
Theoretically Optimal Datalog Rewritings for
OWL 2 QL Ontology-Mediated Queries

M. Bienvenu1, S. Kikot2, R. Kontchakov2, V. Podolskii3, and M. Zakharyaschev2

1 CNRS & University of Montpellier, France (meghyn@lirmm.fr)
2 Birkbeck, University of London, U.K. ({kikot,roman,michael}@dcs.bbk.ac.uk)

3 Steklov Mathematical Institute, Moscow, Russia (podolskii@mi.ras.ru)

Abstract. We show that, for OWL 2 QL ontology-mediated queries with (i) on-
tologies of bounded depth and conjunctive queries of bounded treewidth, (ii) on-
tologies of bounded depth and bounded-leaf tree-shaped conjunctive queries, and
(iii) arbitrary ontologies and bounded-leaf tree-shaped conjunctive queries, one can
construct and evaluate nonrecursive datalog rewritings by, respectively, LOGCFL,
NL and LOGCFL algorithms, which matches the optimal combined complexity.

1 Introduction

Ontology-based data access (OBDA) via query rewriting [18] reduces the problem of
finding answers to conjunctive queries (CQs) mediated by OWL 2 QL ontologies to
standard database query answering. The question we are concerned with here is whether
this reduction is optimal with respect to the combined complexity of query evaluation.
Figure 1 (a) summarises what is known about the size of positive existential (PE),
nonrecursive datalog (NDL) and first-order (FO) rewritings of OWL 2 QL ontology-
mediated queries (OMQs) depending on the existential depth of their ontologies and
the shape of their CQs [13, 9, 12, 3]. Figure 1 (b) shows the combined complexity of
OMQ evaluation for the corresponding classes of OMQs [5, 14, 12, 3]. Thus, we see, for
example, that PE-rewritings for OMQs with ontologies of bounded depth and CQs of
bounded treewidth can be of super-polynomial size, and so not evaluable in polynomial
time, while the evaluation problem for these OMQs is decidable in LOGCFL ⊆ P. On
the other hand, the OMQs in this class enjoy polynomial-size NDL-rewritings. However,
these rewritings were defined using an argument from circuit complexity [3], and it
has been unclear whether they can be constructed and evaluated in LOGCFL. The same
concerns the class of OMQs with ontologies of bounded depth and bounded-leaf tree-
shaped queries, which can be evaluated in NL, and the class of OMQs with arbitrary
ontologies and bounded-leaf tree-shaped queries, which can be evaluated in LOGCFL.

In this paper, we consider OMQs in these three classes and construct NDL-rewritings
that are theoretically optimal in the sense that the rewriting and evaluation can be
carried out by algorithms of optimal combined complexity, that is, from the complexity
classes LOGCFL, NL and LOGCFL, respectively. Such algorithms are known to be space
efficient and highly parallelisable. We compared our optimal NDL rewritings with those
produced by query rewriting engines Clipper [8] and Rapid [6], using a sequence of
OMQs with linear CQs and a fixed ontology of depth 1.

on
to

lo
gy

de
pt

h
1

2

3

. . .

d

arb.

2 . . . ` trees 2 . . . bound. arb.
number of leaves treewidth

poly NDL
no poly PE

poly FO
iff

NL/poly⊆ NC1

poly NDL
no poly PE

poly FO
iff

LOGCFL/poly⊆NC1

no poly NDL & PE po
ly

FO
iff

N
P/p

ol
y⊆

N
C
1

poly Π4-PE poly PE

poly NDL, but no poly PE
poly FO iff NL/poly⊆ NC1(a)

1

2

3

. . .

d

arb.

2 . . . ` trees 2 . . . bound. arb.
number of leaves treewidth

NL LOGCFL

NPLOGCFL

(b)

Fig. 1. (a) Size of OMQ rewritings; (b) combined complexity of OMQ evaluation.

2 Preliminaries

We give OWL 2 QL in the DL syntax with individual names ai, concept names Ai, and
role names Pi (i ≥ 1). Roles R and basic concepts B are defined by

R ::= Pi | P−i , B ::= Ai | ∃R.

A TBox, T , is a finite set of inclusions of the form

B1 v B2, B1 uB2 v ⊥, R1 v R2, R1 uR2 v ⊥.

An ABox, A, is a finite set of atoms of the form Ak(ai) or Pk(ai, aj). We denote by
ind(A) the set of individual names inA, and by RT the set of role names occurring in T
and their inverses. We use A ≡ B for A v B and B v A. The semantics for OWL 2 QL
is defined in the usual way based on interpretations I = (∆I , ·I) [2].

For every role R ∈ RT , we take a fresh concept name AR and add AR ≡ ∃R to
T . The resulting TBox is said to be in normal form, and we assume, without loss of
generality, that all our TBoxes are in normal form. The subsumption relation induced by
T is denoted by vT : we write S1 vT S2 if T |= S1 v S2, where S1, S2 are both either
concepts or roles. We write R(a, b) ∈ A if P (a, b) ∈ A and R = P , or P (b, a) ∈ A
and R = P−; we also write (∃R)(a) ∈ A if R(a, b) ∈ A for some b. An ABox A is
called H-complete with respect to T in case

P (a, b) ∈ A if R(a, b) ∈ A, for roles P and R with R vT P,
A(a) ∈ A if B(a) ∈ A, for a concept name A and basic concept B with B vT A.

A conjunctive query (CQ) q(x) is a formula ∃y ϕ(x,y), where ϕ is a conjunction
of atoms Ak(z1) or Pk(z1, z2) with zi ∈ x ∪ y (without loss of generality, we assume
that CQs do not contain constants). We denote by var(q) the variables x ∪ y of q
and by avar(q) the answer variables x. An ontology-mediated query (OMQ) is a pair
Q(x) = (T , q(x)), where T is a TBox and q(x) a CQ. A tuple a in ind(A) is a certain
answer to Q(x) over an ABox A if I |= q(a) for all models I of T and A; in this
case we write T ,A |= q(a). If x = ∅, then a certain answer to Q over A is ‘yes’ if
T ,A |= q and ‘no’ otherwise. We often regard a CQ q as the set of its atoms.

Every consistent OWL 2 QL knowledge base (KB) (T ,A) has a canonical model
CT ,A with the property that T ,A |= q(a) iff CT ,A |= q(a), for any CQ q and any a
in ind(A). Thus, CQ answering in OWL 2 QL amounts to finding a homomorphism
from the given CQ into the canonical model. Informally, CT ,A is obtained from A by
repeatedly applying the axioms in T , introducing fresh elements as needed to serve as
witnesses for the existential quantifiers. According to the standard construction (cf. [16]),
the domain ∆CT ,A of CT ,A consists of words of the form aR1 . . . Rn (n ≥ 0) with
a ∈ ind(A) andR1 . . . Rn ∈ R∗T such that (i) T ,A |= ∃R1(a) and (ii) ∃R−i vT ∃Ri+1

and R−i 6vT Ri+1, for 1 ≤ i < n. We let WT consist of all words R1 . . . Rn ∈ R∗T
satisfying condition (ii). A TBox T is of depth ω if WT is infinite, and of depth d < ω,
if d is the maximum length of the words in WT .

A datalog program, Π , is a finite set of Horn clauses ∀z (γ0 ← γ1 ∧ · · · ∧ γm),
where each γi is an atom S(y) with y ⊆ z or an equality (z = z′) with z, z′ ∈ z. (As
usual, when writing clauses, we omit ∀z.) The atom γ0 is the head of the clause, and
γ1, . . . , γm its body. All variables in the head must also occur in the body, and = can
only occur in the body. The predicates in the heads of clauses in Π are IDB predicates,
the rest (including =) EDB predicates. A predicate S depends on S′ in Π if Π has
a clause with S in the head and S′ in the body; Π is a nonrecursive datalog (NDL)
program if the (directed) dependence graph of the dependence relation is acyclic.

An NDL query is a pair (Π,G(x)), where Π is an NDL program and G(x) a
predicate. A tuple a in ind(A) is an answer to (Π,G(x)) over an ABoxA ifG(a) holds
in the first-order model with domain ind(A) obtained by closing A under the clauses
in Π; in this case we write Π,A |= G(a). The problem of checking whether a is an
answer to (Π,G(x)) over A is called the query evaluation problem. The arity of Π
is the maximal arity, r(Π), of predicates in Π . The depth of (Π,G(x)) is the length,
d(Π,G), of the longest directed path in the dependence graph for Π starting from G.
NDL queries are equivalent if they have exactly the same answers over any ABox.

An NDL query (Π,G(x)) is an NDL-rewriting of an OMQ Q(x) = (T , q(x)) over
H-complete ABoxes in case T ,A |= q(a) iff Π,A |= G(a), for any H-complete ABox
A and any tuple a in ind(A). Rewritings over arbitrary ABoxes are defined by dropping
the condition that the ABoxes are H-complete. Let (Π,G(x)) be an NDL-rewriting of
Q(x) over H-complete ABoxes. Denote by Π∗ the result of replacing each predicate S
in Π with a fresh predicate S∗ and adding the clauses A∗(x) ← B′(x), for B vT A,
and P ∗(x, y) ← R′(x, y), for R vT P , where B′(x) and R′(x, y) are the obvious
first-order translations of B and R (for example, B′(x) = ∃y R(x, y) if B = ∃R). It is
easy to see that (Π∗, G∗(x)) is an NDL-rewriting of Q(x) over arbitrary ABoxes.

It is well-known [4] that, without loss of generality, we can only consider NDL-
rewritings of OMQs (T , q(x)) over ABoxes A that are consistent with T .

