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Abstract. The Fisher-Rao metric for the focus of expansion is approximated, under
the assumption that the focus is estimated from correspondences between two images
taken by a translating camera. The approximation is accurate if the errors in the image
correspondences are small. The parameter space for the focus of expansion is sampled
at a finite set of points chosen such that every point in the space is near to at least one
sample point. A focus of expansion is detected by checking each sample point in turn to
see if it is supported by the image correspondences.
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1 Introduction

Many tasks in computer vision involve the detection of a structure using measurements
obtained from one or more images. The structure could be a simple line or a curve or it
could be more abstract, for example the projective transformation defined by the pairs of
corresponding points in two images of a line. The range of structures of a given type is
described by a parameter space T, where each point of T" specifies a unique structure.

The volume of T is a measure of the difficulty of detecting the structure in question:
if the volume is large, then it is difficult to search the whole of T" to find all the structures
compatible with a given set of measurements. At first sight this idea of using volume to
measure the difficulty of structure detection appears to be unworkable because the same
range of structures can be described by different parameter spaces with different volumes.
For example, the chords in the unit disk can be parameterised by their mid points. The
resulting parameter space, considered as a subset of IR?, has an area (or two-dimensional
volume) 7. An alternative parameterisation is obtained by extending each chord to a line
in IR? and taking the intercept and the gradient of each line. The area of this second
parameter space is infinite.

The difficulty is resolved by calculating the volume of 7" using the Fisher-Rao metric
[3,4] on T. The Fisher-Rao metric is directly related to structure detection. If two
points of T are close together in the Fisher-Rao metric, then the corresponding structures
are difficult to distinguish using the measurements. This observation leads to a simple
algorithm for detecting structures. A set G of points is chosen from 7', such that each
point of T is near to at least one point of G under the Fisher-Rao metric. Then each point
of G is checked in turn to see if the presence of the corresponding structure is supported
by the measurements. If the volume of 7' is finite and if 7" has a "reasonable” shape then
the number |G| of points in G is finite and proportional to the volume of T'.
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A major obstacle to finding G is that there are in general very few cases in which the
Fisher-Rao metric can be obtained in a closed form or even approximated numerically
in a practical way. It is shown in [12] that the Fisher-Rao metric can be approximated
by a more tractable metric which can in some cases be obtained in closed form. The
approximation is accurate if the measurement noise is low. The approximating metric has
been obtained for lines in the unit disc [10], lines in a rectangular image [14], projective
transformations of the line [9,11] and ellipses [13]. In the current paper the approximating
metric is obtained for the focus of expansion associated with the images taken by a
single camera as it undergoes a pure translational motion without rotation. The focus
of expansion is the point in the image plane that defines the direction of motion of the
camera. If the camera is moving forward then the scene points appear to diverge from
the focus of expansion. If the camera is moving backwards then the scene points appear
to converge on the focus of expansion [6].

The literature on estimating the focus of expansion from image sequences is vast. For
an early review see, for example, [2]. The current paper is the first one to investigate
the Fisher-Rao metric for the focus of expansion. The approximation to the Fisher-Rao
metric obtained in this paper is important because i) it is the basis of a simple and
reliable search algorithm for detecting all the foci of expansion compatible with a given
set of image correspondences; 7i) it can be used to assess any algorithm for detecting foci
of expansion, for example to see whether the algorithm in question has missed any foci;
iii) it may in future provide the information needed to design neural nets or networks of
processors for detecting foci of expansion: the optimal spacing between adjacent nodes or
between adjacent processors can be estimated using the approximating metric.

The approximating metric is obtained in Section 2. A numerical investigation of
the approximating metric is carried out in Section 3. This investigation includes the
calculation of the volume of the parameter space. An algorithm to find the focus of
expansion is described in Section 4, the probabilities of false detection and false rejection
are analyzed in Section 5 and a method for sampling the parameter space is described in
Section 6. Experimental results are reported in Section 7 and some concluding remarks
are made in Section 8.

Most of the symbolic calculations and all of the numerical work reported in this paper
were carried out using Mathematica [18].

