
Rewriting OWL 2 QL
Ontology-Mediated Queries:

Succinctness

Roman Kontchakov

Department of Computer Science and Inf. Systems, Birkbeck College, London

http://www.dcs.bbk.ac.uk/~roman

http://www.dcs.bbk.ac.uk/~roman

OWL 2 QL Ontology-Mediated Queries

an OMQ = an ontology + a CQ

Montpellier, 17.07.2017 1

OWL 2 QL Ontology-Mediated Queries

an OMQ = an ontology + a CQ

an OWL 2 QL ontology is a finite set of axioms of the form

∀x
(
τ (x)→ τ ′(x)

)
∀x
(
τ (x) ∧ τ ′(x)→ ⊥

)
∀x, y

(
%(x, y)→ %′(x, y)

)
∀x, y

(
%(x, y) ∧ %′(x, y)→ ⊥

)
∀x %(x, x) ∀x

(
%(x, x)→ ⊥

)
classes or concepts τ (x) ::= > | A(x) | ∃y %(x, y)

properties or roles %(x, y) ::= > | P (x, y) | P (y, x)

Montpellier, 17.07.2017 1

OWL 2 QL Ontology-Mediated Queries

an OMQ = an ontology + a CQ

an OWL 2 QL ontology is a finite set of axioms of the form

∀x
(
τ (x)→ τ ′(x)

)
∀x
(
τ (x) ∧ τ ′(x)→ ⊥

)
∀x, y

(
%(x, y)→ %′(x, y)

)
∀x, y

(
%(x, y) ∧ %′(x, y)→ ⊥

)
∀x %(x, x) ∀x

(
%(x, x)→ ⊥

)
classes or concepts τ (x) ::= > | A(x) | ∃y %(x, y)

properties or roles %(x, y) ::= > | P (x, y) | P (y, x)

an data instance A is a finite set of ground atoms S(~a)

a conjunctive query (CQ) q(~x) is ∃~y ϕ(~x, ~y),
where ϕ is a conjunction of atoms S(~z) all of whose variables are among ~x, ~y

Montpellier, 17.07.2017 1

OWL 2 QL Ontology-Mediated Queries

an OMQ = an ontology + a CQ

an OWL 2 QL ontology is a finite set of axioms of the form

∀x
(
τ (x)→ τ ′(x)

)
∀x
(
τ (x) ∧ τ ′(x)→ ⊥

)
∀x, y

(
%(x, y)→ %′(x, y)

)
∀x, y

(
%(x, y) ∧ %′(x, y)→ ⊥

)
∀x %(x, x) ∀x

(
%(x, x)→ ⊥

)
classes or concepts τ (x) ::= > | A(x) | ∃y %(x, y)

properties or roles %(x, y) ::= > | P (x, y) | P (y, x)

an data instance A is a finite set of ground atoms S(~a)

a conjunctive query (CQ) q(~x) is ∃~y ϕ(~x, ~y),
where ϕ is a conjunction of atoms S(~z) all of whose variables are among ~x, ~y

CT ,A is the canonical model (chase) of (T ,A) and Cτ(a)
T = CT ,{τ(a)}

Montpellier, 17.07.2017 1

Target Languages for Rewritings

UCQ = unions of SPJ queries

as produced, e.g., by PerfectRef size |q||T | · 2O(|q|2)

Montpellier, 17.07.2017 2

Target Languages for Rewritings

UCQ = unions of SPJ queries

as produced, e.g., by PerfectRef size |q||T | · 2O(|q|2)

PE (positive existential formulas) = SPJU queries

Montpellier, 17.07.2017 2

Target Languages for Rewritings

UCQ = unions of SPJ queries

as produced, e.g., by PerfectRef size |q||T | · 2O(|q|2)

PE (positive existential formulas) = SPJU queries

Π2-PE have matrix of the form ∧∨ = semiconjunctive queries (SCQs)

for ontologies without ∃y on RHS, the size is |q| · |T |

Montpellier, 17.07.2017 2

Target Languages for Rewritings

UCQ = unions of SPJ queries

as produced, e.g., by PerfectRef size |q||T | · 2O(|q|2)