We call an NDL query (Π,G(x1, . . . , xn)) ordered if each of its IDB predicates S
comes with fixed variables xi1 , . . . , xik (1 ≤ i1 < · · · < ik ≤ n), called the parameters
of S, such that (i) every occurrence of S inΠ is of the form S(y1, . . . , ym, xi1 , . . . , xik),
(ii) the xi are the parameters of G, and (iii) if x′ are all the parameters in the body of
a clause, then the head has x′ among its parameters. The width w(Π,G) of an ordered
(Π,G) is the maximal number of non-parameter variables in a clause of Π . All our
NDL-rewritings in Secs. 4–6 are ordered, so we now only consider ordered NDL queries.

3 NL and LOGCFL Fragments of Nonrecursive Datalog

In this section, we identify two classes of (ordered) NDL queries with the evaluation
problem in the complexity classes NL and LOGCFL for combined complexity. Recall [1]
that an NDL program is called linear if the body of its every clause contains at most one
IDB predicate (remember that equality is an EDB predicate).

Theorem 1. Fix some w > 0. The combined complexity of evaluating linear NDL
queries of width at most w is NL-complete.

Proof. Let (Π,G(x)) be a linear NDL query. Deciding whether Π,A |= G(a) is re-
ducible to finding a path toG(a) from a certain setX in the grounding graph G(Π,A,a)
constructed as follows. The vertices of the graph are the ground atoms obtained by
taking an IDB atom from Π , replacing each of its parameters by the corresponding
constant from a, and replacing each non-parameter variable by some constant from A.
The graph has an edge from S(c) to S′(c′) iff the grounding of Π contains a clause
S′(c′) ← S(c) ∧ E1(e1) ∧ · · · ∧ Ek(ek) with Ej(ej) ∈ A, for 1 ≤ j ≤ k (we
assume that (c = c) ∈ A). The set X consists of all vertices S(c) with IDB predi-
cates S being of in-degree 0 in the dependency graph of Π for which there is a clause
S(c)← E1(e1) ∧ · · · ∧ Ek(ek) in the grounding of Π with Ej(ej) ∈ A (1 ≤ j ≤ k).
Bounding the width of (Π,G) ensures that G(Π,A,a) is of polynomial size and can be
constructed by a deterministic Turing machine with separate input, write-once output
and logarithmic-size working tapes. q

The transformation of NDL-rewritings over H-complete ABoxes into rewritings for
arbitrary ABoxes in Section 2 does not preserve linearity. However, we can still show
that it suffices to consider the H-complete case:

Lemma 2. For any fixed w > 0, there is an LNL-transducer that, given a linear NDL-
rewriting of an OMQ Q(x) over H-complete ABoxes that is of width at most w, computes
a linear NDL-rewriting of Q(x) over arbitrary ABoxes whose width is at most w + 1.

The complexity class LOGCFL can be defined in terms of nondeterministic auxiliary
pushdown automata (NAuxPDAs) [7], which are nondeterministic Turing machines with
an additional work tape constrained to operate as a pushdown store. Sudborough [19]
proved that LOGCFL coincides with the class of problems that are solved by NAuxPDAs
running in logarithmic space and polynomial time (the space on the pushdown tape is
not subject to the logarithmic bound).

We call an NDL query (Π,G) skinny if the body of any clause in Π has ≤ 2 atoms.

Lemma 3. For any skinny NDL query (Π,G(x)) and ABox A, query evaluation can be
done by an NAuxPDA in space log |Π|+ w(Π,G) · log |A| and time 2O(d(Π,G)).

Proof. Let Πa
A be the set of ground clauses obtained by first replacing each parameter

in Π by the corresponding constant from a, and then performing the standard grounding
of Π using the constants from A. Consider the monotone Boolean circuit C(Π,A,a)
constructed as follows. The output of C(Π,A,a) is G(a). For every atom γ occurring
in the head of a clause in Πa

A, we take an OR-gate whose output is γ and inputs are the

bodies of the clauses with head γ; for every such body, we take an AND-gate whose inputs
are the atoms in the body. We set an input gate γ to 1 iff γ ∈ A. Clearly, C(Π,A,a) is
a semi-unbounded fan-in circuit (where OR-gates have arbitrarily many inputs, and AND-
gates two inputs) with O(|Π| · |A|w(Π,G)) gates and depth O(d(Π,G)). It is known that
the nonuniform analog of LOGCFL can be defined using families of semi-unbounded fan-
in circuits of polynomial size and logarithmic depth. Moreover, there is an algorithm that,
given such a circuit C, computes the output using an NAuxPDA in logarithmic space
in the size of C and exponential time in the depth of C [20, pp. 392–397]. Observing
that C(Π,A,a) can be computed by a deterministic logspace Turing machine, we
conclude that the query evaluation problem can be solved by an NAuxPDA in space
log |Π|+ w(Π,G) · log |A| and time 2O(d(Π,G)). q

A function ν from the predicate names in Π to N is a weight function for an NDL-
query (Π,G(x)) if ν(P) > 0, for any IDB P in Π , and ν(P) ≥ ν(Q1) + · · ·+ ν(Qn),
for any P (z)← Q1(z1) ∧ · · · ∧Qn(zn) in Π .

Lemma 4. If (Π,G(x)) has a weight function ν, then it is equivalent to a skinny NDL
query (Π ′, G(x)) such that |Π ′| is polynomial in |Π|, d(Π ′, G) ≤ d(Π,G) + log ν(G)
and w(Π ′, G) ≤ w(Π,G).

Proof. The proof is by induction on d(Π,G). If d(Π,G) = 0, we take Π ′ = Π .
Suppose Π contains a clause ψ of the form G(z) ← P1(z1) ∧ · · · ∧ Pk(zk) and, for
each 1 ≤ j ≤ k, we have an NDL query (Π ′Pj

, Pj) which is equivalent to (Π,Pj) and
such that

d(Π ′Pj
, Pj) ≤ d(ΠPj

, Pj) + log ν(Pj) ≤ d(Π,G)− 1 + log ν(Pj). (1)

We construct the Huffman tree [11] for the alphabet {1, . . . , k}, where the frequency
of j is ν(Pj)/ν(G) (by definition, ν(G) > 0). The Huffman tree is binary and has k
leaves, denoted 1, . . . , k, and k − 1 internal nodes (including the root, g), and the length
of the path from g to any leaf j at most dlog(ν(G)/ν(Pj))e. For each internal node v
of the tree (but the root), we take a predicate Pv(zv), where zv is the union of zu for
all descendants u of v; for the root g, we take Pg(zg) = G(z). Let Π ′ψ be the extension
of the union of Π ′Pj

, for 1 ≤ j ≤ k, with clauses Pv(zv)← Pu1(zu1) ∧ Pu2(zu2), for
each v with immediate successors u1 and u2. The number of the new clauses is k − 1.
Consider the NDL query (Π ′ψ, G(z)). By (1), we have:

d(Π ′ψ, G) ≤ maxj{dlog(ν(G)/ν(Pj))e+ d(Π ′Pj
, Pj)} ≤

maxj{log(ν(G)/ν(Pj)) + d(Π,G) + log ν(Pj)} = log ν(G) + d(Π,G).

Let Π ′ be the result of applying this transformation to each clause in Π with head G(z).
It is readily seen that (Π ′, G) is as required; in particular, |Π ′| = O(|Π|2). q

Theorem 5. Fix c ≥ 1, w ≥ 1 and a polynomial p. Query evaluation for NDL queries
(Π,G(x)) with a weight function ν such that ν(G) ≤ p(|Π|), w(Π,G) ≤ w and
d(Π,G) ≤ c log ν(G) is in LOGCFL for combined complexity.

Proof. By Lemma 4, (Π,G) is equivalent to a skinny NDL query (Π ′, G′) with |Π ′|
polynomial in |Π|, w(Π ′, G) ≤ w, and d(Π ′, G′) ≤ (c + 1) log ν(G). By Lemma 3,
query evaluation for (Π ′, G′) over A is solved by an NAuxPDA in space log |Π ′| +
w(Π ′, G) · log |A| = O(log |Π| + log |A|) and time 2O(d(Π′,G′)) ≤ 2O(log ν(G)) =
(ν(G))O(1) ≤ p′(|Π|), for some polynomial p′. q

Corollary 6. Suppose there is an algorithm that, given any OMQ Q(x) from some
class C, constructs its NDL-rewriting (Π,G(x)) over H-complete ABoxes having
a weight function ν with ν(G) ≤ |Q| and d(Π,G) ≤ c log ν(G), and such that
w(Π,G) ≤ w and |Q| ≤ |Π| ≤ p(|Q|), for some fixed constants c, w and polyno-
mial p. Then the evaluation problem for the NDL-rewritings (Π∗, G∗(x)) of the OMQs
in C over arbitrary ABoxes (defined in Section 2) is in LOGCFL for combined complexity.

4 Bounded Treewidth CQs and Bounded-Depth TBoxes

With every CQ q, we associate its Gaifman graph G whose vertices are the variables of q
and edges are the pairs {u, v} such that P (u, v) ∈ q, for some P . We call q tree-shaped
if G is a tree; q is connected if the graph G is connected. A tree decomposition of an
undirected graph G = (V,E) is a pair (T, λ), where T is an (undirected) tree and λ a
function from the set of nodes of T to 2V such that the following conditions hold:

– for every v ∈ V , there exists a node t with v ∈ λ(t);
– for every e ∈ E, there exists a node t with e ⊆ λ(t);
– for every v ∈ V , the nodes {t | v ∈ λ(t)} induce a connected subtree of T .

We call the set λ(t) ⊆ V a bag for t. The width of (T, λ) is maxt∈T |λ(t)| − 1. The
treewidth of a graph G is the minimum width over all tree decompositions of G. The
treewidth of a CQ is the treewidth of its Gaifman graph.

