Operating Systems:
Internals and Design Principles, 6/E
Willlam Stallings

Chapter 6
Concurrency: Deadlock and
Starvation

Patricia Roy
Manatee Community College, Venice, FL
©2008, Prentice Hall

Deadlock

* Permanent blocking of a set of processes
that either compete for system resources
or communicate with each other

* No efficient solution

* Involve conflicting needs for resources by
two or more processes

Deadlock Iin Traffic

-

(a) Deadlock possible {b) Deadlock

Figure 6.1 Illustration of Deadlock

Non-deadlock - Joint Progress Diagram

Progress
of QO
A
Release
A
A_ Release P smd%
Required B / W my \\\\
//// NP and ON
Get A want B{\\:
' N\
Required \
Get B N
Progress
GetA Release A GetB Release B of P
=hboth P and Q want resource A A Required B Required
< = . _." = possible progress path of P and Q.
both P and Q want resource B Horizontal portion of path indicates P 1s executing and Q) 1s waiting.

Vertical portion of path indicates Q is executing and P is waiting.

Figure 6.3 Example of No Deadlock [BACO03]

Deadlock in a Computer — Fatal Region

Progress
of Q ‘
A2
Release
» 7 W////
/ P and Q/
“ fmr A
R A_ 1 Release / 4
equired B // \
Get A \
B 3 deadlock \ fm%\
Required inevitable want B \
Get B 5
ret
4
6
Progress
Get A Get B Release A Release B of P

FA =both P and Q want resource A

= both P and Q want resource B

|:| = deadlock-inevitable region

_,:—Y'—_j
Required K___—-—Y—_J

B Required

_P = possible progress path of P and Q.

Homnzontal portion of path indicates P is executing and () 1s waiting.
Vertical portion of path indicates () 1s executing and P 15 waiting.

Figure 6.2 Example of Deadlock

Deadlock Definition

* Formal definition :

A set of processes Is deadlocked if each process In
the set Is walting for an event that only another
process in the set can cause.

* Usually the event is release of a currently held
resource

* None of the processes can ...
— run

— release resources
— be awakened

Reusable Resources

* Used by only one process at a time and
not depleted by that use

* Processes obtain resources that they later
release for reuse by other processes

Reusable Resources

* Processors, I/0O channels, main and
secondary memory, devices, and data
structures such as files, databases, and
semaphores

* Deadlock occurs if each process holds
one dedicated resource and requests
another held by another process

Reusable Resources

Process P Process Q
Step Action Step Action
Pq Request (D) qq Request (T)
P, Lock (D) q, Lock (T)
P> Request (T) q, Request (D)
P; Lock (T) Qs Lock (D)
P, Perform function Qy Perform function
Ps Unlock (D) Qs Unlock (T)
Pe Unlock (T) P Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusable Resources

Reusable Resources

* Space Is available for allocation of
200Kbytes, and the following sequence of
events occur

P1 P2

Request 80 Kbytes; Request 70 Kbytes;

Request 60 Kbytes; Request 80 Kbytes;

* Deadlock occurs if both processes
progress to their second request

* But virtual memory

Consumable Resources

Created (produced) and destroyed
(consumed)

Interrupts, signals, messages, and
iInformation in 1/O buffers

Deadlock may occur if a Recelve message
IS blocking

May take a rare combination of events to
cause deadlock

Example of Deadlock

* Deadlock occurs if Receive Is blocking

P1 P2
Receive(P2); Receive(Pl);

Send(P2, M1); Send(P1, M2);

Conditions for Deadlock

e Mutual exclusion
— Only one process may use a resource at a
time
e Hold-and-walit

— A process may hold allocated resources while
awaiting assignment of others

Conditions for Deadlock

* No preemption

— No resource can be forcibly removed from a
process holding it

e Circular wait

— A closed chain of processes exists, such that
each process holds at least one resource
needed by the next process in the chain

Resource Allocation Graphs

* Directed graph that depicts a state of the
system of resources and processes

1 Requests ® Ra 1 Held by Ra

(a) Resouce is requested (b) Resource is held

Resource Allocation Graphs

Ra Ra

P2 P1

Rb Rb

(e) Circular wait (d) No deadlock

Resource Allocation Graphs

—_

A\A\A\A
@ @ []
R Rb Re Rd

Figure 6.6 Resource Allocation Graph for Figure 6.1b

Deadlock Prevention

 Mutual Exclusion
— Spooling
e Hold and Wait

— Require that a process request all of its
required resources at one time

— Requests would be granted/denied
simultaneously

Deadlock Prevention (cont.)

