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Abstract

Traditionally, description logic has focused on represent-
ing and reasoning about classes rather than relations (roles),
which has been justified by the deterioration of the computa-
tional properties if expressive role inclusions are added. The
situation is even worse in the temporalised setting, where
monodicity is viewed as an almost necessary condition for
decidability. We take a fresh look at the description logic DL-
Lite with expressive role inclusions, both with and without
a temporal dimension. While we confirm that full Boolean
expressive power on roles leads to FO2-like behaviour in
the atemporal case and undecidability in the temporal case,
we show that, rather surprisingly, the restriction to Krom
and Horn role inclusions leads to much lower complexity
in the atemporal case and to decidability (and EXPSPACE-
completeness) in the temporal case, even if one admits full
Booleans on concepts. The latter result is one of very few in-
stances breaking the monodicity barrier in temporal FO. This
is also reflected on the data complexity level, where we ob-
tain new rewritability results into FO with relational primitive
recursion and FO with unary divisibility predicates.

1 Introduction
Description logics (DLs) have often been described as de-
cidable fragments of first-order logic (FO) that model a do-
main by introducing complex concept descriptions and sub-
sumptions between them. In fact, the main syntactic differ-
ence between DLs and FO is that, in the former, one can
construct new, complex, concept descriptions from atomic
concepts using concept constructors without the explicit use
of individual variables. The subsumption relationship be-
tween complex concepts is then expressed using concept
inclusions (CIs). Interestingly, corresponding role (binary
relation) constructors taking as input atomic roles and de-
scribing complex roles have never become mainstream ex-
cept for role composition, thus admitting role inclusions
(RIs) of the form R1 ◦ · · · ◦ Rn v R, with appropriate re-
strictions (Baader et al. 2017). The advantages of even a
very limited form of Boolean expressivity on roles is well
known (Hustadt and Schmidt 1998; Lutz and Sattler 2000b;
Rudolph, Krötzsch, and Hitzler 2008a; Rudolph, Krötzsch,
and Hitzler 2008b), so one can only speculate about the rea-
sons for them not becoming more popular. The main issue
appears to be that, from a computational perspective, adding
Boolean operators on roles leads to expressivity similar to

that of the two-variable fragment FO2 of FO (Lutz and Sat-
tler 2000a; Lutz, Sattler, and Wolter 2001), which, while still
decidable, is significantly more challenging for automated
reasoning than typical DL fragments of FO with some form
of the tree model property (Grädel, Kolaitis, and Vardi 1997;
Vardi 1996). In temporal DLs, the addition of expressiv-
ity for roles is even more problematic: just declaring a
role to remain constant in time often leads to undecidabil-
ity (Lutz, Wolter, and Zakharyaschev 2008; Gabbay et al.
2003). Again, the reason is well understood: if one goes
beyond the monodic fragment of first-order temporal logic
and is thus able to represent how relations change in time,
one typically can encode the halting problem for Turing ma-
chines by using the relations to represent the tape and time
to encode the computation (Gabbay et al. 2003).

Our aim here is to revisit Boolean RIs in the context of
(temporal) DL-Lite and introduce logics with new expres-
sivity for roles, for which the knowledge base (KB) satisfia-
bility problem is decidable in the temporal case and of sig-
nificantly lower complexity than FO2 in the atemporal one.

Recall that in DL-LiteR (Calvanese et al. 2007), also de-
noted DL-LiteHcore in the classification of (Artale et al. 2009),
CIs and RIs take the form of binary Horn (aka core) inclu-
sions ϑ1 v ϑ2 or ϑ1 u ϑ2 v ⊥, where the ϑi are either both
concepts (that is, concept names or of the form ∃R) or roles.
The DL-Lite languages we consider extend this schema by
allowing CIs and RIs of the form

ϑ1 u · · · u ϑk v ϑk+1 t · · · t ϑk+m, (1)

where the ϑi are all concepts or, respectively, roles. We
classify ontologies by the form of their inclusions. Let
c, r ∈ {bool, g-bool, horn, krom, core}. Then DL-Literc is
the DL whose ontologies contain CIs and RIs of the form (1)
satisfying the following conditions for c and r, respectively:
(horn) m ≤ 1, (core) k +m ≤ 2 and m ≤ 1,
(krom) k +m ≤ 2, (bool) any k ≥ 0 and m ≥ 0,

(g-bool) any k ≥ 1 and m ≥ 0.

It follows that core is included in both krom and horn,
which are in bool (g-bool stands for guarded bool). The
resulting languages provide a new way of classifying on-
tologies. While the languages DL-Litebool

c all have essen-
tially the same expressivity as FO2 and inherit NEXPTIME-
completeness of KB satisfiability, the DL-Litekrom

c provide a



way of introducing ‘covering’ RIs> v R1tR2 and also the
complement of a role via disjointness and covering. Rather
surprisingly, these disjunctions come for free as far as the
complexity of KB satisfiability is concerned: even combined
with Boolean CIs, satisfiability is still in NP, and combined
with Krom CIs, it is even in NL. The full table of our com-
plexity results is given below:

RIs\ CIs (g-)bool krom horn core

bool NEXPTIME
g-bool EXPTIME
krom NP NL NP NL
horn NP P P P
core NP NL P NL

Our main aim in this paper is to investigate extensions
of these DL-Lite languages with the standard linear tempo-
ral logic (LTL ) operators 2F /2P (always in the future/past)
and ©F /©P (in the next/previous moment) interpreted over
the timeline (Z, <). The temporal DLs have an additional
parameter o ∈ {2,©,2©}: DL-Liteoc/r allows ontolo-
gies whose axioms (1) may contain operators from o (e.g.,
o = 2 permits 2F /2P only) and comply with c for CIs and
r for RIs. A CI or RI is satisfied in a model if it holds
globally, at all time points in Z. Even in the minimal lan-
guage DL-Lite©core/core, we can state that a role R is expand-
ing (R v ©

FR) or constant (by adding ©FR v R). Us-
ing an auxiliary relation, we can also express R v 2FQ in
DL-Lite©core/core. Moving to DL-Lite2©core/horn, we can express
that R is convex or has a finite lifespan, and DL-Lite2©core/krom
makes it possible to state thatR causesQ to hold eventually;
see Section 2 for more details and discussions.