2 Mathematical Framework

2.1 Image Formation

It is assumed that the image points are obtained by projection to a plane in accordance
with the pinhole camera model, as described in [5,6]. For mathematical convenience, it
is assumed that the image itself is the unit disk D centred at the origin. The plane
containing D is referred to as the image plane, even though a large part of this plane is
outside the visible image.

Suppose that the camera translates from one position to another, without undergoing
any rotation, and let ¢ be the projection of the translation vector. The point ¢ is known
as the focus of expansion. If the camera is moving backwards, then the translation vector



points behind the camera. In this case the translation vector is reflected in the origin
and then projected to the image plane. The focus of expansion remains fixed during the
motion of the camera, and it may be inside D or outside D.

Let a scene point project to a point ¢; in D when the camera is in the first position
and to a point ¢» in D when the camera is in the second position. The points ¢, g2 are
said to be corresponding points, q; <> ¢2. The three points ¢, ¢, g2 are collinear because
the motion of the camera is a pure translation. For further information, see [6], Section
10.1.3. Conversely, suppose that the three points ¢, g1, ¢» are collinear. Then the ray
projecting to ¢; in the first image is coplanar with the ray projecting to ¢s in the second
image. If the two rays intersect, then the intersection is a scene point projecting to ¢,
and to go. If the two rays are parallel, then it is convenient to introduce a scene point at
infinity, which projects to ¢; and to ¢s.

2.2 The joint image

Each pair ¢q1, g, of points in D, whether corresponding or not, defines a point ¢ = (g1, ¢2)
in D? ¢ IR*. The space D? obtained in this way is referred to as the measurement space.
It is closely related to the joint image space defined in [17]. The Euclidean metric in D?
is compatible with the Euclidean metric in D, in that

lglD2 = llasllp + llgall-

The subscripts for the various Euclidean metrics such as ||.||pz, ||.||p are omitted from
now on. If ¢; < ¢q, then ¢ is on a hypersurface H(c) in D?. Let the Cartesian coordinates
of ¢, g; be (c1,c2) and (g1, gi2) respectively. The equation of H(c) is given by

qu  qi2 1
flg,c)=det | g g2 1|=0. (1)
C1 Co 1

2.3 Conditional density for a measurement

The probability density function p(g|c) is defined for a measurement ¢ in D?, conditional
on the focus of expansion c. It is assumed that ¢ arises as a perturbation of an error free
measurement ¢ on H(c) and that the probability density function for the error ¢ — G is
Gaussian, of the form

(270”)? exp (—llg — dl*/(20%)) , (2)
where o > 0 is the standard deviation of the error in single component of ¢q. Let the error

free measurement, ¢, be distributed randomly on H(c¢) with a probability measure dy. Tt
follows from (2) that

plale) = (2n0”) [ exp (=g —all*/(20°)) dus@).

2.4 The Fisher-Rao metric

The focus of expansion ¢ takes values in a parameter space T which happens to coincide
with the image plane IR* which contains D. The Fisher-Rao metric [3,4], J(c), on T is
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defined by

Jij(c) = — /Dz (22, np(gle)) plale)dg, — i=1,2and j=1,2.

The image D has two metrics, namely the Euclidean metric for measuring distances
between image points, and the Fisher-Rao metric, inherited from 7" D> D, for measuring
distances between possible choices for the focus of expansion.

2.5 Approximation to the Fisher-Rao metric

Under the assumption that ¢ is close to H(c), let w(q, ¢) be the signed distance from ¢ to
H(c). If o is small, then ¢ is close to H(c) with a high probability, and the Fisher-Rao
metric, J(¢), is approximated by the Riemannian Metric, M (c), defined by

1 - ) )
My(e) = 5o [, (@wlan)?) @, i=12andj=12 (3

See [12] for further information. The approximation of M(c) to J(c) increases in accuracy
as o tends to zero.