PE (positive existential formulas) = SPJU queries

Π2-PE have matrix of the form ∧∨ = semiconjunctive queries (SCQs)

for ontologies without ∃y on RHS, the size is |q| · |T |

Σ3-PE have matrix of the form ∨∧∨ = unions of SCQs

e.g., tree-witness rewriting size O(2|ΘQ| · |Q|2) with |ΘQ| ≤ 3|q|︸ ︷︷ ︸
number of tree witnesses

Montpellier, 17.07.2017 2

Target Languages for Rewritings

UCQ = unions of SPJ queries

as produced, e.g., by PerfectRef size |q||T | · 2O(|q|2)

PE (positive existential formulas) = SPJU queries

Π2-PE have matrix of the form ∧∨ = semiconjunctive queries (SCQs)

for ontologies without ∃y on RHS, the size is |q| · |T |

Σ3-PE have matrix of the form ∨∧∨ = unions of SCQs

e.g., tree-witness rewriting size O(2|ΘQ| · |Q|2) with |ΘQ| ≤ 3|q|︸ ︷︷ ︸
number of tree witnesses

Π4-PE have matrix of the form ∧∨∧∨

e.g., modified tree-witness rewriting without conflicts has size O(|ΘQ| · |Q|2)

Montpellier, 17.07.2017 2

Target Languages for Rewritings

UCQ = unions of SPJ queries

as produced, e.g., by PerfectRef size |q||T | · 2O(|q|2)

PE (positive existential formulas) = SPJU queries

Π2-PE have matrix of the form ∧∨ = semiconjunctive queries (SCQs)

for ontologies without ∃y on RHS, the size is |q| · |T |

Σ3-PE have matrix of the form ∨∧∨ = unions of SCQs

e.g., tree-witness rewriting size O(2|ΘQ| · |Q|2) with |ΘQ| ≤ 3|q|︸ ︷︷ ︸
number of tree witnesses

Π4-PE have matrix of the form ∧∨∧∨

e.g., modified tree-witness rewriting without conflicts has size O(|ΘQ| · |Q|2)

NDL (non-recursive datalog) = PE + shared subformulas = SPJU + views
e.g., Presto produced rewritings of size |T |O(1) · 2|q|

Montpellier, 17.07.2017 2

Target Languages for Rewritings

UCQ = unions of SPJ queries

as produced, e.g., by PerfectRef size |q||T | · 2O(|q|2)

PE (positive existential formulas) = SPJU queries

Π2-PE have matrix of the form ∧∨ = semiconjunctive queries (SCQs)

for ontologies without ∃y on RHS, the size is |q| · |T |

Σ3-PE have matrix of the form ∨∧∨ = unions of SCQs

e.g., tree-witness rewriting size O(2|ΘQ| · |Q|2) with |ΘQ| ≤ 3|q|︸ ︷︷ ︸
number of tree witnesses

Π4-PE have matrix of the form ∧∨∧∨

e.g., modified tree-witness rewriting without conflicts has size O(|ΘQ| · |Q|2)

NDL (non-recursive datalog) = PE + shared subformulas = SPJU + views
e.g., Presto produced rewritings of size |T |O(1) · 2|q|

FO (first-order formulas) = PE + negation ≈ RA

Montpellier, 17.07.2017 2

Target Languages for Rewritings

UCQ = unions of SPJ queries

as produced, e.g., by PerfectRef size |q||T | · 2O(|q|2)

PE (positive existential formulas) = SPJU queries

Π2-PE have matrix of the form ∧∨ = semiconjunctive queries (SCQs)

for ontologies without ∃y on RHS, the size is |q| · |T |

Σ3-PE have matrix of the form ∨∧∨ = unions of SCQs

e.g., tree-witness rewriting size O(2|ΘQ| · |Q|2) with |ΘQ| ≤ 3|q|︸ ︷︷ ︸
number of tree witnesses

Π4-PE have matrix of the form ∧∨∧∨

e.g., modified tree-witness rewriting without conflicts has size O(|ΘQ| · |Q|2)

NDL (non-recursive datalog) = PE + shared subformulas = SPJU + views
e.g., Presto produced rewritings of size |T |O(1) · 2|q|

FO (first-order formulas) = PE + negation ≈ RA

no additional constants, no assumptions on data
Montpellier, 17.07.2017 2

Succinctness Landscape

0

1

2

. . .