Using temporalised RIs we can thus represent temporal
knowledge about relations that goes significantly beyond the
expressive power of languages where only concepts and/or
axioms are temporalised (Baader, Ghilardi, and Lutz 2012;
Lutz, Wolter, and Zakharyaschev 2008; Gabbay et al. 2003;
Borgwardt, Lippmann, and Thost 2015; Gutiérrez-Basulto,
Jung, and Kontchakov 2016). We show that, nevertheless,
KB satisfiability is decidable (in fact, EXPSPACE-complete)
for both DL-Lite©bool/krom and DL-Lite2©bool/horn, that is, even
with arbitrary Boolean concepts, neither Krom nor Horn RIs
lead to undecidability. This is optimal, as we also show that
satisfiability of DL-Lite©g-bool/g-bool KBs is undecidable.

RIs \ CIs (g-)bool horn

(g-)bool undecidable
krom ? (EXPSPACE for©-only RBox)
horn EXPSPACE
core PSPACE

We also investigate whether the satisfiability problem for
KBs in our languages can be reduced to the query evalua-
tion problem over the underlying temporal database, which
clarifies the data complexity of the former. We show that
DL-Lite2©krom/core ontologies are rewritable to FO(<,≡N), ex-
tending FO(<) with unary predicates t ≡ 0 (mod n), for
any n > 1, which corresponds to the data complexity in
AC0. On the other hand, we prove that DL-Lite2©bool/horn
ontologies can only be rewritten to FO(RPR), extending

FO with relational primitive recursion, which entails NC1-
completeness for data complexity. The inevitable fly in the
ointment is that there is a DL-Lite©g-bool/g-bool ontology for
which consistency with a given input data is undecidable.

2 Preliminaries
We use the standard DL syntax and semantics. Let ai, i < ω,
be individual names, Ai concept names, and Pi role names.
We define roles S, basic concepts B, temporalised roles R
and temporalised concepts C by the following grammar:

S ::= Pi | P−i , B ::= Ai | ∃S,
R ::= S | 2FR | 2PR | ©FR | ©PR,
C ::= B | 2FC | 2PC | ©FC | ©PC.

A concept or role inclusion (CI or RI) takes the form (1),
where the ϑi are all temporalised concepts or, respectively,
all temporalised roles. (The empty u is > and the empty t
is ⊥.) A TBox T and an RBox R are finite sets of CIs and,
respectively, RIs; their unionO = T ∪R is an ontology. The
atemporal DL-Literc and temporal DL-Liteoc/r were defined
in the introduction. We also set DL-Liteoc = DL-Liteoc/c.

To illustrate, imagine an estate agency describing proper-
ties by their proximity to various amenities, using roles wd
for ‘walking distance’ and dd for ‘driving distance’. Then
we can state in DL-Litekrom

core that > v wd t dd, that these
roles are disjoint (wd u dd v ⊥) and symmetric (e.g.,
wd v wd−), and describe locations using CIs such as
FamilyLocation v ∃wd.School u ∃dd.Pub (which requires
fresh auxiliary role names). In DL-Litebool

core , we can further
say that Station v ∀wd.WellConnected (see Theorem 1).
In DL-Lite©core/krom, we can also express that, over the past
three years, there has been a pub within walking distance:
SocialLocation v ∃wd.Pubu©P∃wd.Pubu©P©P∃wd.Pub.

An ABox, A, is a finite set of atoms of the form Ai(a, `)
and Pi(a, b, `), where a, b are individual names and ` ∈ Z.
We denote by ind(A) the set of individual names in A,
by minA and maxA the minimal and maximal integers
in A, and set tem(A) =

{
n ∈ Z | minA ≤ n ≤ maxA

}
.

For simplicity, we assume that minA = 0. A DL-Liteoc/r
knowledge base (KB) is a pair (O,A), where O is a
DL-Liteoc/r ontology and A an ABox. The size |O| of O
is the number of occurrences of symbols in it; the size of a
TBox, RBox, ABox and KB is defined in the same way, with
unary encoding of numbers in ABoxes.

A (temporal) interpretation is a pair I = (∆I , ·I(n)),
where ∆I 6= ∅ and, for each n ∈ Z,

I(n) = (∆I , aI0 , . . . , A
I(n)
0 , . . . , P I(n)

0 , . . . )

is a standard DL interpretation with aIi ∈ ∆I , AI(n)
i ⊆ ∆I

and P I(n)
i ⊆ ∆I × ∆I . The DL constructs and temporal

operators are interpreted in I(n) as usual:

(P−i )I(n) = { (u, v) | (v, u) ∈ P I(n)
i },

(∃S)I(n) = {u | (u, v) ∈ SI(n), for some v },

(2Fϑ)I(n) =
⋂

k>n
ϑI(k), (2Pϑ)I(n) =

⋂
k<n

ϑI(k),

(©Fϑ)I(n) = ϑI(n+1), (©Pϑ)I(n) = ϑI(n−1).



CIs and RIs are interpreted in I globally in the sense that
inclusion (1) is true in I if

ϑ
I(n)
1 ∩ · · · ∩ ϑI(n)

k ⊆ ϑI(n)
k+1 ∪ · · · ∪ ϑ

I(n)
k+m, for all n ∈ Z.