Let ¢ be a point near to H(u) and let ¢ + a be the point on H(u) nearest to g. On
taking the Taylor expansion of f(q + a,u) it follows that

0= flg+a,u) = flg,u) +a.0,f(qu) + Os(a),
where Os(a) is a term of order two in a. If J,f(q,u) # 0 and if ||a|| is sufficiently small,

then
f(q7 u)aqf(q, U)

= — . 4
7wl “
It follows from (4) that to leading order,
2 2 flq,u)?
w(q,uw)” = ||la||” = ————5, 5)
=1l =, (g, P ®)

It follows from (3) and (5) that

(e) = i (acif(Q7u))(acjf<QaU))
M) /H@( 10,f (a, w)|I?

o2

) du(q), i=1,2andj=1,2. (6)
q=q,u=c

The measure du is chosen proportional to the canonical measure [7] associated with the
Riemannian metric induced on H(c) by the Euclidean metric on the space D? containing

H(c).

2.6 The hypersurface H(c)

In order to evaluate the right-hand side of (6) it is necessary to describe the hypersurface
H(c) in more detail. Let o be the origin in D and let the polar coordinates of ¢ be (r,8).
Let ¢ = (q1, g2) be a point on H(c), and let ¢ be the angle between the lines (o, ¢) and the



Figure 1: Position of the focus of expansion c.

perpendicular to the line (¢, go) through o. The positions of the various points are shown
in Fig. 1 for the case in which c is outside D.

Let u; be the signed distance from ¢ to ¢;, © = 1,2, measured from ¢ along the line
(¢, qo). Tt is assumed that uq, us have the same sign, or equivalently that ¢ is not between
q1 and ¢o. If ¢ is outside the image, then ¢ cannot be between ¢; and ¢y for any choice
of ¢4 < ¢ on H(c). On the other hand, if ¢ is inside the image, then certain choices
of ¢ < ¢o are excluded. The excluded image correspondences are physically impossible,
given that the movements of the points in the image are due to a pure translational motion
of the camera. The sign of the u; is chosen such that the foot of the perpendicular from
o0 to (¢, q2) corresponds to u; = rsin(¢).

If ¢ is outside the image, then the ranges of uy, us, ¢ are

rsin(¢) — (1 — r? cos® ()2 < u; < rsin(¢) + (1 —r’cos®(¢))V2, =12, (7)
—7/2 < ¢ < —cos(1/r) and cos H(1/r) < ¢ < /2. (8)
If ¢ is inside the image then the ranges of uy, us, ¢ are

0 < wp,up < rsin(@) + (1 — 12 cos?(¢)) 2,
rsin(¢) — (1 — r? cos?(¢))"/?
—m/2

Uy, U2 S 07
o< /2. (9)

<
<

The coordinates of the ¢; are
q; = 1 cos(¢)(cos(p+0), sin(p+0))+(u;—r sin(¢) ) (— sin(p+8), cos(p+6)), i =1,2. (10)

Let L be the Riemannian metric induced on H (c) by the Euclidean metric on the space
D?* which contains H(c), and let V (L, H(c)) be the volume of H(c) under the Riemannian
metric L. As noted at the end of Section 2.5, the measure du on H(c) is chosen to be
proportional to the canonical measure associated with L,

_ [ det(L)["2

du(q(p,ur,ug)) = quﬁdul dus. (11)

The matrix for L in the (¢, u1,us) coordinate system is obtained by solving

do
(do, duy, dus)L | duy | = ||q(é + dp, uy + duy, ug + dug) — q(¢, ur, us)||* + O3, (12)

dUQ



where O3 consists of terms of degree three or higher in d¢, duy, dus. It follows from (10),

(11) and (12) that
u%%—u% 0 0
L = 0 1 0], (13)
0 1

V(L H(c)) = /H (C)|det(L)|1/2dgbdu1du2,

= / ( )(u% + u2)V% dp duy dus. (14)
H(c

(a) (b)

Figure 2: (a) the volume V(L, H(c)) as a function of r = ||c[| for 0 < r < 1; (b) the
volume V' (L, H(c)) as a function of r for 1 <r < 10.