Example 7. Consider CQ q(x0, x7) depicted below (black nodes are answer variables):

x0 x1 x2 x3 x4 x5 x6 x7

R S R R S R R

Its natural tree decomposition of treewidth 1 is based on the the chain T of 7 vertices,
which are represented as bags as follows:

x0

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

x7

R S R R S R R

Fix a connected CQ q(x) and a tree decomposition (T, λ) of its Gaifman graph
G = (V,E). Let D be a subtree of T . The size of D is the number of nodes in it. We call
a node t of D boundary if T has an edge {t, t′} with t′ /∈ D, and let the degree deg(D)
of D be the number of its boundary nodes. Note that T itself is the only subtree of T of
degree 0. We say that a node t splits D into subtrees D1, . . . , Dk if the Di partition D
without t: each node of D except t belongs to exactly one Di.

Lemma 8 ([3]). Let D be a subtree of T of size m > 1.
If deg(D) = 2, then there is a node t splitting D into subtrees of size ≤ m/2 and
degree ≤ 2 and, possibly, one subtree of size < m− 1 and degree 1.
If deg(D) ≤ 1, then there is t splitting D into subtrees of size ≤ m/2 and degree ≤ 2.

In Example 7, t splits T into T1 and T2 depicted below:

T1 T2
t

x0

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

x7

R S R R S R R

We define recursively a set sub(T) of subtrees of T , a binary relation ≺ on sub(T)
and a function σ on sub(T) indicating the splitting node. We begin by adding T to
sub(T). Take D ∈ sub(T) that has not been split yet. If D is of size 1 then let σ(D)
be the only node of D. Otherwise, by Lemma 8, we find a node t in D that splits it
into D1, . . . , Dk. We set σ(D) = t and, for each 1 ≤ i ≤ k, add Di to sub(T) and set
Di ≺ D; then, we apply the procedure recursively to each of D1, . . . , Dk. In Example 7
with t splitting T , we have σ(T) = t, T1 ≺ T and T2 ≺ T .

For each D ∈ sub(T), we recursively define a set of atoms qD by taking

qD =
{
S(v) ∈ q | v ⊆ λ(σ(D))

}
∪
⋃

D′≺D
qD′ .

By the definition of tree decomposition, qT = q. Denote by xD the subset of avar(q)
that occur in qD. In our running example, xT = {x0, x7}, xT1

= {x0} and xT2
= {x7}.

Denote by ∂D the union of all λ(t) ∩ λ(t′) for a boundary node t of D and its unique
neighbour t′ in T outside D. If D is a singleton {d}, then ∂D consists of those variables
in λ(d) that occur in at least one other bag. In our example, ∂T = ∅, ∂T1 = {x3} and
∂T2 = {x4}.

Let T be a TBox of finite depth k. A type is a partial map w from V to WT ; its
domain is denoted by dom(w). By ε we denote the unique partial type with dom(ε) = ∅.
We use types to represent how variables are mapped into CT ,A, with w(u) = w indi-
cating that u is mapped to an element of the form aw (for some a ∈ ind(A)), and with
w(u) = ε that u is mapped to an ABox individual. We say that a type w is compatible
with a bag t if, for all u, v ∈ λ(t) ∩ dom(w), we have

– if v ∈ avar(q), then w(v) = ε;
– if A(v) ∈ q, then either w(v) = ε or w(v) = wR with ∃R− vT A;
– if R(v, u) ∈ q, then w(v) = w(u) = ε, or w(u) = w(v)R′ with R′ vT R, or
w(v) = w(u)R′ with R′ vT R−.

In the sequel, we abuse notation and use sets of variables in place of sequences
assuming that they are ordered in some (fixed) way. For example, we use xD for a tuple
of variables in the set xD (ordered in some way). Also, given a tuple a in ind(A) of
length |xD| and x ∈ xD, we write a(x) to refer to the element of a that corresponds to
x (that is, to the component of the tuple with the same index).

Let ΠQ be an NDL program that—for any D ∈ sub(T), any types w and s for
which dom(w) = ∂D, dom(s) = λ(σ(D)), s is compatible with σ(D) and agrees with

w on their common domain—contains the clause

Gw
D(∂D,xD) ← Ats ∧

∧
D′≺D

G
(s∪w)�∂D′

D′ (∂D′,xD′), (2)

where xD are the parameters of predicate Gw
D , (s ∪w) � ∂D′ is the restriction1 of the

union s ∪w of s and w to ∂D′, and Ats is defined as follows:

Ats =
∧

A(u)∈q
s(u)=ε

A(u) ∧
∧

R(u,v)∈q
s(u)=s(v)=ε

R(u, v) ∧
∧

R(u,v)∈q
s(u)6=ε or s(v)6=ε

(u = v) ∧
∧

s(u)=Sw′

for some w′

AS(u). (3)

The first two conjunctions in Ats ensure that atoms all of whose variables are assigned
ε are present in the ABox. The third conjunction ensures that if one of the variables in
a role atom is not mapped to ε, then the images of the variables share the same initial
individual. Finally, atoms in the final conjunction ensure that if a variable is to be mapped
to aSw′, then the individual a satisfies ∃S (so aSw′ is part of the domain of CT ,A).

Example 9. Now we fix an ontology T with the following axioms:

A ≡ ∃P, P v S, P v R−, B ≡ ∃Q, Q v R, Q v S−.

Since λ(t) = {x3, x4}, there are only three types compatible with t:

s1 : x3 7→ ε, x4 7→ ε, s2 : x3 7→ P, x4 7→ ε and s3 : x3 7→ ε, x4 7→ Q.

So, Ats1 = R(x3, x4), Ats2 = A(x3) ∧ (x3 = x4), Ats3 = B(x4) ∧ (x3 = x4). Thus,
predicate Gε

T is defined by the following clauses, for s1, s2 and s3, respectively:

Gε
T (x0, x7)← Gx3 7→ε

T1
(x3, x0) ∧R(x3, x4) ∧Gx4 7→ε

T2
(x4, x7),

Gε
T (x0, x7)← Gx3 7→P

T1
(x3, x0) ∧A(x3) ∧ (x3 = x4) ∧Gx4 7→ε

T2
(x4, x7),

Gε
T (x0, x7)← Gx3 7→ε

T1
(x3, x0) ∧B(x4) ∧ (x3 = x4) ∧Gx4 7→Q

T2
(x4, x7).

By induction on ≺ on sub(T), we show that (ΠQ, G
ε
T) is a rewriting of Q(x).

Lemma 10. For any ABox A, any D ∈ sub(T), any type w with dom(w) = ∂D,
any b ∈ ind(A)|∂D| and a ∈ ind(A)|xD|, we have ΠQ,A |= Gw

D(b,a) iff there is a
homomorphism h : qD → CT ,A such that

h(x) = a(x), for x ∈ xD, and h(v) = b(v)w(v), for v ∈ ∂D.

Fix now k and t, and consider the class of OMQs Q(x) = (T , q(x)) with T of
depth ≤ k and q of treewidth ≤ t. Let T be a tree decomposition of q of treewidth ≤ t.
We take the following weight function: ν(Gw

D) = |D|. Clearly, ν(Gε
T) ≤ |Q|. By

Lemma 8, d(ΠQ, G
ε
T) ≤ 2 log |T | = 2 log ν(Gε

T) ≤ 2 log |Q|. Since |sub(T)| ≤ |T |2
and there are at most |T |2tk options for w, there are polynomially many predicates Gw

D ,
and so ΠQ is of polynomial size. Thus, by Corollary 6, the obtained NDL-rewriting over
arbitrary ABoxes can be evaluated in LOGCFL. Finally, we note that a tree decomposition
of treewidth ≤ t can be computed using an LLOGCFL-transducer [10], and so the NDL-
rewriting can also be constructed by an LLOGCFL-transducer.

1 By construction, dom(s ∪w) covers ∂D′, and so the domain of (s ∪w) � ∂D′ is ∂D′.

5 Bounded-Leaf CQs and Bounded-Depth TBoxes

We next consider OMQs with tree-shaped CQs in which both the depth of the ontology
and the number of leaves in the CQ are bounded. Let T be a TBox of finite depth k, and
let q(x) be a tree-shaped CQ with at most ` leaves. Fix one of the variables of q as root,
and let M be the maximal distance to a leaf from the root. For n ≤ M , let zn denote
the set of all variables of q at distance n from the root; clearly, |zn| ≤ `. We call the
zn slices of q and observe that they satisfy the following: for every R(u, v) ∈ q with
u 6= v, there exists 0 ≤ n < M such that either u ∈ zn and v ∈ zn+1 or u ∈ zn+1 and
v ∈ zn. For 0 ≤ n ≤ M , we denote by qn(z

n
∃ ,x

n) the query consisting of all atoms
S(u) of q such that u ⊆

⋃
n≤m≤M zm, where xn = var(qn) ∩ x and zn∃ = zn \ x.

By type of a slice zn, we mean a total map w from zn to WT . Analogously to
Section 4, we define what it means for a type (or pair of types) to be compatible with a
slice (pair of adjacent slices). We call w locally compatible with zn if for every z ∈ zn:

– if z ∈ avar(q), then w(z) = ε;
– if A(z) ∈ q, then either w(z) = ε or w(z) = wR with ∃R− vT A;
– if R(z, z) ∈ q, then w(z) = ε.

If w, s are types for zn and zn+1 respectively, then we call (w, s) compatible with
(zn, zn+1) if w is locally compatible with zn, s is locally compatible with zn+1, and
for every atom R(zn, zn+1) ∈ q, one of the following holds: (i) w(zn) = s(zn+1) = ε,
(ii) s(zn+1) = w(zn)R′ with R′ vT R, or (iii) w(zn) = s(zn+1)R′ with R′ vT R−.