For an inclusion α, we write I |= α if α is true in I. We call
I a model of (O,A) and write I |= (O,A) if I |= α for all
α ∈ O, aI ∈ AI(`) for A(a, `) ∈ A, and (aI , bI) ∈ P I(`)

for P (a, b, `) ∈ A. A KB is satisfiable if it has a model.
It is to be noted that the LTL operators 3F (eventually), U

(until) and their past counterparts can be expressed in bool
using ©P /©F and 2P /2F (Fisher, Dixon, and Peim 2001;
Artale et al. 2013). In many cases, one does not need full
Booleans: 3PR v Q is equivalent to R v 2FQ, which
can be expressed in DL-Lite©core as R v ©FS, S v ©FS,
S v Q, where S is fresh. It immediately follows that
convexity of R (that is, 3PR u 3FR v R) can be ex-
pressed in DL-Lite2horn and DL-Lite©horn. Then R v 3FQ
can be simulated in DL-Lite2krom with > v Q̄ t Q and
R u 2F Q̄ v ⊥. That the lifespan of R is bounded can be
expressed in DL-Lite2core using 2PR v ⊥ and 2FR v ⊥.

We are interested in the combined and data complexities
of the satisfiability problem for KBs: for the former, both
the ontology and the ABox of a KB are regarded as in-
put, while for the latter, the ontology is fixed. We assume
that |tem(A)| ≥ |ind(A)| in any input ABox A (if this is
not so, we add the required number of dummies with the
missing timestamps to A). Let ind(A) = {a1, . . . , am}.
We encode A as a structure SA with domain tem(A) or-
dered by < such that SA |= A(k, `) iff A(ak, `) ∈ A and
SA |= P (k, k′, `) iff P (ak, ak′ , `) ∈ A.

We establish our data complexity results by ‘rewriting’
ontologies to FO-sentences ‘accepting’ or ‘rejecting’ the in-
put ABoxes. Let L be a class of FO-sentences interpreted
over SA. Say that Φ ∈ L is an L-rewriting of O if, for
any ABox A, the KB (O,A) is satisfiable iff SA |= Φ.
Here, we need three classes L: (i) FO(<) with binary and
ternary predicates of the formAi(x, t) andPi(x, y, t) as well
as < and =; (ii) FO(<,≡N) with extra unary predicates
t ≡ 0 (mod n), for any n > 1, and (iii) FO(RPR) that ex-
tends FO with relational primitive recursion, which allows
one to construct formulas such as[

Q1(z1,t)≡Θ1(z1,t,Q1(z1,t−1),...,Qn(zn,t−1))

...

Qn(zn,t)≡Θn(zn,t,Q1(z1,t−1),...,Qn(zn,t−1))

]
Ψ,

where [. . . ] defines recursively, via the formulas Θi, the in-
terpretations of the predicates Qi in Ψ. For data complex-
ity, evaluation of FO(<,≡N)-sentences over SA is known
to be in LOGTIME-uniform AC0 (Immerman 1999) and
evaluation of FO(RPR)-sentences is in NC1 (Compton and
Laflamme 1990).

3 Reasoning with Atemporal DL-Lite
To begin with, we establish the complexity of reasoning
with the plain DLs underlying the temporal DL-Liteoc/r in-
troduced above. We denote them by DL-Literc , where as
before c, r ∈ {bool, g-bool, horn, krom, core}. The satisfi-
ability problem for DLs of the form DL-Litecore

c was stud-

ied by (Calvanese et al. 2007; Artale et al. 2009): it is NP-
complete for DL-Litecore

bool, P-complete for DL-Litecore
horn, and

NL-complete for DL-Litecore
krom and DL-Litecore

core KBs.
We show that DL-Litebool

bool can be regarded as a notational
variant of the extensionALCI∩,¬ ofALC with inverse roles
and Boolean operators on roles. This logic has, in turn,
almost the same expressive power as FO2, except that the
identity role has to be added. In detail, let ALCI∩,¬ be the
DL with roles S and concepts C defined by

S, S′ ::= > | Pi | S u S′ | ¬S | S−,
C, C ′ ::= > | Ai | ∃S.C | C u C ′ | ¬C.

An ALCI∩,¬ CI takes the form C v C ′ (Lutz, Sattler,
and Wolter 2001; Lutz and Sattler 2000a; Gargov and Passy
1990). We say that a KB K is a model conservative exten-
sion of a KB K′ if K |= K′, the signature of K contains the
signature of K′, and every model of K′ can be extended to
a model of K by providing interpretations of the fresh sym-
bols of K and leaving the domain and the interpretation of
the symbols in K′ unchanged.
Theorem 1. (i) For every DL-Litebool

bool KB, one can compute
in logarithmic space an equivalent ALCI∩,¬ KB.

(ii) For every ALCI∩,¬ KB, one can compute in log-
space a model conservative extension in DL-Litebool

bool.

Proof. (i) Clearly, any CI in DL-Litebool
bool is an ALCI∩,¬ CI

(∃R = ∃R.>). Any RI S1 u · · · uSk v Sk+1 t · · · tSk+m

in DL-Litebool
bool is equivalent to the ALCI∩,¬ CI ∃R.> v ⊥,

where R abbreviates S1 u · · · uSk u¬Sk+1 u · · · u¬Sk+m.
(ii) For any ALCI∩,¬ KB K, we construct a model con-

servative extension of K in ALCI∩,¬ with CIs in normal
form:

A v ∀S.B, ∀S.B v A, A1uA2 v B, A v ¬B, ¬A v B,

where A,B,A1, A2 range over concept names and>. Next,
we replace CIs A v ∀S.B and ∀S.B v A by S v Q t R,
∃Q− v B, ∃R v ¬A, and, respectively, ¬A v ∃R, R v S,
∃R− v ¬B, with fresh role names Q, R. Finally, RIs with
a Boolean S are transformed into normal form (1) to obtain
a model conservative extension of K in DL-Litebool

bool. q

The NEXPTIME-completeness of ALCI∩,¬ KB sat-
isfiability (Lutz, Sattler, and Wolter 2001) implies that
DL-Litebool

bool KB satisfiability is also NEXPTIME-complete.
To bring down the complexity to EXPTIME, it suffices to
avoid unguarded quantification by admitting only RIs with a
non-empty left-hand side, as in the g-bool RIs. Then, for any
DL-Liteg-bool

bool KB, it is straightforward to compute in linear
time an equivalent KB in the guarded two-variable fragment
GF2 of FO. Using the fact that KB satisfiability for the latter
logic is in EXPTIME (Grädel 1999), we obtain the following:
Theorem 2. KB satisfiability is NEXPTIME-complete for
DL-Litebool

bool and EXPTIME-complete for DL-Liteg-bool
bool .

