State



Determination of an Unsafe State



Deadlock Avoidance Logic



Deadlock Avoidance Logic



Deadlock Avoidance

• Maximum resource requirement must be 
stated in advance

• Processes under consideration must be 
independent; no synchronization (order of 
execution) requirements

• No process may exit/block while holding 
resources



Deadlock Detection



Strategies Once Deadlock 
Detected

• Abort all deadlocked processes
• Back up each deadlocked process to some 

previously defined checkpoint, and restart all 
process - original deadlock may re-occur

• Successively abort deadlocked processes until 
deadlock no longer exists

• Successively preempt resources until deadlock 
no longer exists



Dining Philosophers Problem



Dining Philosophers Problem



Dining Philosophers Problem with Semaphores



Dining Philosophers Problem with Monitor



Dining Philosophers Problem with Monitor



UNIX Concurrency Mechanisms

• Pipes: circular buffer for two processes 
like in producer-consumer

• Messages: blocking receive
• Shared memory: shared pages – mutual 

exclusion is not guaranteed
• Semaphores
• Signals



Linux Kernel Concurrency 
Mechanism

• Includes all the mechanisms found in 
UNIX

• Atomic operations execute without 
interruption and without interference (by 
blocking the memory bus)



Linux Atomic Operations

• arithmetic operation plus setting condition 
code 

• spinlocks for mutual exclusion (loop until 
lock acquired)

• traditional and readers-writer semaphores
• memory barrier operations: limit compiler or 

CPU in re-ordering instructions