Let r, 6 be polar coordinates on T', with ¢ = (r,0). The volume, V (L, H(c)), is
independent of §. Graphs of V' (L, H(c)) as a function of r are shown in Fig. 2. It is clear
from Fig. 2 that V(L, H(c)) has a maximum at r = 1. The value of this maximum is

max V(L, H(c)) = %(%ﬂ sinh~1(1)). (15)

r>0

2.7 Approximating metric for the focus of expansion

It follows from (1),(6),(11) and (13) that the approximation to the Fisher-Rao metric on
the parameter space T is given in a Cartesian coordinate system by

M(e) = (6*V (L, H(c))) ' x

(ur — us)? cos?(¢ + 6) cos(¢ + 0) sin(¢p + )
/H(C) W (cos(qﬁ + 6) sin(¢ + 0) sin?(¢ + 0) ) do duy dusy.

Let H be the Jacobian matrix for the transformation from Cartesian coordinates (c1, ¢2)
to polar coordinates (r,#), where ¢; = rcos(f), co = rsin(f). The matrix H is defined by

= (Gl o) = (sl )
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The approximation K(c) to the Fisher-Rao metric is given in polar coordinates by

K(c)=H"M(c)H,

_ 1 (uy —ug)® [ cos®(¢)  rsin(29) o du
~ o2V(L, H(c)) /H(c) (ud + u3)'/? (rsin(?gf)) r? sin2(gb)) d¢ duy dus. (16)

The Riemannian metric K (c) is independent of #. Where convenient the notation K (r)
will be used in place of K(c).

On making the substitutions u; — —uq, us — —ug, ¢ — —a¢, in (16), it can be seen
that the diagonal entries K15(c) and Ky;(c) are zero for » < 1 and for r > 1.

3 Numerical investigation

The integrals defining K71 (r) and Kay(r) can be evaluated numerically for any given value
of r > 0. The numerical integration is simplified by carrying out one of the integrations
on the right hand side of (16) symbolically,

/Mdu = (Lu —2u>(u2+u2)1/2+1u21n (u +(u2—|—u2)1/2>
(W 43yt 2t T T g 2\ AR

The remaining two integrations are carried out numerically. In the special case r = 1, all
the integrals can be evaluated symbolically to give

_ 4—-3V2+sinh™'(1) (1 0).

K(l)_502(\/§+sinh_1(1)) 0 4

In sections 3.1 and 3.2, Taylor series approximations to K (r) are given, and the volume,
V(K,T), of T is estimated numerically.

3.1 Focus of expansion inside the image

The Taylor series approximation to K (r), accurate at small values of r, is

4 —3v2+sinh (1 — 1872 4
(r) = \/_—{—s'm _1( ) (16 18r% + 157 , 0 ) >+O(r5)' (17)
3202(v/2 +sinh™'(1)) 0 2r°(8 + 9r°)
The Taylor series (17), with the O(r®) error term omitted, is compared to the numerical

estimate of K (r) in Fig. 3.
Let T} be the subset of T for which the focus of expansion is inside D,

Ty = {c,c € R? and ||| < 1}.

The volume, V (K, T}), of T} is estimated,

VIK,T) = [ [ det(K ()" drdo,
T
0.3993...

2

(18)
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3.2 Focus of expansion outside the image

The Taylor series approximation to K (r), accurate at large values of r, is

4t 0
K(r) = 15,24 ( 0 7% —19r2/105 — 13/1573

) +0(r™). (19)

The Taylor series (19), with the O(r~°) error term omitted, is compared to the numerical
estimates of K (r) in Fig. 4.

0.14 0.3

Figure 3: (a) Numerical approximation to Ky1(r), r < 1 (lower graph) and Taylor series
expansion of K7;(r) in powers of r (upper graph); (b) numerical approximation to Kao(r),
r < 1 (lower graph) and Taylor series expansion of K (r) in powers of r (upper graph).
In all cases, 0 = 1.

0.02

0.01

Figure 4: (a) Numerical approximation to Ki1(r), r > 1 (upper graph) and Taylor series
expansion of Kj;(r) in powers of r~! (lower graph); (b) numerical approximation to
Kao(r), r > 1 (upper graph) and Taylor series expansion of Ky (r) in powers of 7! (lower
graph). In all cases, o = 1.

