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an data instance A is a finite set of ground atoms S(~a)

a conjunctive query (CQ) q(~x) is ∃~y ϕ(~x, ~y),
where ϕ is a conjunction of atoms S(~z) all of whose variables are among ~x, ~y

CT ,A is the canonical model (chase) of (T ,A) and Cτ(a)
T = CT ,{τ(a)}
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no additional constants, no assumptions on data
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Hypergraphs for OMQs
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OMQ Answering and Hypergraphs
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a map from variables of q to ind(A)

+++
an independent subset ofH(Q) such that
1. each hyperedge is ‘generated’ by the data

2. each vertex outside hyperedges is ‘present’ in the data
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a map from variables of q to ind(A)

+++
an independent subset ofH(Q) such that
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From OMQs to Hypergraph Programs (HGPs)

a HGP P is a hypergraph H whose vertices are labelled by
0, 1, or a literal over p1, . . . , pn

P returns 1 on an assignment α : {p1, . . . , pn} → {0, 1}
if there is an independent subset in H that covers all zeroes under α
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OMQ Q = (T , q) monotone HGP of size computes

T of depth 1 HGP of degree 2 O(|q|) fO
Q

tree-shaped q with ` leaves linear THGP |q|O(`2) fO
Q

q of treewidth t and T of depth d THGP |q|O(1) · |2O(dt) fH
Q

q of treewidth t and T of depth 1 THGP of degree 2O(t) |q|O(1) · 2O(t) fO
Q

tree-shaped q and T of depth 1 THGP of degree 2 |q|O(1) fO
Q

fO
Q = fH(Q) and fH

Q is its modification for exponentialH(Q)
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Complexity of Boolean Functions v Size of Rewritings

Theorem If either fO
Q or fH

Q is in

• NC1, then Q has a polynomial FO-rewriting Boolean formulas

• mP/poly, then Q has a polynomial NDL-rewriting
monotone Boolean circuits

• mNC1, then Q has a polynomial PE-rewriting Boolean formulas
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— evaluating Q on a single-object ABoxes
Theorem If Q has a polynomial

• FO-rewriting, then fM
Q ∈ NC1

• NDL-rewriting, then fM
Q ∈ mP/poly

• PE-rewriting, then fM
Q ∈ mNC1

Hint: on a single-object ABox, quantifiers are ‘meaningless’
and the rewriting boils down to a propositional f-la, etc.
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Representation Results for Hypergraphs

Theorem (i) Any hypergraph H is isomorphic to
a subgraph ofH(QH) for a polynomial-size QH with an ontology of depth 2

(ii) And any HGP based on H computes a subfunction of fM
QH
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Theorem (i) Any hypergraph H is isomorphic to
a subgraph ofH(QH) for a polynomial-size QH with an ontology of depth 2

(ii) And any HGP based on H computes a subfunction of fM
QH

Theorem (i) Any hypergraph H of degree 2 is isomorphic to
H(SH) for a polynomial-size SH with an ontology of depth 1

(ii) . . .

Theorem Any tree hypergraph H with ` leaves is isomorphic to
a subgraph ofH(TH) for a polynomial-size TH with an of ontology of depth 2

and a tree-shaped CQ with ` leaves

(ii) . . .
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Conclusions

• HGPs provide a natural link between complexity classes
and hypergraph functions

• polynomial PE-rewritings exists only in for very restricted cases
of ontologies of depth 0 & 1 (except unbounded treewidth)

• polynomial NDL-rewritings exists for most cases where
query answering is tractable

optimal NDL-rewritings in Stas’s talk

• existence of polynomial PE-, NDL- and FO-rewritings is closely related to
circuit complexity
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