We now show that the DL-Lite logics with Horn and
Krom RIs are reducible to propositional logic. For an on-
tology O, let role±(O) = {P, P− | P a role in O} and
let O = T ∪ R. We assume that R is closed under tak-
ing the inverses of roles in RIs. Denote by subT the set



of concepts in T and their negations. A concept type τ
for T is a maximal subset τ of subT that is ‘proposition-
ally’ consistent with T : if B1, . . . , Bk ∈ τ and T con-
tains B1 u · · · u Bk v Bk+1 t · · · t Bk+m, then one of
Bk+1, . . . , Bk+m is also in τ (note, however, that τ does not
have to be consistent with T as it can contain ∃P even if
∃P− v ⊥ is in T ). Clearly, for an interpretation J and
u ∈ ∆J , the set comprising all B ∈ subT with u ∈ BJ and
all ¬B ∈ subT with u /∈ BJ is a concept type for T ; it is
denoted by τJu and called the concept type of u in J . Simi-
larly, let subR be the set of roles inR and their negations. A
role type ρ for R is a maximal subset of subR proposition-
ally consistent withR. For (u, v) ∈ ∆J ×∆J , the set com-
prising all S ∈ subR with (u, v) ∈ SJ and all ¬S ∈ subR
with (u, v) /∈ SJ is a role type for R; it is denoted by ρJu,v
and called the role type of (u, v) in J . For a set of role liter-
als (roles and their negations) Ξ, let clR(Ξ) be the set of all
role literals L′ such thatR |=

d
L∈Ξ L v L′. The following

lemma plays a key role in the reduction.

Lemma 3. For any satisfiable DL-Litekrom
bool KBK = (O,A),

O = T ∪ R, there is a model I = (∆I , ·I) of K such that

∆I = ind(A) ∪ {wiS | S ∈ role±(O) and 0 ≤ i < 3 }

and (u, v) ∈ SI , for every u→S v with u ∈ (∃S)I , where

→S = {(a,w0
S) | a ∈ ind(A)} ∪ {(wiR, wi⊕1

S ) | wiR ∈ ∆I}

and ⊕ is addition modulo 3. In particular, DL-Litekrom
bool has

the linear model property: |∆I | = |ind(A)|+ 3|role±(O)|.

Proof. Given a model J = (∆J , ·J ) of K, we construct I
as follows. For any S ∈ role±(O), if SJ 6= ∅, then we
pick wS ∈ (∃S−)J ; otherwise, we pick any wS ∈ ∆J .
We assume that the wS are distinct. Let ∆I comprise
ind(A) and three copiesw0

S , w
1
S , w

2
S of eachwS ; cf. (Börger,

Grädel, and Gurevich 1997, Proposition 8.1.4). This also
fixes the →S . Define f : ∆I → ∆J by taking f(a) = a,
for all a ∈ ind(A), and f(wiS) = wS , for all S and i. We
then set τu = τJf(u), for all u ∈ ∆I . To define ρu,v for
u, v ∈ ∆I , we consider the following three cases.

– If u, v ∈ ind(A), then we take Ξ = {S | S(a, b) ∈ A},
assuming P−i (a, b) ∈ A whenever Pi(b, a) ∈ A.

– If ∃S ∈ τu and u→S v, then we take Ξ = {S}.
– Otherwise, we take Ξ = ∅.

We begin with ρu,v = clR(Ξ) and perform the following
procedure for each RI > v S1 t S2 in R such that none
of Si and ¬Si is in ρu,v yet. As J |= R, either S1 or
S2 is in ρJf(u),f(v). So ρu,v is extended with the respective
clR({Si}). Since any contradiction derivable from Krom
formulas is derivable from two literals, the resulting ρu,v is
consistent with R and both τu- and τv-compatible: that is,
∃R ∈ τu and ∃R− ∈ τv , for all R ∈ ρu,v . One can check
that the constructed τu and ρu,v , for u, v ∈ ∆I , are types
for T andR, respectively, and give rise to a model of K. q

The existence of a model I from Lemma 3 can be en-
coded by a propositional formula ϕK whose propositional

variables take the form B†(u) and P †i (u, v), for u, v ∈ ∆I ,
assuming that (P−i )†(u, v) = P †i (v, u). The formula ϕK is
a conjunction of the following, for all u, v ∈ ∆I :

B†1(u) ∧ · · · ∧B†k(u)→ B†k+1(u) ∨ · · · ∨B†k+m(u),

for CI B1 u · · · uBk v Bk+1 t · · · tBk+m in T ,
S†1(u, v)→ S†2(u, v), for RI S1 v S2 inR,
¬S†1(u, v) ∨ ¬S†2(u, v), for RI S1 u S2 v ⊥ inR,
S†1(u, v) ∨ S†2(u, v), for RI > v S1 t S2 inR,
A†(a), for A(a) ∈ A, and P †(a, b), for P (a, b) ∈ A,
(∃S)†(u)→ S†(u, v), for each S with u→S v,

S†(u, v)→ (∃S)†(u), for each S.