d

∞

2 . . . ` ∞ 2 . . . t ∞
number of leaves

treewidthtrees (treewidth 1)

o
n

to
lo

g
y

d
e

p
th

poly NDL
no poly PE

poly FO
iff

NL/poly ⊆ NC1

poly NDL
no poly PE

poly FO iff
LogCFL/poly⊆NC1

no poly NDL & PE

poly
FO
iff

NP/poly⊆

NC1

poly Π2-PE

poly Π4-PE poly PE

poly NDL
no poly PE

poly FO
iff

NL/poly ⊆NC1

ontology depth

0 = no axioms with ∃y on the right-hand side

d ≈ trees Cτ(a)
T of labelled nulls are of depth at most d

Montpellier, 17.07.2017 3

Hypergraphs for OMQs

A1(x)→ ∃y
(
R(x, y) ∧Q(y, x)

)
A1(x)→ ∃y Pζ(x, y) Pζ(x, y)→ R(x, y) Pζ(x, y)→ Q(y, x)
A2(x)→ ∃y S1(x, y) S1(x, y)→ S2(x, y)
A3(x)→ ∃y Q(x, y) ∃y Q(y, x)→ ∃y S1(x, y)

Montpellier, 17.07.2017 4

Hypergraphs for OMQs

A1(x)→ ∃y
(
R(x, y) ∧Q(y, x)

)
A1(x)→ ∃y Pζ(x, y) Pζ(x, y)→ R(x, y) Pζ(x, y)→ Q(y, x)
A2(x)→ ∃y S1(x, y) S1(x, y)→ S2(x, y)
A3(x)→ ∃y Q(x, y) ∃y Q(y, x)→ ∃y S1(x, y)

x1

y1

y2

y3

y4

x2

R Q
Q

S
2S1

A1
a

aPζ1

R,Q−Pζ

CA1(a)
T

A2

a

aS1

S1, S2

CA2(a)
T

A3

a

aQ

aQS1

Q

S1, S2

CA3(a)
T

t1 t3

t2

Montpellier, 17.07.2017 4

Hypergraphs for OMQs

A1(x)→ ∃y
(
R(x, y) ∧Q(y, x)

)
A1(x)→ ∃y Pζ(x, y) Pζ(x, y)→ R(x, y) Pζ(x, y)→ Q(y, x)
A2(x)→ ∃y S1(x, y) S1(x, y)→ S2(x, y)
A3(x)→ ∃y Q(x, y) ∃y Q(y, x)→ ∃y S1(x, y)

x1

y1

y2

y3

y4

x2

R Q
Q

S
2S1

A1
a

aPζ1

R,Q−Pζ

CA1(a)
T

A2

a

aS1

S1, S2

CA2(a)
T

A3

a

aQ

aQS1

Q

S1, S2

CA3(a)
T

t1 t3

t2

hypergraphH(Q)
query atoms = vertices
sets of query atoms that can be mapped to trees = hyperedges

R(x1, y1)

v1

Q(y1, y2)

v2 S1(y2, y3)

v3

S2(y4, y3)

v4

Q(x2, y4)

v5e1

e3

e2

Montpellier, 17.07.2017 4

OMQ Answering and Hypergraphs

x1

y1

y2

y3

y4

x2

R Q
Q

S
2S1

A1
a

aPζ1

R,Q−Pζ

CA1(a)
T

A2

a

aS1

S1, S2

CA2(a)
T

A3

a

aQ

aQS1

Q

S1, S2

CA3(a)
T

t1 t3

t2

a homomorphism q → CT ,A =
a map from variables of q to ind(A)

+++
an independent subset ofH(Q) such that
1. each hyperedge is ‘generated’ by the data

2. each vertex outside hyperedges is ‘present’ in the data

Montpellier, 17.07.2017 5

OMQ Answering and Hypergraphs

x1

y1

y2

y3

y4

x2

R Q
Q

S
2S1

A1
a

aPζ1

R,Q−Pζ

CA1(a)
T

A2

a

aS1

S1, S2

CA2(a)
T

A3

a

aQ

aQS1

Q

S1, S2

CA3(a)
T

t1 t3

t2

a homomorphism q → CT ,A =
a map from variables of q to ind(A)

+++
an independent subset ofH(Q) such that
1. each hyperedge is ‘generated’ by the data