Let T be the subset of T" for which the focus of expansion is outside D,
Ty = {c,c € R* and ||c|| > 1}.
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The volume, V (K, T5), of T5 is estimated,

VIKT) = | | det (K (r))|"/? dr d,
2

0.6425. ..
= (20)
In order to evaluate the integral on the right hand side of (20), the range [1, 00) is divided
into two parts, [1,5] and [5,00). In [1,5) a numerical approximation to K (r) is used. In
[5,00) the Taylor series (19) for K (r) is used, with the O(r~®) error term omitted.
It follows from (20) and (18) that the total volume of T is

1.0418. ..
—

V(K,T)=V(K,T)+ V(K,Ty) = (21)

o
It can be shown using numerical integration that 99% of the volume of T is contained
within the disk centred at the origin and with Euclidean radius 1000c.

4 Algorithm for Detecting the Focus of Expansion

Many algorithms for detecting the focus of expansion ¢ have two stages. In the first stage,
pairs of corresponding points are obtained from two images, and in the second stage the
values of ¢ supported by the corresponding points are found. In the noise free case just
two pairs ¢(1) = (¢1(1),¢2(1)), ¢(2) = (¢1(2), g2(2)) of corresponding points are required,
because

¢ = (q1(1), 2(1)) N {q1(2), ¢2(2))-

The theoretical calculations in Sections 2 and 3 suggest the following strategy for
estimating ¢ from a given set S(N) of N measurements of pairs of corresponding image
points: sample 7" to obtain a finite set G of points such that every point in 7" is near to
at least one point of G,

. . / <
max min distg (¢, c) <1, (22)

where distx (¢, ) is the distance between ¢’ and ¢ under the Riemannian metric K on T
[7]. Then check each ¢ € G to see if S(NN) supports the choice of ¢ as a focus of expansion.
The value 1 on the right hand side of (22) is suggested in [11], Section 4. It ensures that
the average value of the log likelihood ratio, In(p(q|c)/p(q|c’)), is less than 271, Tt is not
assumed that all the elements of S(NN) support the same or even any focus of expansion.
The size |G| of G is given approximately by

|G| =~ 7 V(T K), (23)

because the set of points ¢’ in T such that distx (¢, ¢) < 1 has volume under K approxi-
mately equal to 7.

The support of S(N) for a focus of expansion ¢ is measured in the following way. Let
M be a positive integer with M < N, let 7 be a threshold and let py be a background
density on D?. Then S(NNV) supports c if it contains a subset S(M) of size M such that

i (pale)/po(a)) > 7. (24)



The reason for choosing (24) is that it is not assumed a priori that all the measurements
in S(M) are sampled from p(q|c). If (24) holds, then all the elements of S(M) are near
to H(c), and it is plausible to assume that they are all sampled from H(c).

In order to implement the above algorithm it is necessary to choose M and 7. The
values of these two parameters depend on the performance required from the algorithm,
or more specifically, the probability, ey, of a false detection and the probability, e,, of a
false rejection. It this shown in Section 5 how to calculate M, 7 from given values of ey,
e

5 False Detection and False Rejection

A false detection of a focus of expansion ¢ occurs when S(N) supports the choice ¢, even
though there is no casual link between S(N) and c. In such cases, the support for ¢ is a
random effect, without any real significance. A false rejection occurs if there is a casual
link between S(V) and ¢, but the errors in the measurements are large enough to obscure
the link, to the extent that S(IN) does not support the choice of ¢ as a focus of expansion.

An upper bound on the probability, ey, of a false detection is obtained in Section 5.1
and an expression for the probability, e,, of a false rejection is obtained in Section 5.2.
The upper bound for ef is obtained under the assumption that the background density,
Po, is the uniform density on D?.