Clearly, K is satisfiable iff ϕK is satisfiable. Also, if K is
in DL-Litekrom

krom, then ϕK is a Krom formula constructed by
a logspace transducer. Now, since DL-Litekrom

horn can express
DL-Litekrom

bool (Krom RIs can simulate Krom CIs, and the lat-
ter can express the complement of concepts), we obtain:

Theorem 4. Satisfiability is NP-complete for DL-Litekrom
bool

and DL-Litekrom
horn KBs, and NL-complete for DL-Litekrom

krom.

The next theorem is proved by a similar argument. How-
ever, for DL-Litehorn

krom we use a polynomial (rather than log-
space) reduction into Krom propositional logic.

Theorem 5. Satisfiability is NP-complete for DL-Litehorn
bool

KBs, and P-complete for DL-Litehorn
horn and DL-Litehorn

krom KBs.

4 Satisfiability of Temporal KBs
We now consider extensions DL-Liteoc/r of DL-Literc with
temporal operators in o ∈ {2,©,2©} that can be applied
to concepts and roles. Our first observation is negative:

Theorem 6. Satisfiability in DL-Lite©g-bool is undecidable.

Proof. The proof is by reduction of the undecidable N×N-
tiling problem (Berger 1966). Given a set T = {1, . . . ,m}
of tile types, with the colours on the four edges of tile type i
denoted by up(i), down(i), left(i) and right(i), we define the
following DL-Lite©g-bool ontologyO, whereRi is a role name
associated with the tile type i ∈ T:

I v
⊔
i∈T

∃Ri, Ri v
⊔

right(i)=left(j)

©
FRj ,

∃R−i v
⊔

up(i)=down(j)

∃Rj , ∃Ri u ∃Rj v ⊥, for i 6= j.

Then (O, {I(a, 0)}) is satisfiable iff T can tile N× N. q

Fortunately, the temporal DL-Lite languages with Krom,
Horn and core RIs turn out to be less naughty. In the remain-
der of this section, we develop reductions of these languages
to propositional and first-order LTL with one variable.

Given a DL-Lite©bool/krom KB K = (T ∪ R,A), we con-
struct a first-order temporal sentence ΦK with one free vari-
able x. We assume that K has no nested temporal operators
and that, in RIs of the form > v R1 t R2 from R, both Ri



are plain (atemporal) roles; also, R is closed under taking
the inverses of roles in RIs. First, we set ΦK = ⊥ if (R,A)
is unsatisfiable. Otherwise, we treat concept names and ba-
sic concepts in K as unary predicates and define ΦK as a
conjunction of the following sentences, where 2 = 2F2P :

2∀x [C1(x) ∧ · · · ∧ Ck(x)→ Ck+1(x) ∨ · · · ∨ Ck+m(x)],

for CI C1 u · · · u Ck v Ck+1 t · · · t Ck+m in T ,
2∀x [∃S1(x) ∨ ∃S2(x)] and

2[∀x∃S1(x) ∨ ∀x∃S−2 (x)], for RI > v S1 t S2 inR,
©`
FA(a), for A(a, `) ∈ A,
©`
F∃P (a) and ©`F∃P−(b), for P (a, b, `) ∈ A,

2[∃x∃P (x)↔ ∃x∃P−(x)], for role name P in T ,
and, for every RI ©1S1 v ©2S2 with R |= ©1S1 v ©2S2,
where each ©i is ©F , ©P or blank, and ©1S1 can be > and
©2S2 can be ⊥, the sentence

2∀x [©1∃S1(x)→ ©2∃S2(x)].

We observe that R |= ©1S1 v ©2S2 can be checked in
P (Artale et al. 2014, Lemma 5.3), and so ΦK is constructed
in polynomial time.
Lemma 7. A DL-Lite©bool/krom KB is satisfiable iff ΦK is sat-
isfiable.
Theorem 8. The satisfiability problem for DL-Lite©bool/krom
KBs is EXPSPACE-complete.

Proof. The upper bound follows from Lemma 7 since the
one-variable fragment of first-order LTL is known to be EX-
PSPACE-complete (Halpern and Vardi 1989; Gabbay et al.
2003); hardness is proved by reduction of the (2n−1) corri-
dor tiling problem (Van Emde Boas 1997): given a finite set
T of tile types {1, . . . ,m} with four colours up(i), down(i),
left(i) and right(i) and a distinguished colour W , decide
whether T can tile the grid N × { s | 1 ≤ s < 2n } so
that (b1) tile 0 is placed at (0, 1), (b2) every tile i placed at
every (c, 1) has down(i) = W , and (b3) every tile i placed
at every (c, 2n − 1) has up(i) = W .

Let A = {A(a, 0)} and O contain the inclusions

A v ©2n

F D, D v ©2n

F D, A v
l

1≤s<2n

©s
F∃P, ∃P− v

⊔
i∈T

Ti,

Ti v ©2n

F

⊔
right(i)=left(j)

Tj , Ti u ∃S−i v ⊥, > v Si tQi, for i ∈ T,

∃Qi u©F∃Qj v ⊥, for i, j ∈ T with up(i) 6= down(j).

Observe that (O,A) is satisfiable iff there is a placement of
tiles on the grid: each of the (2n − 1) P -successors of a
created at moments 1, . . . , 2n represents a corridor column.
However, the size of the CIs is exponential in n. We now
describe how they can be replaced by polynomial-size CIs.