Consider the NDL program Π ′Q defined as follows. For every 0 ≤ n < M and every
pair of types (w, s) that is compatible with (zn, zn+1), we include the clause:

Pw
n (zn∃ ,x

n)← Atw∪s(zn, zn+1) ∧ P s
n+1(z

n+1
∃ ,xn+1),

where xn are the parameters ofPw
n and Atw∪s(zn, zn+1) is the conjunction of atoms (3),

as defined in Section 4, for the union w ∪ s of types w and s.
For every type w locally compatible with zM , we include the clause:

Pw
M (zM∃ ,xM)← Atw(zM).

(Recall that zM is a disjoint union of zM∃ and xM .) We use G, with parameters x, as
the goal predicate and include G(x) ← Pw

0 (z0,x) for every predicate Pw
0 (z0,x0)

occurring in the head of one of the preceding clauses.
The following lemma (which is proved by induction) is the key step in showing that

(Π ′Q, G(x)) is a rewriting of (T , q) over H-complete ABoxes:

Lemma 11. For any H-complete ABox A, any 0 ≤ n ≤ M , any predicate Pw
n , any

b ∈ ind(A)|zn
∃ | and any a ∈ ind(A)|xn|, we have Π ′Q,A |= Pw

n (b,a) iff there is a
homomorphism h : qn → CT ,A such that

h(x) = a(x), for x ∈ xn, and h(z) = b(z)w(z), for z ∈ zn∃ . (4)

It should be clear that Π ′Q is a linear NDL program of width at most 2`. Moreover,
when ` and k are bounded by fixed constants, it takes only logarithmic space to store a
type w, which allows us to show that Π ′Q can be computed by an LNL-transducer. We
can apply Lemma 2 to obtain an NDL rewriting for arbitrary ABoxes, and then use
Theorem 1 to conclude that the resulting program can be evaluated in NL.

6 Bounded-Leaf CQs and Arbitrary TBoxes

For OMQs with bounded-leaf CQs and ontologies of unbounded depth, our rewriting
utilises the notion of tree witness [15]. Let Q(x) = (T , q(x)) with q(x) = ∃y ϕ(x,y).
For a pair t = (tr, ti) of disjoint sets of variables in q, with ti ⊆ y and ti 6= ∅, set

qt =
{
S(z) ∈ q | z ⊆ tr ∪ ti and z 6⊆ tr

}
.

If qt is a minimal subset of q for which there is a homomorphism h : qt → CAR(a)
T such

that tr = h−1(a) and qt contains every atom of q with at least one variable from ti, then
we call t = (tr, ti) a tree witness for Q generated by R. Note that the same tree witness
t can be generated by different roles R.

The logarithmic-depth NDL-rewriting for bounded-leaf queries and ontologies of
unbounded depth is based upon the following observation [12].

Lemma 12. Every tree T of size m has a node splitting it into subtrees of size ≤dm/2e.
We will use repeated applications of this lemma to decompose the input CQ into

smaller and smaller subqueries. Formally, for every tree-shaped CQ q, we use vq to
denote a vertex in the Gaifman graph G of q that satisfies the condition of Lemma 12. If
|var(q)| = 2 and q has at least one existential variable, we assume that vq is existentially
quantified. Then, for an OMQ Q = (T , q0(x)), we define SQ as the smallest set of
queries that contains q0(x) and is such that, for every q(z) ∈ SQ with var(q) 6= z, the
following queries also belong to SQ:

– for every ui adjacent to vq in G, the query qi(zi) comprising all role atoms linking
vq and ui, as well as all atoms whose variables cannot reach vq in G without passing
by ui, and with zi = var(qi) ∩ (z ∪ {vq});

– for every tree witness t for (T , q(z)) with tr 6= ∅ and vq ∈ ti, the queries
qt
1(z

t
1), . . . , q

t
m(zt

m) that correspond to the connected components of the set of
atoms of q that are not in qt, with zt

i = var(qt
i) ∩ (z ∪ tr).

The NDL program Π ′′Q uses IDB predicates Pq, for q(z) ∈ SQ, with arity |z| and
parameters var(q) ∩ x. For each q(z) ∈ SQ with var(q) = z, we include the clause
Pq(z)← q(z). For each q(z) ∈ SQ with var(q) 6= z, we include the clause

Pq(z) ←
∧

A(vq)∈q

A(vq) ∧
∧

R(vq,vq)∈q

R(vq, vq) ∧
∧

1≤i≤n

Pqi
(zi),

where q1(z1), . . . , qn(zn) are the subqueries induced by the neighbours of vq in G, and
the following clause

Pq(z) ←
∧

u,u′∈tr

(u = u′) ∧
∧
u∈tr

AR(u) ∧
∧

1≤i≤m

Pqt
i
(zt
i)

for every tree witness t for (T , q(z)) with tr 6= ∅ and vq ∈ ti and for every role R
generating t, where qt

1, . . . , q
t
m are the connected components of q without qt. Finally,

if q0 is Boolean, then we additionally include clauses Pq0
← A(x) for all concept

names A such that T , {A(a)} |= q0.
The program Π ′′Q is inspired by a similar construction from [12]. By adapting results

from the latter paper, we can show that (Π ′′Q, Pq0
(x)) is indeed a rewriting:

Lemma 13. For any tree-shaped OMQ Q(x) = (T , q0(x)), any q(z) ∈ SQ, any
H-complete ABox A, and any tuple a in ind(A), Π ′′Q,A |= Pq(a) iff there exists a
homomorphism h : q → CT ,A such that h(z) = a.

Now fix ` > 1, and consider the class of OMQs Q(x) = (T , q(x)) with tree-shaped
q(x) having at most ` leaves. The size of Π ′′Q is polynomially bounded in |Q|, since
bounded-leaf CQs have polynomially many tree witnesses and also polynomially many
tree-shaped subCQs. It is readily seen that the function ν defined by setting ν(Pq′) = |q′|
is a weight function for (Π ′′Q, Pq) such that ν(Pq) ≤ |Q|. Moreover, by Lemma 12,
d(Π,G) ≤ log ν(Pq) + 1. We can thus apply Corollary 6 to conclude that the obtained
NDL-rewritings can be evaluated in LOGCFL. Finally, we note that since the number
of leaves is bounded, it is in NL to decide whether a vertex satisfies the conditions of
Lemma 12, and it is in LOGCFL to decide whether T , {A(a)} |= q0 [3] or whether a
(logspace) representation of a possible tree witness is indeed a tree witness. This allows
us to show that (Π ′′Q, Pq) can be generated by an LLOGCFL-transducer.

7 Conclusions

As shown above, for three important classes of OMQs, NDL-rewritings can be con-
structed and evaluated by theoretically optimal NL and LOGCFL algorithms. To see
whether these rewritings are viable in practice, we generated three sequences of OMQs
with the ontology from Example 9 and linear CQs of up to 15 atoms as in Example 7.
We compared our NL and LOGCFL rewritings from Secs. 5 and 4 (called LIN and LOG)
with those produced by Clipper [8] and Rapid [6]. The barcharts below show the number
of clauses in the rewritings over H-complete ABoxes. While LIN and LOG grow linearly
(in accord with theory), Clipper and Rapid failed to produce rewritings for longer CQs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
25

50

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
25

50

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
25

50

100

LIN
LOG

Rapid
Clipper

We evaluated the rewritings over a few randomly generated ABoxes using off-the-shelf
datalog engine RDFox [17]. The experiments (see the full version) show that our rewrit-
ings are usually executed faster than Clipper’s and Rapid’s when the number of answers
is relatively small (. 104); for queries with & 106 answers, the execution times are
comparable. The version of RDFox we used did not seem to take advantage of the
structure of the NL/LOGCFL rewritings, and it would be interesting to see whether their
nonrecursiveness and parallelisability can be utilised to produce efficient execution plans.
Acknowledgements: The first author was supported by contract ANR-12-JS02-007-01,
the fourth by the Russian Foundation for Basic Research and the grant MK-7312.2016.1.

A Proofs

Lemma 2. For any fixed w > 0, there is an LNL-transducer that, given a linear NDL-
rewriting of an OMQ Q(x) over H-complete ABoxes that is of width at most w, computes
a linear NDL-rewriting of Q(x) over arbitrary ABoxes whose width is at most w + 1.

Proof. Let (Π,G(x)) be a linear NDL-rewriting of the OMQ Q(x) = (T , q(x)) over
H-complete ABoxes of width w. and we will replace every clause λ in Π by a set of
clauses λ∗ defined as follows. Suppose λ is of the form

H(z)← I ∧ EQ ∧ E1 ∧ . . . ∧ En,

where I is the only IDB body atom in λ, EQ contains all equality body atoms, and
E1, . . . , En are the EDB body atoms not involving equality. For every atom Ei, we
define a set υ(Ei) of atoms by taking

υ(Ei) =
{
B(u) | B vT A

}
∪
{
R(u, ui) | ∃R vT A

}
, if Ei = A(u),

υ(Ei) =
{
R′(u, v) | R′ vT R

}
, if Ei = R(u, v),

where ui is a fresh variable not occurring in λ; we assume P−(u, v) coincides with
P (v, u), for all role names P . Intuitively, υ(Ei) captures all atoms that imply Ei with
respect to T . Then λ∗ consists of the following clauses:

H0(z0)← I,

Hi+1(zi)← Hi(zi) ∧ E′i, for every 1 ≤ i ≤ n and every E′i ∈ υ(Ei),
H(z)← Hn+1(zn) ∧ EQ,

where zi is the restriction of z to variables occurring in I if i = 0 and in Hi(zi) and E′i
except for ui if i > 0 (note that zn = z). Let Π ′ be the program obtained from Π by
replacing each clause λ by the set of clauses λ∗. By construction, Π ′ is a linear NDL
program and its width cannot exceed w + 1 (the possible increase of 1 is due to the
replacement of concept atoms by role atoms).