The experimental evidence reported in Section 7 shows that the upper bound on ey
obtained in this section is too low. In practice the probability of a false detection is
larger than the proposed upper bound because the outlying image correspondences are
not uniformly distributed in D?. They often have regularities or patterns, which are
not related to any image motions but which nevertheless suggest the presence of a focus
of expansion. For example, if the first image contains a small textured region which
“attracts” correspondences with points in a larger region of the second image then this
will increase the probability of detecting a focus of expansion in the small textured region.

5.1 False detection

Let A(c) C D* be the set on which (24) holds. The probability that S(M) is in A(c),
given that the elements of S(M) = {q(1),...,q(M)} are sampled independently from D?
using the background density pq is

([;@)pOQS(AJ))dq(l),...,dq(AJ). (25)

The upper bound for the probability of obtaining a false detection from S(V) is obtained
by maximising (25) over ¢ € G and then summing over all choices of ¢ and S(M),

\Q(ﬁ)mw{A@m@@@MﬁU”w@Mﬂ} (26)

ceG
The logarithm of the density p(g|c) is approximated by

w(g, c)?
202

In(p(qlc)) = —In(o) + O(c"), (27)
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as described in [12]. The O(¢?) term in (27) is discarded. It follows from (24) and (27)
that S(M) supports c if and only if

qglsz(xﬁ)w(q, c)? < 20*(—In(o) — In(7)). (28)

It is assumed that the right hand side of (28) is positive. Let p be defined by
p=V20(~In(o) —In(7))"2, (29)

and let C'(M, 2p) be the hypercube in IR*, centred at the origin and with side length 2p.
It follows from (28) and (29) that S(M) supports c if and only if

(w(g(1),¢), ..., w(qg(M),c)) € C(M,2p).

Let E be the Euclidean metric on IRY and let V(E, C(M, 2p)) be the volume of C(M,2p)
under F. It is assumed that the threshold 7 has a comparatively high value, and that as
a result S(M) supports ¢ only if all the points ¢(7) in S(M) are close to the hypersurface
H(c), or equivalently only if p is small. Each point ¢(7) is associated with a unique point
G(i) on H(c) such that ||q(i) — ¢(2)|| = |w(q(i), c)|. Under these assumptions,

J, Po(SOD)A(1) - dg(b) = 7 [ dg(1).. da(M).
~ o MVE COL%)) [ dn(@() - du(a()

~ 7 MV(E,C(M,2p)V(L, H(c))™. (30)

It follows from (26), (29) and (30) that the following expression is an upper bound for ey,

r2M ( ﬁ) V(K, T)V(E, C(M,2p)) (mEaGX V(L, H(c))M> . (31)

On applying (15), (31) yields the upper bound

VK, T) (AA;) (%(\/5 4 sinh‘l(l))>M . (32)

5.2 False Rejection

A false rejection occurs when a set of image correspondences is sampled from the density
p(glc) but the sample is unusual, to the extent that it does not support ¢ as a focus of
expansion. The probability, e,, that c is falsely rejected, given that the set S(N) of image
correspondences contains a subset S(M) = {¢(1),...,q(M)} sampled from p(q|c) is

e =1- /A o 1P(a)1e) da(1) .. da(31). (33)

The worst case is assumed, in which all the image correspondences in S(N) \ S(M) are
sampled from the uniform background density pg(q). This leaves open the possibility of
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a false detection of ¢ based on S(N) \ S(M), but the probability of this latter event is
omitted.

Each ¢(i) in S(M) is obtained by applying a random perturbation to a point (i) in
H(c). The perturbation is along the normal to H(c) at ¢(i) and the signed magnitude
w(q(7),c) of the perturbation has a Gaussian distribution with expected value 0 and
standard deviation o. The points (i) are distributed independently on H (¢) in accordance
with the probability measure du defined in (11). Let ® be the cumulative distribution
function for the Gaussian distribution with expected value 0 and standard deviation 1. It
follows from (33) that

& = H( 202 1/211/(L H(c)) / H(e) d“@(m/—pp“p <_%)20)2> dw(q(i)’c)>’

=1

— 1 (20(p/o) — DV, (34)

5.3 Relation between false detection and false rejection

In applications, o, ey, e, are often specified, the measurements S(/NV) are obtained from
two images and it is necessary to choose M such that the probabilities of false detection
and false rejection are no higher that ey, e, respectively. At the same time M should be
as small as possible, to maximize the probability of finding a sufficient number of inliers.