Consider a CI A v ©2n

F D. We express it using the fol-
lowing CIs, for k with 0 ≤ k < n and j with k < j < n:

A v ©F (¬Bn−1 u · · · u ¬B0) and Bn−1 u · · · uB0 v D,
¬Bk uBk−1 u · · · uB0 v ©F (Bk u ¬Bk−1 u · · · u ¬B0),

¬Bj u ¬Bk v ©F¬Bj , and Bj u ¬Bk v ©FBj ,

which have to be converted into normal form (1). Intuitively,
they encode a binary counter from 0 to 2n − 1, where ¬Bi
and Bi stand for ‘the ith bit of the counter is 0 and, respec-
tively, 1’. The CIs of the form C1 v ©2n

F C2 are handled
similarly. For A v

d
1≤s<2n

©s
F∃P , we use the Bk v ∃P ,

for 0 ≤ k < n, instead of Bn−1 u · · · uB0 v ∃P .
To ensure that (b1)–(b3) are satisfied, we add toO the CIs

A u©F∃Qi v ⊥, for i ∈ T \ {0},
D u©F∃Qi v ⊥, for down(i) 6= W,

©
FD u ∃Qi v ⊥, for up(i) 6= W.

One can show that (O,A) is as required. q

LetK = (T ∪R,A) be a DL-Lite2©bool/horn KB. We assume
thatR is closed under taking the inverses of roles in RIs and
contains all roles in T . A beam b for T is a function from Z
to the set of concept types for T such that, for all n ∈ Z,

©
FC ∈ b(n) iff C ∈ b(n+ 1), (2)

2FC ∈ b(n) iff C ∈ b(k), for all k > n, (3)

and symmetric conditions for the past-time operators. The
function bIu : n 7→ {C ∈ subT | u ∈ CI(n) } (we specify
only the positive component of types) is a beam, for any I
and u ∈ ∆I ; we will refer to it as the beam of u in I.

A rod r for R is a function from Z to the set of role
types for R such that (2)–(3) and their past-time counter-
parts hold for all n ∈ Z with b replaced by r and C by
temporalised roles S. For any I and any u, v ∈ ∆I , the
function rIu,v : n 7→ {R ∈ subR | (u, v) ∈ RI(n) } is a
rod forR. Fix individual names d, e. Since the RIs inR are
Horn, given any ABox A with atoms of the form S(d, e, `),
define the R-canonical rod rA for A (consistent with R):
rA : n 7→ {R ∈ subR | R,A |= R(d, e, n) }. In other
words, R-canonical rods are the minimal rods for R ‘con-
taining’ all atoms of A: for any R and n ∈ Z,

R ∈ rA(n) iff R ∈ r(n), for all rods r forR
such that S ∈ r(`), for each S(d, e, `) ∈ A.

Given a beam b, a rod r is called b-compatible if ∃S ∈ b(n)
whenever S ∈ r(n), for n ∈ Z and a basic concept ∃S. We
are now fully equipped to prove the following characterisa-
tion of DL-Lite2©bool/horn KBs satisfiability, where beams can
be ‘shifted’ in (4) to achieve a finite representation.

Lemma 9. Let K = (T ∪ R,A) be a DL-Lite2©bool/horn KB.
Let ∆ = ind(A) ∪ {wS | S ∈ role±(R) }. Then K is
satisfiable iff there are beams bw, w ∈ ∆, for T such that

A ∈ ba(`), for all A(a, `) ∈ A,
if ∃S ∈ bw(n), then ∃S−∈ bwS−(k), for some k ∈ Z, (4)

for all a, b ∈ ind(A), there is a ba-compatible rod r forR
with S ∈ r(`), for all S(a, b, `) ∈ A, (5)

∃S ∈ bw(n) iff there is a bw-compatible rod r forR
with S ∈ r(n). (6)

We illustrate the construction by the following example.



Example 1. Let K = (O, {Q(a, b, 0)}), where O consists
of ∃Qu2FA v ⊥, > v At ∃P and P− v ©FQ, obtained
by converting ∃Q v 3F∃P and P− v ©FQ into normal
form (1). Beams and rods in Lemma 9 are depicted below:

0 1 2 3 4 5 6 7

ra,b rb,a

rP,2

rP,0

bb

ba

gP,2

gP,0

bwP

Q

P Q

P Q

Beams ba, bb and bwP are shown by horizontal lines: the
concept type contains ∃P or ∃Q whenever the large node
is grey; similarly, the type contains ∃P− or ∃Q− whenever
the large node is white (the label of the arrow specifies the
role); we omit A to avoid clutter. The rods are the arrows
between the pairs of horizontal lines. For example, the rod
in (5) for a and b is labelled by ra,b: it contains only Q at 0
(only the positive components of types are given); the rod
in (5) for b and a is labelled by rb,a, and in this case, it is the
mirror image of ra,b. In fact, if we chooseR-canonical rods
in (5), then the rod for any b, a will be the mirror image of
the rod for a, b. The rod rP,2 required by (6) for ∃P on ba
at moment 2 is depicted between ba and gP,2: it contains P
at 2 and Q at 3. In fact, it should be clear that, if we choose
canonical R-rods in (6), then they will all be isomorphic
copies of at most |R|-many rods: more precisely, they will
be of the form r{S(d,e,n)}, for a role S fromR.

In the proof of Lemma 9, we show how this collection
of beams and R-canonical rods can be used to obtain a
model I of K shown below (again, A is omitted):

0 1 2 3 4 5 6 7 8 9 10 11 12 13

ra,b rb,a

rP,2

rP,6

rP,10

b

a

aP2

aP2P6

aP2P6P10

Q

P Q

P Q

P Q

· · ·

We now reduce the existence of the required collection
of beams to the satisfiability problem for the one-variable
first-order LTL and thus establish decidability and the upper
complexity bound for DL-Lite2©bool/horn, which turns out to be
tight.
Theorem 10. The satisfiability problem for DL-Lite2©bool/horn
KBs is EXPSPACE-complete.

Proof. We first show the upper bound. Let K = (O,A) be
a DL-Lite2©bool/horn KB with O = T ∪ R. We assume that R
is closed under taking the inverses of roles in RIs.