We now argue that (Π ′, G(x)) is a rewriting of Q(x) over arbitrary ABoxes. It
is easily verified that (Π ′, G(x)) is equivalent to (Π ′′, G(x)), where Π ′′ is obtained
from Π by replacing each clause H(z) ← I ∧ EQ ∧ E1 ∧ . . . ∧ En by the (possibly
exponentially larger) set of clauses{

H(z)← I ∧ EQ ∧ E′1 ∧ . . . ∧ E′n | E′i ∈ υ(Ei), 1 ≤ i ≤ n
}
.

It thus suffices to show that (Π ′′, G(x)) is a rewriting of Q(x) over arbitrary ABoxes.
First suppose that T ,A |= q(a), where A is an arbitrary ABox. Let A′ be the

H-complete ABox obtained from A by adding the assertions:

– P (a, b) whenever R(a, b) ∈ A and R vT P ;
– A(a) whenever B(a) ∈ A (with B a basic concept) and B vT A.

Clearly, T ,A′ |= q(a), so we must have Π,A′ |= G(a). A simple inductive ar-
gument (on the order of derivation of ground atoms) shows that whenever a clause

H(z)← I ∧ EQ ∧ E1 ∧ . . . ∧ En is applied using a substitution c for the
variables in the body to derive H(c(z)) using Π , we can find a corresponding clause
H(z)← I ∧ EQ ∧ E′1 ∧ . . . ∧ E′n and a substitution c′ extending c (on the fresh vari-
ables ui) that allows us to derive H(c′(z)) using Π ′′. Indeed, if Ei = A(u), then
A(c(u)) ∈ A′, so there must exist either a concept assertion A′(c(u)) ∈ A such
that A′ vT A or a role assertion R(a, b) ∈ A such that ∃R vT A. Similarly, if
Ei = R(u, v), then there must exist a role assertion R′(u, v) ∈ A such that R′ vT R. It
then suffices to choose a clause H(z)← I ∧ EQ∧E′1 ∧ . . .∧E′n with atoms E′i whose
form matches that of the assertion in A corresponding to Ei.

For the converse direction, it suffices to observe that Π ⊆ Π ′′.
To complete the proof, we note that it is in NL to decide whether an atom belongs to

υ(Ei), and thus we can construct the program Π ′ by means of an LNL-transducer. q

Lemma 10. For any ABox A, any D ∈ sub(T), any type w with dom(w) = ∂D,
any b ∈ ind(A)|∂D| and a ∈ ind(A)|xD|, we have ΠQ,A |= Gw

D(b,a) iff there is a
homomorphism h : qD → CT ,A such that

h(x) = a(x), for x ∈ xD, and h(v) = b(v)w(v), for v ∈ ∂D. (5)

Proof. (⇒) The proof is by induction on ≺. For the base of induction, let D be of size 1.
By the definition of ΠQ, there exists a type s such that dom(s) = λ(σ(D)) and w
agrees with s on ∂D and a respective tuple c ∈ ind(A)|λ(σ(D))| such that c(v) = b(v),
for all v ∈ ∂D, and c(x) = a(x), for all x ∈ xD, and ΠQ,A |= Ats(c). Then, for any
atom S(v) ∈ qD, we have v ⊆ λ(σ(D)), whence CT ,A |= S(h(v)) as w agrees with s
on ∂D.

For the inductive step, suppose that ΠQ,A |= Gw
D(b,a). By the definition of ΠQ,

there exists a type s such that dom(s) = λ(σ(D)) and w agrees with s on their common
domain and a respective tuple c ∈ ind(A)|λ(σ(D))| such that c(v) = b(v), for all
v ∈ ∂D, and c(x) = a(x), for all x ∈ xD, and

ΠQ,A |= Ats(c) ∧
∧

D′≺D
G

(s∪w)�∂D′

D′ (bD′ ,aD′),

where bD′ and aD′ are the restrictions of b∪ c to ∂D′ and of a to xD′ , respectively. By
the induction hypothesis, for any D′ ≺ D, there is a homomorphism hD′ : qD′ → CT ,A
such that (5) is satisfied.

Let us show that the hD′ agree on common variables. Suppose that v is shared
by qD′ and qD′′ for D′ ≺ D and D′′ ≺ D. By the definition of tree decomposition,
for every v ∈ V , the nodes {t | v ∈ λ(t)} induce a connected subtree of T , and so
v ∈ λ(σ(D)) ∩ λ(t′) ∩ λ(t′′), where t′ and t′′ are the unique neighbours of σ(D) lying
in D′ and D′′, respectively. Since w′ = (w ∪ s) � ∂D′ and w′′ = (w ∪ s) � ∂D′′

are the restrictions of w ∪ s, we have w′(v) = w′′(v). This implies that hD′(v) =
c(v)w′(v) = c(v)w′′(v) = hD′′(v).

Now we define h on every v in qD by taking

h(v) =

{
hD′(v) if v ∈ λ(t), for t ∈ D′ and D′ ≺ D,
c(v) · (w ∪ s)(v), if v ∈ λ(σ(D)).

If follows that h is well defined, h satisfies (5) and that h is a homomorphism from
qD to CT ,A. Indeed, take an atom S(v) ∈ qD. Then either v ⊆ λ(σ(D)), in which
case CT ,A |= S(h(v)) since w is compatible with σ(D) and ΠQ,A |= Ats(c), or
S(v) ∈ qD′ for some D′ ≺ D, in which case we use the fact that h extends a homomor-
phism hD′ .

(⇐) The proof is by induction on ≺. Fix D and w such that |w| = |∂D|. Take
b ∈ ind(A)|∂D|, a ∈ ind(A)|xD|, and a homomorphism h : qD → CT ,A satisfying (5).
Define a type s and a tuple c ∈ ind(A)|λ(σ(D))| by taking, for all v ∈ λ(σ(D)),

s(v) = w and c(v) = a, if h(v) = aw, for a ∈ ind(A).

By definition, dom(s) = λ(σ(D)) and, by (5), s and w agree on the common domain.
For the inductive step, for each D′ ≺ D, let hD′ be the restriction of h to qD′ and let
bD′ and and aD′ be the restrictions of b ∪ c to ∂D′ and of a to xD′ , respectively. By
the inductive hypothesis, ΠQ,A |= Gw′

D′(bD′ ,aD′). (This argument is not needed for
the basis of induction.) Since h is a homomorphism, we have ΠQ,A |= Ats(c), whence,
ΠQ,A |= Gw

D(b,a). q

Lemma 11. For any H-complete ABox A, any 0 ≤ n ≤ M , any predicate Pw
n , any

b ∈ ind(A)|zn
∃ | and any a ∈ ind(A)|xn|, we have Π ′Q,A |= Pw

n (b,a) iff there is a
homomorphism h : qn → CT ,A such that

h(x) = a(x), for x ∈ xn, and h(z) = b(z)w(z), for z ∈ zn∃ . (4)

Proof. The proof is by induction on n. For the base case (n = M), first suppose
that we have Π ′Q,A |= Pw

M (b,a). The only rule in Π ′Q with head predicate Pw
M is

Pw
M (zM∃ ,xM)← Atw(zM) with zM = zM∃] xM , which is equivalent to

Pw
M (zM∃ ,xM)←

∧
z∈zM

(∧
A(z)∈q
w(z)=ε

A(z) ∧
∧

R(z,z)∈q
w(z)=ε

R(z, z) ∧
∧

w(z)=Sw′

AS(z)
)
. (6)

So the body of this rule must be satisfied when b and a are substituted for zM∃ and xM

respectively. Moreover, by local compatibility of w with zM , we know that w(x) = ε
for every x ∈ xM . It follows that

– A(a(x)) ∈ A for every A(x) ∈ q such that x ∈ xM ;
– A(b(z)) ∈ A for every A(z) ∈ q such that z ∈ zM∃ and w(z) = ε;
– R(a(x),a(x)) ∈ A for every R(x, x) ∈ q such that x ∈ xM ;
– R(b(z), b(z)) ∈ A for every R(z, z) ∈ q such that z ∈ zM∃ and w(z) = ε;
– AS(z) ∈ A for every z ∈ zM with w(z) = Sw′.

Now let hM be the unique mapping from zM to ∆CT ,A satisfying (4). First note that
hM is well-defined, since by the last item, whenever w(z) = Sw′, we have AS(z) ∈ A
and Sw′ ∈WT , so b(z)Sw′ belongs to ∆CT ,A . To show that hM is a homomorphism
of qM into CT ,A, first recall that the atoms of qM are of two types: A(z) or R(z, z),
with z ∈ zM . Take some A(z) ∈ qM . If w(z) = ε, then we immediately obtain either

A(hM (z)) = A(a(z)) ∈ A or A(hM (z)) = A(b(z)) ∈ A, depending on whether
z ∈ zM∃ or in xM . Otherwise, if w(z) 6= ε, then the local compatibility of w with
zM means that the final letter R in w(z) is such that ∃R− vT A, hence hM (z) =
b(z)w(z) ∈ ACT ,A . Finally, suppose that R(z, z) ∈ q. The local compatibility of
w with zM ensures that w(z) = ε, and thus we have either R(a(z),a(z)) ∈ A or
R(b(z), b(z)) ∈ A, depending again on whether z ∈ zM∃ or z ∈ xM .