2. each vertex outside hyperedges is ‘present’ in the data

hypergraph function fH =
∨

E′ independent

(∧
v∈V \VE′

pv ∧
∧
e∈E′

pe

)

Montpellier, 17.07.2017 5

From OMQs to Hypergraph Programs (HGPs)

a HGP P is a hypergraph H whose vertices are labelled by
0, 1, or a literal over p1, . . . , pn

P returns 1 on an assignment α : {p1, . . . , pn} → {0, 1}
if there is an independent subset in H that covers all zeroes under α

Montpellier, 17.07.2017 6

From OMQs to Hypergraph Programs (HGPs)

a HGP P is a hypergraph H whose vertices are labelled by
0, 1, or a literal over p1, . . . , pn

P returns 1 on an assignment α : {p1, . . . , pn} → {0, 1}
if there is an independent subset in H that covers all zeroes under α

a HGP is monotone if none of the labels is negative

Montpellier, 17.07.2017 6

From OMQs to Hypergraph Programs (HGPs)

a HGP P is a hypergraph H whose vertices are labelled by
0, 1, or a literal over p1, . . . , pn

P returns 1 on an assignment α : {p1, . . . , pn} → {0, 1}
if there is an independent subset in H that covers all zeroes under α

a HGP is monotone if none of the labels is negative

degree of a hypergraph = the maximum number of hyperedges that contain a vertex

Montpellier, 17.07.2017 6

From OMQs to Hypergraph Programs (HGPs)

a HGP P is a hypergraph H whose vertices are labelled by
0, 1, or a literal over p1, . . . , pn

P returns 1 on an assignment α : {p1, . . . , pn} → {0, 1}
if there is an independent subset in H that covers all zeroes under α

a HGP is monotone if none of the labels is negative

degree of a hypergraph = the maximum number of hyperedges that contain a vertex

Proposition For every hypergraph H of degree d, there is monotone HGP that
computes fH and is of degree ≤ max(2, d) and size O(|H|)

Montpellier, 17.07.2017 6

From OMQs to Hypergraph Programs (HGPs)

a HGP P is a hypergraph H whose vertices are labelled by
0, 1, or a literal over p1, . . . , pn

P returns 1 on an assignment α : {p1, . . . , pn} → {0, 1}
if there is an independent subset in H that covers all zeroes under α

a HGP is monotone if none of the labels is negative

degree of a hypergraph = the maximum number of hyperedges that contain a vertex

Proposition For every hypergraph H of degree d, there is monotone HGP that
computes fH and is of degree ≤ max(2, d) and size O(|H|)

OMQ Q = (T , q) monotone HGP of size computes

T of depth 1 HGP of degree 2 O(|q|) fO
Q

tree-shaped q with ` leaves linear THGP |q|O(`2) fO
Q

q of treewidth t and T of depth d THGP |q|O(1) · |2O(dt) fH
Q

q of treewidth t and T of depth 1 THGP of degree 2O(t) |q|O(1) · 2O(t) fO
Q

tree-shaped q and T of depth 1 THGP of degree 2 |q|O(1) fO
Q

fO
Q = fH(Q) and fH

Q is its modification for exponentialH(Q)

Montpellier, 17.07.2017 6

Complexity of Boolean Functions v Size of Rewritings

Theorem If either fO
Q or fH

Q is in

• NC1, then Q has a polynomial FO-rewriting Boolean formulas

• mP/poly, then Q has a polynomial NDL-rewriting
monotone Boolean circuits

• mNC1, then Q has a polynomial PE-rewriting Boolean formulas

Montpellier, 17.07.2017 7

Complexity of Boolean Functions v Size of Rewritings

Theorem If either fO
Q or fH

Q is in

• NC1, then Q has a polynomial FO-rewriting Boolean formulas

• mP/poly, then Q has a polynomial NDL-rewriting
monotone Boolean circuits

• mNC1, then Q has a polynomial PE-rewriting Boolean formulas

Hint: replace each pv by the respective atom
and each pe by a formula for ‘generating’ the tree-witness