We define a translation ψK of K into first-order LTL with
a single individual variable x. We treat elements of ∆ as
constants in the first-order language, basic concepts B as
unary predicates and roles P as binary predicates, assuming
that P−i (u, x) = Pi(x, u), and let ψK be a conjunction of
the following sentences, for all constants u ∈ ∆:
2
(
C1(u) ∧· · ·∧ Ck(u)→Ck+1(u) ∨· · ·∨ Ck+m(u)

)
, (7)

for CI C1 u · · · u Ck v Ck+1 t · · · t Ck+m in T ,

2∀x
(
R1(u, x) ∧ · · · ∧Rk(u, x)→ R(u, x)

)
,

for RI R1 u · · · uRk v R inR,
and similarly with ⊥ for RI R1 u · · · uRk v ⊥ inR,
©`
FA(a), for A(a, `) ∈ A, ©`FP (a, b), for P (a, b, `) ∈ A,

2
[
(∃S)(u)→ 3F3P (∃S−)(wS−)

]
, for S∈role±(O), (8)

2
(
(∃S)(u)↔ ∃xS(u, x)

)
, for S ∈ role±(O). (9)

It can be seen that each collection of beams bu, u ∈ ∆, for T
gives rise to a model M of ψK: the domain of M com-
prises ∆ and the gS,m, for a role S and m ∈ Z. Then,
takeR-canonical rods ra,b for {S(d, e, `) | S(a, b, `) ∈ A},
which exist by (5), and R-canonical rods rS,m for
{S(d, e,m)} for every S and m ∈ Z with ∃S ∈ bu(m),
for some u ∈ ∆, which exist by (6), and set, for all n ∈ Z,
basic concepts B, role names P and roles S′,

M, n |= B(u) iff B ∈ bu(n), for u ∈ ∆,

M, n |= P (a, b) iff P ∈ ra,b(n), for a, b ∈ ind(A),

M, n |= S′(u, gS,m) iff S′ ∈ rS,m(n), for u ∈ ∆,

m ∈ Z and roles S with ∃S ∈ bu(m).

It is readily checked that M is as required (in Example 1,
the gS,m are represented explicitly by grey horizontal lines).
Conversely, it can be verified that every model M of ψK
gives rise to the required collection of beams for T .

The lower bound is established by reduction of the non-
halting problem for deterministic Turing machines with ex-
ponential tape. q

We now modify the technique developed above to reduce
DL-Lite2©bool/core to LTL. The reduction is based on the fol-
lowing observation. LetR be a DL-Lite2©bool/core RBox. Con-
sider the R-canonical rod r for some AR = {R(d, e, 0)}.
Then S ∈ r(n) iff one of the following conditions holds:
– R′,AR |= S(d, e, n), where R′ is obtained from R by

removing the RIs with 2,
– there is m > n with |m| ≤ 2|R| and 2PS ∈ r(m),
– there is m < n with |m| ≤ 2|R| and 2FS ∈ r(m).
Let minR,S be the minimal integer with 2FS ∈ r(m); if it
exists, then |minR,S | ≤ 2|R|. The maximal integer maxR,S
with 2PS ∈ r(m) has the same bound (if exists). The fol-
lowing example shows that these integers can indeed be ex-
ponential in |R|.
Example 2. LetR be the following DL-Lite2©bool/core RBox:

P v R0, Ri v ©FR(i+1) mod 2, for 0 ≤ i < 2,

P v Q0, Qi v ©FQ(i+1) mod 3, for 0 ≤ i < 3,

R1 v Q, Q1 v Q, Q2 v Q, P v Q, P v 2PQ.

Clearly, R |= P v ©6
F2PQ. If instead of the 2- and 3-

cycles we use pi-cycles, where pi is the ith prime number
and 1 ≤ i ≤ n, thenR |= P v ©p1×···×pnF 2PQ.

In any case, the existence and binary representations of
minR,S and maxR,S can be computed in PSPACE.
Theorem 11. For DL-Lite2©bool/core and DL-Lite2©horn/core KBs,
the satisfiability problem is PSPACE-complete.



Proof. We encode K in LTL following the proof of Theo-
rem 10 and representing (7)–(8) as LTL -formulas with vari-
ables of the form C†(u), R†(u, v), for u, v ∈ ∆. Sen-
tences (9), however, require a different treatment. First, take

2
(
©1(∃S1)†(u)→ ©2(∃S2)†(u)

)
, (10)

for every ©1S1 v ©2S2 in R, where each ©i is ©F , ©P or
blank. Then we need CIs of the form ∃R v ©maxR,S2P∃S
and ∃R v ©minR,S2F∃S, for all R and S with defined
maxR,S and minR,S , which are not entailed by (10). These
integers can be represented in binary using n bits, where n is
polynomial in |R|. Assuming that maxR,S ≥ 0, we encode,
for example, ∃R v ©maxR,S2P∃S by

2
(
2F3F (∃R)†(u)→ 2F (∃S)†(u)

)
, (11)

2
(
(∃R)†(u) ∧ ¬3F (∃R)†(u)→ ©maxR,S

F DR,S
u

)
, (12)

2
(
DR,S
u → 2P (∃S)†(u)

)
, (13)

where (12) is expressed by O(n2) formulas encoding the
binary counter (similar to those in the proof of Theorem 8).
To explain the meaning of (11)–(13), consider any w ∈ ∆I

in a model I of K. If w ∈ (∃R)I(n) for infinitely many
n > 0, then w ∈ (∃S)I(n) for all n, which is captured
by (11). Otherwise, there is n such that w ∈ (∃R)I(n) and
w /∈ (∃R)I(m) for all m > n, whence w ∈ (∃S)I(k), for
any k < n+ maxR,S , which is captured by (12) and (13).