For the other direction of the base case, suppose that the mapping hM given by (4)
defines a homomorphism from qM into CT ,A. We therefore have:

– a(x) ∈ ACT ,A for every A(x) ∈ q with x ∈ xM ;
– b(z)w(z) ∈ ACT ,A for every A(z) ∈ q with z ∈ zM∃ ;
– (a(x),a(x)) ∈ RCT ,A for every R(x, x) ∈ q such that x ∈ xM ;
– (b(z), b(z)) ∈ RCT ,A for every R(z, z) ∈ q such that z ∈ zM∃ ;
– T ,A |= ∃S(b(z)) for every z ∈ zM∃ with w(z) = Sw′ (for otherwise b(z)w(z)

would not belong to the domain of CT ,A).

The first two items, together with H-completeness of the ABox A, ensure that all
atoms in {A(z) | A(z) ∈ q, z ∈ zM ,w(z) = ε} are present in A when b and a
substituted for zM∃ and xM respectively. The third and fourth items, again together
with H-completeness, ensure the presence of the atoms in {R(z, z) | R(z, z) ∈ q, z ∈
zM ,w(z) = ε}. Finally, the fifth item plus H-completeness ensures that A contains all
atoms in {AS(z) | z ∈ zM ,w(z) = Sw′}. It follows that the body of the unique rule
for Pw

M is satisfied when b and a are substituted for zM∃ and xM respectively, and thus
Π ′Q,A |= Pw

M (b,a).

For the induction step, assume that the statement has been shown to hold for all
n ≤ k+1 ≤M , and let us show that it holds when n = k. For the first direction, suppose
Π ′Q,A |= Pw

k (b,a). It follows that there exists a pair of types (w, s) compatible with
(zk, zk+1) and an assignment c of individuals from A to the variables in zk ∪ zk+1

such that c(x) = a(x) for all x ∈ (zk ∪ zk+1) ∩ x, and c(z) = b(z) for all z ∈ zk∃ ,
and such that every atom in the body of the clause

Pw
k (zk∃ ,x

k)← Atw∪s(zk, zk+1) ∧ P s
k+1(z

k+1
∃ ,xk+1)

is entailed fromΠ ′Q,A when the individuals in c are substituted for zk∪zk+1. We recall
that Atw∪s(zk, zk+1) is the conjunction of the following atoms, for z, z′ ∈ zk ∪ zk+1:

– A(z), if A(z) ∈ q and (w ∪ s)(z) = ε,
– R(z, z′), if R(z, z′) ∈ q and (w ∪ s)(z) = (w ∪ s)(z′) = ε,
– z = z′, if R(z, z′) ∈ q and either (w ∪ s)(z) 6= ε or (w ∪ s)(z′) 6= ε,
– AS(z), if (w ∪ s)(z) is of the form Sw′.

In particular, we have Π ′Q,A |= P s
k+1(c(z

k+1
∃), c(xk+1)). By the induction hypothesis,

there exists a homomorphism hk+1 : qk+1 → CT ,A such that hk+1(u) = c(u)s(u)
for every u ∈ zk+1

∃ ∪ xk+1. Define a mapping hk from var(qk) to ∆CT ,A by setting
hk(u) = hk+1(u) for every variable u ∈ var(qk+1), setting hk(x) = a(x) for every
x ∈ zk ∩ x, and setting hk(z) = b(z)w(z) for every z ∈ zk. Using the same argument

as was used in the base case, we can show that hk is well-defined. For atoms from qk
involving only variables from qk+1, we can use the induction hypothesis to conclude
that they are satisfied under hk, and for atoms only involving variables from zk, we
can argue as in the base case. It thus remains to handle role atoms that contain one
variable from zk and one variable from zk+1. Consider such an atom R(z, z′) ∈ qk,
for z ∈ zk and z′ ∈ zk+1. If w(z) = s(z′) = ε, then the atom R(z, z′) appears in the
body of the clause we are considering. It follows that Π ′Q,A |= R(c(z), c(z′)), hence
(c(z), c(z′)) ∈ RCT ,A . It then suffices to note that c agrees with a and b on the variables
in zk. Next suppose that either w(z) 6= ε or s(z′) 6= ε. It follows that the clause body
contains z = z′, hence c(z) = c(z′). As (w, s) is compatible with (zk, zk+1), one of
the following must hold: (a) s(z′) = w(z)R′ with R′ vT R, or (b) w(z) = s(z′)R′

with R′ vT R−. We give the argument in the case where z ∈ zk∃ (the argument is
entirely similar if z ∈ xk). If (a) holds, then

(hk(z), hk(z′)) = (b(z)w(z), c(z′)s(z′)) = (b(z)w(z), c(z′)w(z)R′) ∈ RCT ,A

since R′ vT R and c(z′) = c(z) = b(z). If (b) holds, then

(hk(z), hk(z′)) = (b(z)w(z), c(z′)s(z′)) = (b(z)s(z′)R′, c(z′)s(z′)) ∈ RCT ,A

since R′ vT R−.

For the converse direction of the induction step, let w be a type that is locally
compatible with zk, let a ∈ ind(A)|xk| and b ∈ ind(A)|zk

∃|, and let hk : qk → CT ,A be
a homomorphism satisfying

hk(x) = a(x), for x ∈ xk, and hk(z) = b(z)w(z), for z ∈ zk∃ . (7)

We let c for zk+1 be defined by setting c(z) equal to the unique individual c such that
h(z) is of the form cw (for some w ∈ WT), and let s be the unique type for zk+1

satisfying h(z) = c(z)s(z) for every z ∈ zk+1; in other words, we obtain s(z) from
h(z) by omitting the initial individual name c(z). Note that since xk+1 ⊆ xk, we have
a(x) = c(x) for every x ∈ xk+1. It follows from the fact that hk is a homomorphism
that s is locally compatible with zk+1 and that, for every role atom R(z, z′) ∈ qk
with z ∈ zk and z′ ∈ zk+1, one of the following holds: (i) w(z) = s(z′) = ε, (ii)
s(z′) = w(z)R′ with R′ vT R, or (iii) w(z) = s(z′)R′ with R′ vT R−. Thus, the
pair of types (w, s) is compatible with (zk, zk+1), and so the following rule appears in
Π ′Q:

Pw
k (zk∃ ,x

k)← Atw∪s(zk, zk+1) ∧ P s
k+1(z

k+1
∃ ,xk+1),

where we recall that Atw∪s(zk, zk+1) is the conjunction of the following atoms, for
z, z′ ∈ zk ∪ zk+1:

– A(z), if A(z) ∈ q and (w ∪ s)(z) = ε,
– R(z, z′), if R(z, z′) ∈ q and (w ∪ s)(z) = (w ∪ s)(z′) = ε,
– z = z′, if R(z, z′) ∈ q and either (w ∪ s)(z) 6= ε or (w ∪ s)(z′) 6= ε,
– AS(z), if (w ∪ s)(z) is of the form Sw′.

It follows from Equation (7) and the fact that hk is a homomorphism that each of the
ground atoms obtained by taking an atom from Atw∪s(zk, zk+1) and substituting a,
b, and c for xk, zk∃ and zk+1, respectively, is present in A. By applying the induction
hypothesis to the predicate P s

k+1 and the homomorphism hk+1 : qk+1 → CT ,A obtained
by restricting hk to var(qk+1), we obtain that Π ′Q,A |= P s

k+1(c(z
k+1
∃),a(xk+1)).

Since for the considered substitution, all body atoms are entailed, we can conclude that
Π ′Q,A |= Pw

k (b,a). q

Lemma 13. For any tree-shaped OMQ Q(x) = (T , q0(x)), any q(z) ∈ SQ, any
H-complete ABox A, and any tuple a in ind(A), Π ′′Q,A |= Pq(a) iff there exists a
homomorphism h : q → CT ,A such that h(z) = a.

Proof. An inspection of the definition of the set SQ shows that every q(z) ∈ SQ is a
tree-shaped query having at least one answer variable, with the possible exception of the
original query q0(x), which may be Boolean.

Just as we did for subtrees in Section 4, we associate a binary relation on the queries
in SQ by setting q′(z′) ≺ q(z) whenever q′(z′) was introduced when applying one of
the two decomposition conditions on p. 10 to q(z). The proof is by induction on the
subqueries in SQ, according to ≺. We will start by establishing the statement for all
queries in SQ other than q0(x), and afterwards, we will complete the proof by giving an
argument for q0(x).

For the basis of induction, take some q(z) ∈ SQ that is minimal in the ordering
induced by≺, which means that var(q) = z. Indeed, if there is an existentially quantified
variable, then the first decomposition rule will give rise to a ‘smaller’ query (in particular,
if |var(q)| = 2, then although the ‘smaller’ query may have the same atoms, the selected
existential variable will become an answer variable). For the first direction, suppose
that Π ′′Q,A |= Pq(a). By definition, Pq(z)← q(z) is the only clause with head predi-
cate Pq . Thus, all atoms in the ground CQ q(a) are present in A, and hence the desired
homomorphism exists. For the converse direction, suppose there is a homomorphism
h : q(z)→ CT ,A such that h(z) = a. It follows that every atom in the ground CQ q(a)
is entailed from T ,A. H-completeness of A ensures that all of the ground atoms in q(a)
are present in A, and thus we can apply the clause Pq(z)← q(z) to derive Pq(a).

For the induction step, consider q(z) ∈ SQ with var(q) 6= z and suppose that
the claim holds for all q′(z′) ∈ SQ with q′(z′) ≺ q(z). For the first direction, let
Π ′′Q,A |= Pq(a). There are two cases, depending on which type of clause was used to
derive Pq(a).