0.28
0.26
0.24

0.22

0.18

0.16

Figure 5: Upper curve: N — M(N)/N, 20 < N < 500, with 0 = 1072, ¢ = e, = 107
lower curve: N +— M(N)/N, 20 < N <500, with 0 = 1072 and e; = e, = 10 L

As an example, let ¢ = 1072 and e; = e, = 1072 The value of M as a function of
N is obtained by first solving (34) for p and then finding the value of M for which (32)
is equal to e;. The graph of N +— M(N)/N for 20 < N < 500 is shown as the upper
curve in Figure 5. The lower curve is the graph of N — M(N)/N, 20 < N < 500 for
ey = e, = 1071, The value of o is unchanged.

An inspection of the curves in Fig. 5 suggests that for large M(N), N, the ratio
M(N)/N might tend to a limit as N — oo. In fact M(N)/N does not tend to a limit
as N — oo; instead M(N)/N continues to decrease, but at an ever slower rate. To

investigate further, it is assumed that e, is small and that M is relatively large. It follows
from (34) that

p=00 (2711 + (1 —e)/M)). (35)
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On setting e equal to (32), taking the Mth root of both sides of the resulting equation,
setting quantities of order O(1)Y™ equal to 1 and setting (o%e;)/M equal to 1, it follows
that

972 M
Let £ = M(N)/N. A short calculation based on Stirling’s formula [1] shows that if M, N
and N — M are large, then

1= ﬁ(\/5 +sinh™'(1))o ( N )I/M ot (2*1(1 + (1 - eT)l/M)> : (36)

(QDUM%s*u—akﬁ?

It can be shown that

0 1.1 1My _ —1
D g2 (14 (1= )M = OO,

thus, when M is large, ®1(271(1 + (1 — e,)"/M)) increases slowly with M. It can be
estimated by replacing M by an upper bound such as ¢~2, which is an upper bound on
the number of distinguishable points in D. It follows from (36) and these observations
that ¢ can be estimated by solving

64
972

Some numerical values of £ are given in Table 1.

1 (VZ+sinh '(1)og (1 - o7 (271 1+ (1—e,)7)) . (37)

o e, = es | predicted from (37) | M(N)/N
0.01 |0.1 0.18 0.15
0.01 |0.01 0.20 0.18
0.001 | 0.1 0.024 0.029
0.001 | 0.01 0.025 0.035

Table 1. Third column: predicted values of £ = M(N)/N obtained from (37). Fourth
column: values of M (N)/N obtained from (32) and (33).

6 Method for Sampling the Parameter Space

An efficient method for sampling T is required. The parameter space T consist of the
whole plane, IR?, however the volume of 7 under the Riemannian metric K is finite. It
is thus possible to find a bounded region of IR* which contains a large proportion of the
total volume of T'. As noted in Section 3.2, 99% of the volume of T under K is contained
in the disk centred at the origin and with Euclidean radius 1000c. The set G of sample
points is chosen from this disk.

The points of G are chosen on circles centred at the origin and with Euclidean radii
71,79, ..., m. These radii are chosen such that r; = 0, distx((r;,0), (1:41,0)) = 1, rpy <
10000 and 7,41 > 10000. Let C; be the circumference of the circle with Euclidean radius
r;, 1 < i < m. The value of C; is

Ci = /ozﬂ(Km(ﬁ))m do = 27 (Kaa(rs))" /. (38)
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It follows from (19) and (38) that if r; is large, then C; approaches 47 /(v/150).

Each circle is sampled by spacing points uniformly around it such that the arc length
between two adjacent points, as measured using K, is at most v/3. This choice of points
is based on the following observation: let a, b be two points in the plane such that
la — b|| = v/3. The circles of unit radius centered at a, b respectively, intersect in two
points, each one of which is at a distance of 1/2 from the line (a,b). If the ith circle is
sufficiently large then the set of points within a distance 1/2 of a sample point on the
circle, as measured in the K metric, contains an annulus of width approximately 1, with
ith circle running along the middle. The points of G are shown in Fig. 6 for o = 1072

Figure 6: (a) points of G in the image D; (b) points of G outside D.