* No Preemption

— Process must release resource and request
again

— OS may preempt a process and require it to
release its resources

* Circular Wait
— Define a linear ordering of resources

— Require that processes request resources
according to the ordering

Deadlock Avoidance

* A decision is made dynamically whether
the current resource allocation request

will, If granted, potentially lead to a
deadlock

* Requires knowledge of future process
requests

Two Approaches to

Deadlock Avolidance

* Do not start a process If its demands might
lead to deadlock

* Do not grant an incremental resource
request to a process If this allocation might
lead to deadlock

Resource Allocation Denial

Referred to as the Banker’s Algorithm

State of the system Is the current
allocation of resources to process

Safe state I1s where there Is at least one
seguence of execution of processes that
does not result in deadlock

Unsafe state Is a state that Is not safe

Pl
P

P4

Determination of a Safe State

Rl R R3 Rl R? R3
3 ?] Pl | (| Pl
§ | 3 P2 b | 2 P2
3 | J P3 ? | l P3
i ?] P4 i (2 P4
Clamm mamz C Allocation mafnix A
Rl R3 Rl R R3
9 i (0 1 l

Resource veetor R

(a) Initial state

Avatlable vector V

Rl Rl R3
]] 2
0 0 l
l 0 3
i] 0

C-A

Pl
P2

P4

RI R2 R3 R1 R2 R3
3 2 2 Pl | 0 0 Pl
0 0 0 P 0 0 0 P2
3 | 4 P3 2 | 1 P3
4 2 2 P4 0 0 2 P4
Claim mamzx C Allocation matox A
R1 R2 R3 Rl Rl R3
9 3 b ; 3

Resouree vector R

Available vector V

(h) P2 runs to completion

Determination of a Safe State

Rl R R}
2 . 2
0 0 0
l 0 3
4] 0

C-A

Pl

P3
P4

Determination of an Unsafe State

R1 R2 R3 R1 R2 B3 R1 R2 R3
3 2 2 P1 1 0 0 Pl 2 2 2
0 1 3 P2 5 I 1 P2 1 0 2
3 1 + P3 2 I 1 P3 1 0 3
+ 2 2 P4 0 0 2 P4 -+ 2 0

Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9 3 6 1 1 2
Resource vector R Awailable vector V
{a) Initial state

R1 R2 R3 R1 R2 R3 R1 R2 R3
3 2 2 P1 2 0 1 Pl 1 2 1
6 1 3 P2 5 1 1 P2 1 0 2
3 1 4 P3 2 1 1 P3 1 0 3
4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-A
R1 R2 R3 E1 R2 R3
9 3 6 0 1 1

csource vector R

Awvailable vector V

(b) P1 requests one unit each of R1 and R3

Deadlock Avoidance Logic

struct state {
int resource[m];
int available[m];
int claim[n][m];
int alloc[n][m];

(a) global data structures

if (alloc [i,*] + request [*] > claim [i,%*])

< error >; /* total request > claim*/
else if (reguest [*] = awvailable [*])

< suspend process >;

else { /* simulate alloc */
< define newstate by:
alloc [i,*] = alloc [i,*] + request [*];
available [*] = available [*] = reguest [*] >;

}

if (safe (newstate))
< carry out allocation >;
else |
< restore original state >;
< suspend process >;

(b) resource alloc algorithm

Deadlock Avoidance Logic

boolean safe (state 5) {
int currentavail[m];
process rest[<number of processes>];
currentavail = available;
rest = {all processes};
possible = true;
while (possible) {
<find a process P in rest such that

claim [k,*] — alloc [k,*] <= currentavail;>
if (found) { /* simulate execution of Py */
currentavaill = currentavail + alloc [k,*];

rest = rest - {[Py};
:

else possible = false;

1

return (rest == null):;

(c) test for safety algorithm (banker's algorithm)