– Case 1: Pq(a) was derived by an application of the following clause:

Pq(z) ←
∧

A(vq)∈q

A(vq) ∧
∧

R(vq,vq)∈q

R(vq, vq) ∧
∧

1≤i≤n

Pqi
(zi),

where q1(z1), . . . , qn(zn) are the subqueries induced by the neighbours of vq
in the Gaifman graph G of q. Then there exists a substitution c for the variables
in the body of this rule that coincides with a on z and is such that the ground
atoms obtained by applying c to the variables in the body are all entailed from

Π ′′Q,A. In particular, Π ′′Q,A |= Pqi
(c(zi)) for every 1 ≤ i ≤ n. We can apply

the induction hypothesis to the qi(zi) to obtain homomorphisms hi : qi → CT ,A
such that hi(zi) = c(zi). Let h be the mapping from var(q) to ∆CT ,A defined
by taking h(v) = hi(v), for v ∈ var(qi). Note that h is well-defined since
var(q) =

⋃n
i=1 var(qi), and the qi have no variable in common other than vq,

which is sent to c(vq) by every hi. To see why h is a homomorphism from q to
CT ,A, observe that q =

⋃n
i=1 qi ∪ {A(vq) ∈ q} ∪ {R(vq, vq) ∈ q}. By the defi-

nition of h, all atoms in
⋃n
i=1 qi hold under h. If A(vq) ∈ q, then A(c(vq)) is

entailed from Π ′′Q,A, and hence is present in A. Similarly, we can show that for
every R(vq, vq) ∈ q, the ground atom R(c(vq), c(vq)) belongs toA. It follows that
all of these atoms hold in CT ,A under h. Finally, we recall that c coincides with a
on z, so we have h(z) = a, as required.

– Case 2: Pq(a) was derived by an application of the following clause, for a tree
witness t for (T , q(z)) with tr 6= ∅ and vq ∈ ti and role R generating t:

Pq(z) ←
∧

u,u′∈tr

(u = u′) ∧
∧
u∈tr

AR(u) ∧
∧

1≤i≤m

Pqt
i
(zt
i),

where qt
1, . . . , q

t
m are the connected components of q without qt. There must exist

a substitution c for the variables in the body of this rule that coincides with a on
z and is such that the ground atoms obtained by applying c to the variables in the
body are all entailed from Π ′′Q,A. In particular, for every 1 ≤ i ≤ m, we have
Π ′′Q,A |= Pqt

i
(c(zt

i)). We can apply the induction hypothesis to the qt
i(z

t
i) to find

homomorphisms h1, . . . , hm of qt
1, . . . , q

t
m into CT ,A such that hi(zt

i) = c(zt
i).

Since t is a tree witness for (T , q(z)) generated by R, there exists a homomorphism
ht of qt into CAR(a)

T with tr = h−1t (a) and such that ht(v) begins by aR for every
v ∈ ti. Now pick some u0 ∈ tr (recall that tr 6= ∅). Then AR(u0) is an atom in
the clause body, and so Π ′′Q,A |= AR(c(u0)), which means that AR(c(u0)) must
appear in A. It follows that for every element in CAR(a)

T of the form aRw, there
exists a corresponding element c(u0)Rw in ∆CT ,A . We now define a mapping h
from var(q) to ∆CT ,A as follows:

h(v) =


hi(v), for every v ∈ var(qt

i),

c(u0)Rw, if v ∈ ti and ht(v) = aRw,

c(u0) if v ∈ tr.

Every variable in var(q) occurs in tr ∪ ti or in exactly one of the qt
i, and so is

assigned a unique value by h. Note that although tr ∩ var(qt
i) is not necessarily

empty, due to the equality atoms, we have h(v) = h(v′), for all v, v′ ∈ tr, and
so the function is well-defined. We claim that h is a homomorphism from q into
CT ,A. Clearly, the atoms occurring in some qt

i are preserved under h. Now consider
some A(v) with v ∈ ti. Then h(v) = c(u0)Rw, where ht(v) = aRw. Since ht is a
homomorphism, we know that w ends with a role S such that ∃S− vT A. It follows
that h(v) also ends with S, and thus h(v) ∈ ACT ,A . Next, consider a role atom
S(v, v′), where at least one of v and v′ belongs to ti. As ht is a homomorphism,
either ht(v′) = ht(v)S

′ with S′ vT S, or ht(v) = ht(v
′)S′ with S′ vT S−, for

some S′. We also know that c(u) = c(u0) for all u ∈ tr, hence h(u) = h(u0) for
all u ∈ tr. It follows that either h(v′) = h(v)S′ with S′ vT S, or h(v) = h(v′)S′

with S′ vT S−, and so S(v, v′) is preserved under h. Finally, since c coincides
with a on z, we have h(z) = a.

For the converse direction of the induction step, suppose that h is a homomorphism
of q into CT ,A such that h(z) = a. There are two cases to consider, depending on where
h maps the ‘splitting’ variable vq .

– Case 1: h(vq) ∈ ind(A). In this case, let q1(z1), . . . , qn(zn) be the subqueries of
q(z) induced by the neighbours of vq in G. Recall that zi consists of vq and the
variables in var(qi) ∩ z. By restricting h to var(qi), we obtain, for each 1 ≤ i ≤ n,
a homomorphism of qi(zi) into CT ,A that maps vq to h(vq) and var(qi) ∩ z
to a(var(qi) ∩ z). Consider a∗ defined by taking a∗(z) = a(z) for every z ∈
var(qi) ∩ z and a∗(vq) = h(vq). By the induction hypothesis, for every 1 ≤ i ≤ n,
we have Π ′′Q,A |= Pqi

(a∗(zi)). Next, since h is a homomorphism, we must have
h(vq) ∈ ACT ,A whenever A(vq) ∈ q and (h(vq), h(vq)) ∈ RCT ,A whenever
R(vq, vq) ∈ q. Since A is H-complete, A(h(vq)) ∈ A for every A(vq) ∈ q and
R(h(vq), h(vq)) for every R(vq, vq) ∈ q. We have thus shown that, under the
substitution a∗, every atom in the body of the clause

Pq(z) ←
∧

A(vq)∈q

A(vq) ∧
∧

R(vq,vq)∈q

R(vq, vq) ∧
∧

1≤i≤n

Pqi
(zi)

is entailed from Π ′′Q,A. It follows that we must also have Π ′′Q,A |= Pq(a).

– Case 2: h(vq) 6∈ ind(A). Then h(vq) is of the form bRw. Let V be the smallest
subset of var(q) that contains vq and satisfies the following closure property:

– if v ∈ V , h(v) /∈ ind(A) and q contains an atom with v and v′, then v′ ∈ V .
Let V ′ consist of all variables in V such that h(v) 6∈ ind(A). We observe that h(v)
begins by bR for every v ∈ V ′ and h(v) = b for every v ∈ V \V ′. Define qV as the
CQ comprising all atoms in q whose variables are in V and which contain at least
one variable from V ′; the answer variables of qV are V \V ′. By replacing the initial
b by a in the mapping h, we obtain a homomorphism hV of qV into CAR(a)

T with
V \ V ′ = h−1V (a). It follows that t = (tr, ti) with tr = V \ V ′ and ti = V ′ is a tree
witness for (T , q(z)) generated by R (and qt = qV). Moreover, tr 6= ∅ because
q has at least one answer variable. This means that the program Π ′′Q contains the
following clause

Pq(z) ←
∧

u,u′∈tr

(u = u′) ∧
∧
u∈tr

AR(u) ∧
∧

1≤i≤m

Pqt
i
(zt
i),

where qt
1, . . . , q

t
m are the connected components of q without qt. Recall that the

query qt
i has answer variables zt

i = var(qt
i) ∩ (z ∪ tr). Let a∗ be the substi-

tution for z ∪ tr such that a∗(z) = a(z) for z ∈ z and a∗(v) = h(v) for
v ∈ tr. Then, for every 1 ≤ i ≤ m, there exists a homomorphism hi from
qt
i to CT ,A such that hi(z) = a∗(z) for every z ∈ zt

i. By the induction hypoth-
esis, Π ′′Q,A |= Pqt

i
(a∗(zt

i)). Next, since h(v) = b for every v ∈ tr, we have

a∗(u) = a∗(u′) for every u, u′ ∈ tr. Moreover, the presence of the element bR in
CT ,A means that T ,A |= AR(b). Since A is H-complete, we have AR(b) ∈ A. It
follows that under the substitution a∗, all atoms in the body of the clause under
consideration are entailed by Π ′′Q,A. Thus, we must also have Π ′′Q,A |= Pq(a).

We have thus shown the lemma for all queries SQ other than q0(x). Let us now
turn to q0(x). For the first direction, suppose Π ′′Q,A |= Pq0

(a). There are four cases,
depending on which type of clause was used to derive Pq(a). We skip the first three
cases, which are identical to those considered in the base case and induction step, and
focus instead on the case in which Pq0

(a) was derived using a clause of the form
Pq0
← A(x) with A a concept name such that T , {A(a)} |= q0. In this case, there must

exist some b ∈ ind(A) such that T ,A |= A(b). By H-completeness of A, we obtain
A(b) ∈ A. Since T , {A(a)} |= q0, we get T ,A |= q0, which implies the existence of a
homomorphism from q0 into CT ,A.