7 Experiment

The feasibility of the algorithm for detecting the focus of expansion was investigated using

the two images in Fig. 6, taken from the “Map” data set available at
http://www.middlebury.edu/stereo.

For further information about these images see [15,16].

The two images have the same size. Feature points were detected using the Sobel
edge operator [8]. Let N be a large integer, for example, N; = 200. In each image the
locations of the top N; Sobel gradient magnitudes were recorded. Let ai(1),...an, (1)
and a;(2),...an,(2) be the two lists of points. The simplified notation a; is used for a;(1)
or a;(2) where appropriate. Each point a; is the centre of a 7 x 7 block w; of grey levels.
The points a;(1) and a;(2) are matched if

lwi(1) —w; ()] = | min - Jlws(1) —we(2)].
The matching points a;(1), a;(2) are removed from the two lists and the process is repeated
until the two lists are empty. Let ¢ be the centre of either image and let the shortest side
of an image have length 2[. Define translated and scaled image points ¢; by ¢; = (a; —¢)/I.
All pairs ¢;(1) < ¢;(2) such that ||g;(1)|| > 1 or [|g;(2)|| > 1 are discarded, leaving N
image correspondences.
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Figure 8: Image correspondences superposed on Fig. 7(a).

In the experiment, Ny = 200 and N = 95. The image correspondences are shown in
Fig. 7. Each correspondence a;(1) <+ a;(2) defines the end points of one of the white line
segments, which are superposed on the image in Fig. 7(a).

The value of o was chosen to be 0 = 1072 to ensure that the image dimensions are of
order 207!, The set G was of size |G| = 5201. In comparison, the estimate (23) of the
size of G is 3316. The lower bound M () on the number of inliers required for successful
detection of a focus of expansion was estimated from (32) and (34), but with the term
7 'W(K,T) in (32) replaced by |G|. The result was M (N) = 25.37.

The element ¢, of G with the most inliers had polar coordinates (r, ) = (5.01,0.15rad).
This focus is close to the horizontal axis and far from the origin, as expected given the
displacement shown in Fig. 7. It had 43 inliers. There were in total 606 elements of G
with 26 or more inliers. Of these, 153 were contained in D. The maximum number of
inliers for those elements of G' contained in D was 30.

8 Conclusion

An accurate approximation to the Fisher-Rao metric for the focus of expansion has been
obtained for the first time. The value of the approximating metric can be calculated
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numerically for any given position of the focus of expansion, and the metric can be ap-
proximated by Taylor series in the polar coordinate r when the focus of expansion is near
to the origin or when it is far from the origin. The parameter space T for the focus of
expansion is sampled at a finite set G of points, chosen such that each point of T is near
to at least one point of GG. The set G is the basis of an algorithm for estimating the focus
of expansion, given a set of correspondences between two images taken by a translating
camera.

Formulae were given for the probability of false detection of a focus of expansion and
the probability of false rejection of a focus of expansion, under the assumption that image
correspondences not associated with a focus of expansion, i.e. outliers, are distributed
uniformly. Experimental results suggested that the algorithm successfully locates the
focus of expansion even when the set of image correspondences contains a large number
of outliers.

The analysis of the probability of false detection and the probability of false rejection
can be improved in at least three ways. Firstly, it is necessary to estimate the change in
the probability false detection on taking into account the fact that outlying points might
support the detection of the true focus of expansion. Secondly, many algorithms for finding
corresponding points in two images do not search the whole space D?. Once a point ¢
is located in the first image, the search for a matching point is confined to a relatively
small region of the second image. This constraint on the search space affects both the
probability of a false detection and the probability of finding a correct correspondence
q1 <> q2. Thirdly, it might be possible to improve the bound on the probability of a false
detection by making more realistic assumptions about the distribution of outliers.
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