Figure 6.9 Deadlock Avoidance Logic

Deadlock Avoidance

* Maximum resource reguirement must be
stated in advance

* Processes under consideration must be
Independent; no synchronization (order of
execution) requirements

* No process may exit/block while holding
resources

Pl

P3
P4

Deadlock Detection

RI R2 R3 R4 RS

0| 1100 P

01010 P2

010100 P3

L0110 P4
Request matrix Q

RI R2 R3 R4 RS

l

0

I

1

RI

R2 R3 R4 RS

l

l

0

),

L1121

0

0

l

0

0

0
0
0

0

= OO | O O

Allocation matrix A

RI

Resource vector

R2 R} R4 RS

0

010071

Allocation vector

Figure 6.10 Example for Deadlock Detection

Strategies Once Deadlock
Detected

Abort all deadlocked processes

Back up each deadlocked process to some
previously defined checkpoint, and restart all
process - original deadlock may re-occur

Successively abort deadlocked processes until
deadlock no longer exists

Successively preempt resources until deadlock
no longer exists

Dining Philosophers Problem

Figure 6.11 Dining Arrangement for Philosophers

Dining Philosophers Problem

/* program diningphilosophers =*/

semaphore fork [5] = [1};

int 1i;

void philosopher (int 1)

{

while (true) {

think();
wait (fork[i]);
walt (fork [(i+1l) mod 5]);
eat();
signal (fork [(i1+1) mod 5]);
signal (fork[1]);

}
}
void main()
{

parbegin (philosopher (0), philosopher (1), philosopher
(2),
philosopher (3), philosopher (4));

Figure 6.12 A First Solution to the Dining Philosophers Problem

Dining Philosophers Problem with Semaphores

[* program diningphilosophers */
semaphore fork[5] = {1};

semaphore room = {4};
int 1;

void philosopher (int i)
{

while (true) {
think();
walt (room);
walt (fork[i]);
walt (fork [(1+1) med 5]);
eat();
signal (fork [
signal (fork[1i
signal (room);

(1+1) mod 5]);
1)

L]
r

}
}
void main()
{
parbegin (philosopher (0), philosopher (1), philoscopher (2},
philosopher (3), philosopher (4));
}

Figure 6.13 A Second Solution to the Dining Philosophers Problem

Dining Philosophers Problem with Monitor

void philosopher[k=0 to 4] /* the five philosopher clients */
{
while (true) {
<think>:
get forks(k); /* client requests two forks via monitor */
<eat spaghetti>;
release forks(k): /* client releases forks via the monitor */

Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor

Dining Philosophers Problem with Monitor

monitor dining controcller;

cond ForkReady|[5]; /* condition wvariable for synchronizaticon
boolean fork[5] = {true}; /* availability status of each fork
void get forks(int pid) /* pid is the philoscopher id numbker
{

int left = pid;
int right = (++pid) % 5;
/*grant the left fork*/
if (!fork(left)
cwalit (ForkReady[left]); /* gueue on condition wvariable
fork(left) = false;
/*grant the right fork*/
if (!fork(right)
cwalt (ForkReady (right); /* gueue on conditicon wvariable
fork(right) = false:
)

void release forks(int pid)
{
int left = pid;
int right = (++pi1d) % 5;
/*release the left fork*/
if (empty(ForkReady[left]) /*no one is waiting for this fork
fork(left) = true;
else /* awaken a process waiting on this fork
csignal (ForkReady[left]);
/*release the right fork*/
if (empty(ForkReady[right]) /*no one is waiting for this fork
fork(right) = true;
else /* awaken a process waiting on this fork
csignal (ForkReady[right]);

* /
* /

* /

* /

* /

UNIX Concurrency Mechanisms

* Pipes: circular buffer for two processes
like In producer-consumer

* Messages: blocking receive

* Shared memory: shared pages — mutual
exclusion is not guaranteed

* Semaphores
* Signals

Linux Kernel Concurrency
Mechanism

* Includes all the mechanisms found In
UNIX

* Atomic operations execute without
iInterruption and without interference (by
blocking the memory bus)

Linux Atomic Operations

arithmetic operation plus setting condition
code

spinlocks for mutual exclusion (loop until
lock acquired)

traditional and readers-writer semaphores

memory barrier operations: limit compiler or
CPU In re-ordering instructions