For the converse direction, suppose that there is a homomorphism h : q0 → CT ,A
such that h(x) = a. We focus on the case in which q0 is Boolean (x = ∅) and none
of the variables in q0 is mapped to an ABox individual (the other cases can be handled
exactly as in the induction basis and induction step). In this case, there must exist an
individual b and role R such that h(z) begins by bR for every z ∈ var(q). It follows
that T , {AR(a)} |= q0, since the mapping h′ defined by setting h′(z) = aRw whenever
h(z) = bRw is a homomorphism from q to CT ,{AR(a)}. It follows that Π ′′Q contains
the clause Pq0

← AR(x). Since bR occurs in ∆CT ,A , we have T ,A |= AR(b). By
H-completeness of A, AR(b) ∈ A, and so by applying the clause Pq0

← AR(x), we
obtain Π ′′Q,A |= Pq(a). q

B Experiments

B.1 Computing rewritings

We computed four types of rewritings for linear queries similar to those in Example 7
and a fixed ontology from Example 9. We denote the rewriting from Section 4 by LOG
(because it is of logarithmic depth), and from Section 5 by LIN (because it is of linear
depth). Other two rewritings were obtained by running executables of Rapid [6] and
Clipper [8] with a 5 minute timeout on a desktop machine. We considered the following
three sequences of letters R and S:

RRSRSRSRRSRRSSR, (Sequence 1)
SRRRRRSRSRRRRRR, (Sequence 2)
SRRSSRSRSRRSRRSS. (Sequence 3)

For each of the three sequences, we consider the line-shaped queries with 1–15 atoms
formed by their prefixes. Table 1 present the sizes of different types of rewritings.

B.2 Datasets

We used Erdös-Rènyi random graphs with independent parameters V (number of ver-
tices), p (probability of an R-edge) and q (probability of concepts A and B at a given

Table 1. The size (number of clauses) of different types of rewritings for the three sequences of
queries (– indicates timeout after 5 minutes)

no. Sequence 1 Sequence 2 Sequence 3
of RRSRSRSRRSRRSSR SRRRRRSRSRRRRRR SRRSSRSRSRRSRRSS

atoms Rapid Clipper LIN LOG Rapid Clipper LIN LOG Rapid Clipper LIN LOG

1 1 1 2 1 1 1 2 1 1 1 2 1
2 1 1 5 2 2 2 5 4 2 2 5 4
3 2 2 8 5 2 2 8 5 2 2 8 5
4 3 3 11 8 2 2 11 6 4 4 11 8
5 5 5 14 12 2 2 14 8 4 4 14 10
6 7 7 17 16 2 2 17 10 8 8 17 15
7 10 11 20 20 4 4 20 13 11 11 20 18
8 13 16 23 24 6 7 23 16 18 24 23 21
9 13 16 26 27 10 13 26 22 24 35 26 27

10 26 44 29 32 14 26 29 27 34 63 29 33
11 39 72 32 36 14 26 32 29 43 100 32 37
12 39 126 35 40 14 26 35 33 56 302 35 42
13 – 241 38 45 – 30 38 35 – – 38 46
14 – – 41 47 – 31 41 36 – – 41 51
15 – – 44 51 – 30 44 37 – – 44 52

Table 2. Generated datasets

dataset V p q
avg. degree
of vertices no. of atoms

4.ttl 1 000 0.050 0.050 50 61 498
5.ttl 5 000 0.002 0.004 10 64 157
6.ttl 10 000 0.002 0.004 20 256 804
8.ttl 20 000 0.002 0.010 40 1 027 028

vertex). Note that we intentionally did not introduce any S-edges. The last parameter, the
average degree of a vertex, is V · p. Table 2 summarises the parameters of the datasets.

B.3 Evaluating rewritings

We evaluated all obtained rewritings for the sequence RRSRSRSRRSRRSSR on the
datasets in Section B.2 using RDFox triplestore [17]. The materialisation time and other
relevant statistics are given in Table 3.

Table 3. Evaluating rewritings on RDFox

data- query evaluation time (sec) no. of no. of generated tuples
set size Rapid Clipper LIN LOG answers Rapid Clipper LIN LOG

7 0.271 0.242 0.008 0.243 2 956 2 956 2 956 3 246 125 361
8 0.412 0.377 0.084 0.904 212 213 212 213 212 213 302 221 1 659 409
9 3.117 3.337 3.376 2.941 998 945 998 945 998 945 2 927 979 2 684 359

4.ttl 10 1.079 1.102 0.012 0.607 8 374 8 374 10 760 12 573 1 178 714
11 2.246 1.984 0.385 0.945 436 000 436 000 436 000 836 876 1 618 743
12 13.693 30.032 8.129 6.867 999 998 999 998 1 000 000 5 311 314 4 439 352
13 – 6.810 0.027 0.616 20 985 – 24 839 38 200 553 821
14 – – 0.013 0.358 0 – – 48 312 723
15 – – 0.032 0.394 2 000 – – 70 277 376 313

7 0.089 0.080 0.008 0.078 427 427 427 613 68 546
8 0.136 0.125 0.029 0.434 8 778 8 778 8 778 76 202 1 085 362
9 0.202 0.254 0.369 0.554 105 853 105 853 105 853 1 020 363 1 190 249

5.ttl 10 0.174 0.204 0.011 0.461 11 11 438 506 943 097
11 0.192 0.259 0.036 0.473 651 651 9 396 74 922 944 210
12 0.244 0.699 0.396 1.034 8 058 8 058 113 179 1 004 735 1 940 300
13 – 0.629 0.015 0.244 0 – 438 502 209 915
14 – – 0.014 0.153 0 – – 31 200 962
15 – – 0.032 0.172 0 – – 64 543 265 087

7 0.631 0.581 0.035 0.756 1 217 1 217 1 217 1 499 296 711
8 0.925 0.876 0.159 4.377 67 022 67 022 67 022 335 578 7 546 184
9 1.949 2.275 4.063 5.251 1 678 668 1 678 668 1 678 668 8 613 829 9 225 201

6.ttl 10 1.24 1.377 0.049 4.731 60 60 1 277 1 389 6 936 178
11 1.403 1.798 0.249 4.846 11 498 11 498 77 811 341 459 6 949 160
12 1.697 5.413 4.355 10.128 305 640 305 640 1 951 654 8 780 232 15 626 926
13 – 4.382 0.082 1.762 0 – 1 277 1 377 917 117
14 – – 0.063 1.115 0 – – 47 850 309
15 – – 0.177 1.011 0 – – 257 974 1 107 065

7 6.614 6.277 0.243 8.586 13 103 13 103 13 103 14 625 1 665 376
8 11.441 10.923 1.880 54.813 1 286 991 1 286 991 1 286 991 2 432 629 56 098 445
9 46.704 50.668 76.169 102.055 58 753 514 58 753 514 58 753 514 114 973 160 114 837 395

8.ttl 10 14.348 15.503 0.375 43.347 19 966 19 966 33 014 35 359 52 103 362
11 19.593 20.907 2.843 44.410 1 872 159 1 872 159 3 051 184 4 397 556 53 986 724
12 71.354 182.499 172.822 237.478 79 939 048 79 939 048 120 229 590 199 083 489 242 500 074
13 – 54.497 0.562 22.345 22 474 – 53 717 58 826 5 686 759
14 – – 0.550 12.462 0 – – 253 4 356 739
15 – – 1.211 11.315 12 165 – – 1 064 542 5 395 902

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Descrip-

tion Logic Handbook: Theory, Implementation and Applications. Cambridge University Press
(2003)

3. Bienvenu, M., Kikot, S., Podolskii, V.V.: Tree-like queries in OWL 2 QL: succinctness
and complexity results. In: Proc. of the 30th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2015). pp. 317–328. ACM (2015)

4. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query
answering over ontologies. Journal of Web Semantics 14, 57–83 (2012)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: the DL-Lite family. Journal of Automated
Reasoning 39(3), 385–429 (2007)

6. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL 2 QL. In: Proc.
of CADE-23. LNCS, vol. 6803, pp. 192–206. Springer (2011)

7. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded computers.
Journal of the ACM 18(1), 4–18 (1971)

8. Eiter, T., Ortiz, M., Šimkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-SHIQ plus
rules. In: Proc. of the 26th AAAI Conf. on Artificial Intelligence (AAAI 2012). pp. 726–733.
AAAI (2012)

9. Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T., Zakharyaschev, M.:
The price of query rewriting in ontology-based data access. Artificial Intelligence 213, 42–59
(2014)

10. Gottlob, G., Leone, N., Scarcello, F.: Computing LOGCFL certificates. In: Proc. of the 26th
Int. Colloquium on Automata, Languages and Programming (ICALP-99). LNCS, vol. 1644,
pp. 361–371. Springer (1999)

11. Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proc. of the
Institute of Radio Engineers 40(9), 1098–1101 (1952)

12. Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: On the succinctness of query
rewriting over shallow ontologies. In: Proc. of the 29th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS 2014). ACM (2014)

13. Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.: Exponential lower bounds and
separation for query rewriting. In: Proc. of the 39th Int. Colloquium on Automata, Languages
and Programming (ICALP 2012). LNCS, vol. 7392, pp. 263–274. Springer (2012)

14. Kikot, S., Kontchakov, R., Zakharyaschev, M.: On (in)tractability of OBDA with OWL 2 QL.
In: Proc. of the 24th Int. Workshop on Description Logics (DL 2011). vol. 745, pp. 224–234.
CEUR-WS (2011)

15. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with OWL 2 QL.
In: Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2012). pp. 275–285. AAAI (2012)

16. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to query answering in DL-Lite. In: Proc. of the 12th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2010). AAAI Press (2010)

17. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: A highly-scalable
RDF store. In: Proc. of the 14th Int. Semantic Web Conf. (ISWC 2015), Part II. LNCS, vol.
9367, pp. 3–20. Springer (2015)

18. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. Journal on Data Semantics X, 133–173 (2008)

19. Sudborough, I.H.: On the tape complexity of deterministic context-free languages. Journal of
the ACM 25(3), 405–414 (1978)

20. Venkateswaran, H.: Properties that characterize LOGCFL. Journal of Computer and System
Sciences 43(2), 380–404 (1991)