Montpellier, 17.07.2017 7

Complexity of Boolean Functions v Size of Rewritings

Theorem If either fO
Q or fH

Q is in

• NC1, then Q has a polynomial FO-rewriting Boolean formulas

• mP/poly, then Q has a polynomial NDL-rewriting
monotone Boolean circuits

• mNC1, then Q has a polynomial PE-rewriting Boolean formulas

Hint: replace each pv by the respective atom
and each pe by a formula for ‘generating’ the tree-witness

fM
Q is the primitive evaluation function of Q

— evaluating Q on a single-object ABoxes
Theorem If Q has a polynomial

• FO-rewriting, then fM
Q ∈ NC1

• NDL-rewriting, then fM
Q ∈ mP/poly

• PE-rewriting, then fM
Q ∈ mNC1

Montpellier, 17.07.2017 7

Complexity of Boolean Functions v Size of Rewritings

Theorem If either fO
Q or fH

Q is in

• NC1, then Q has a polynomial FO-rewriting Boolean formulas

• mP/poly, then Q has a polynomial NDL-rewriting
monotone Boolean circuits

• mNC1, then Q has a polynomial PE-rewriting Boolean formulas

Hint: replace each pv by the respective atom
and each pe by a formula for ‘generating’ the tree-witness

fM
Q is the primitive evaluation function of Q

— evaluating Q on a single-object ABoxes
Theorem If Q has a polynomial

• FO-rewriting, then fM
Q ∈ NC1

• NDL-rewriting, then fM
Q ∈ mP/poly

• PE-rewriting, then fM
Q ∈ mNC1

Hint: on a single-object ABox, quantifiers are ‘meaningless’
and the rewriting boils down to a propositional f-la, etc.

Montpellier, 17.07.2017 7

Representation Results for Hypergraphs

Theorem (i) Any hypergraph H is isomorphic to
a subgraph ofH(QH) for a polynomial-size QH with an ontology of depth 2

(ii) And any HGP based on H computes a subfunction of fM
QH

Montpellier, 17.07.2017 8

Representation Results for Hypergraphs

Theorem (i) Any hypergraph H is isomorphic to
a subgraph ofH(QH) for a polynomial-size QH with an ontology of depth 2

(ii) And any HGP based on H computes a subfunction of fM
QH

Theorem (i) Any hypergraph H of degree 2 is isomorphic to
H(SH) for a polynomial-size SH with an ontology of depth 1

(ii) . . .

Montpellier, 17.07.2017 8

Representation Results for Hypergraphs

Theorem (i) Any hypergraph H is isomorphic to
a subgraph ofH(QH) for a polynomial-size QH with an ontology of depth 2

(ii) And any HGP based on H computes a subfunction of fM
QH

Theorem (i) Any hypergraph H of degree 2 is isomorphic to
H(SH) for a polynomial-size SH with an ontology of depth 1

(ii) . . .

Theorem Any tree hypergraph H with ` leaves is isomorphic to
a subgraph ofH(TH) for a polynomial-size TH with an of ontology of depth 2

and a tree-shaped CQ with ` leaves

(ii) . . .

Montpellier, 17.07.2017 8

Roadmap for Succinctness Proofs
in

m
N

C
1

in
m

P/
p

o
ly

o
n

to
lo

g
y

d
e

p
th

1

2

3

. . .

d

∞

2 . . . ` trees 2 . . . t ∞
number of leaves treewidth

Q Q SH

Q

Q

QQf

TH TH QH

mΠ3 mTHGP2 mNC1 mTHGP3

mLOGCFL/poly

mTHGP

mNL/poly

mTHGP(2)

co-mNL/poly mHGP=2 mHGP2

mNP/poly

mHGP

mHGP3

mNP/poly

fO
Q fO

Q

f H
Q

f O
Q

fO
Q

fH
Q

f M
S
H

f M
T
H

f M
T
H

fM
QH

mΠ3 $ mAC0 $ mNC1 $ mNL/poly ⊆ mLOGCFL/poly $ mP/poly $ mNP/poly

Boolean formulas nondeterministic Boolean circuits

Montpellier, 17.07.2017 9

Conclusions

• HGPs provide a natural link between complexity classes
and hypergraph functions

• polynomial PE-rewritings exists only in for very restricted cases
of ontologies of depth 0 & 1 (except unbounded treewidth)

• polynomial NDL-rewritings exists for most cases where
query answering is tractable

optimal NDL-rewritings in Stas’s talk

• existence of polynomial PE-, NDL- and FO-rewritings is closely related to
circuit complexity

Montpellier, 17.07.2017 10