The LTL translation ΨK of K is a conjunction of (7)–(8),
(10) and (11)–(13) for all R and S with defined maxR,S ,
and their counterparts for ∃R v ©minR,S2F∃S. One can
show that K is satisfiable iff ΨK is satisfiable. The PSPACE
lower bound follows from the fact that every LTL -formula
is equisatisfiable with some LTL2©

core KB. q

5 FO(RPR)-Rewritability of DL-Lite2©bool/horn
We next investigate the data complexity of the satisfiability
problem for temporal DL-Lite KBs. Again, out first result is
negative; it is proved using Theorem 6 and a representation
of the universal Turing machine by a set of tiles.
Theorem 12. There is a DL-Lite©g-bool ontologyO for which
the satisfiability of (O,A), for a given A, is undecidable.

We obtain our positive results using FO-rewritability. Let
L ∈ {FO(<),FO(<,≡N),FO(RPR)}. Our first aim is to
show that L-rewritability of DL-Lite2©bool/horn ontologies can
be reduced to L-rewritability of ontology-mediated atomic
queries (or OMAQs) with LTL ontologies.

In general, by an OMAQ q we mean a pair of the form
(O, A) or (O, P ), where O is an ontology, A a concept and
P a role name. A certain answer to (O, A) over an ABoxA
is any (a, `) ∈ ind(A) × tem(A) such that aI ∈ AI(`) for
every model I of (O,A); a certain answer to (O, P ) overA
is any (a, b, `) ∈ ind(A)2 × tem(A) with (aI , bI) ∈ P I(`)

for every I |= (O,A). An L-rewriting of (O, A) is an
L-formula Φ(x, t) such that (a, `) is a certain answer to
(O, A) over any ABox A iff SA |= Φ(a, `); an L-rewriting
of (O, P ) is defined similarly.

First, we show how to reduce the satisfiability prob-
lem for DL-Lite2©bool/horn ontologies O to answering OMAQs

(O′, A⊥) with a ⊥-free ontology O′ and a concept
name A⊥. More precisely, for any ABox A, the KB (O,A)
is satisfiable iff (O′, A⊥) has no certain answers over A.

Let O = T ∪ R. We define O′ = T ′ ∪ R′ as fol-
lows. The RBox R′ is obtained by replacing every occur-
rence of ⊥ in R with a fresh role name P⊥ and adding the
RI P v P⊥, for any P inconsistent with O in the sense that
(O, {P (a, b, 0)}) has no models. The TBox T ′ results from
replacing every ⊥ in T with a fresh concept A⊥ and adding
the CIs ∃P⊥ v A⊥, ∃P−⊥ v A⊥ together withA⊥ v 2FA⊥
and A⊥ v 2PA⊥ saying that A⊥ is global: if u ∈ AI(n)

⊥ for
some n ∈ Z, then u ∈ AI(n)

⊥ for all n ∈ Z. By Theorem 10,
O′ can be constructed in exponential space.

Theorem 13. If Φ⊥(x, t) is an L-rewriting of the OMAQ
(O′, A⊥), then ∃x, tΦ⊥(x, t) is an L-rewriting of O.

Next, we show that L-rewritability of a ⊥-free OMAQ
with an DL-Lite2©bool/horn ontology is reducible to L-
rewritability of a role-free OMAQ. Ontologies without roles
are clearly a notational variant of LTL ontologies; hence, in
this case we prefer to write ‘LTL2©

bool ontologies’. We explain
the reduction by instructive examples. The first two exam-
ples illustrate the interaction between the DL and tempo-
ral dimensions in DL-Lite2©bool/horn that we need to take into
account when constructing the LTL OMAQs to which the
rewritability of ⊥-free DL-Lite2©bool/horn OMAQs is reduced.

Example 3. Suppose T = {B v ∃P, ∃Q v A } and
R = {P v ©

FQ }. An obvious idea of constructing
a rewriting for the OMAQ q = (T ∪ R, A) would be
to find first a rewriting of the LTL OMAQ (T †, A†) ob-
tained from (T , A) by replacing the basic concepts ∃P
and ∃Q with surrogate concept names (∃P )† = EP and
(∃Q)† = EQ, respectively. This would give us the FO-
query A(x, t) ∨ EQ(x, t). By restoring the intended mean-
ing of EQ, we would then obtain A(x, t) ∨ ∃y Q(x, y, t).
The second step would be to rewrite, using the RBoxR, the
atom Q(x, y, t) into Q(x, y, t) ∨ P (x, y, t − 1). However,
the resulting formula

A(x, t) ∨ ∃y
(
Q(x, y, t) ∨ P (x, y, t− 1)

)
is not a rewriting of q: it does not return the certain an-
swer (a, 1) over A = {B(a, 0), C(a, 1)} because so far we
have not taken into account the CI ∃P v ©F∃Q, which is
a consequence of R. If we now add the ‘connecting axiom’
(∃P )† v ©F (∃Q)† to T †, then in the first step we obtain
A(x, t)∨EQ(x, t)∨EP (x, t−1)∨B(x, t−1), which gives
us the correct FO(<)-rewriting of q:

A(x, t) ∨ ∃y
(
Q(x, y, t) ∨ P (x, y, t− 1)

)
∨

∃y P (x, y, t− 1) ∨B(x, t− 1).

Example 4. Let q = (T ∪R, A) with T = { ∃Q v 2PA },
R = {P v 2FP1, T v 2FT1, T1 v 2FT2, P1 u T2 v Q}.
The two-step construction outlined in Example 3 would first
give us the formula

Φ(x, t) = A(x, t) ∨ ∃t′
(
(t < t′) ∧ ∃y Q(x, y, t′)

)



as a rewriting of (T , A). It is readily checked that the fol-
lowing formula Ψ(x, y, t′) is a rewriting of (R, Q):

Q(x, y, t′)∨
([
P1(x, y, t

′)∨ ∃t′′
(
(t′′ < t′)∧P (x, y, t′′)

)]
∧[

T2(x, y, t
′) ∨ ∃t′′

(
(t′′ < t′) ∧

(
T1(x, y, t

′′) ∨
∃t′′′

(
(t′′′ < t′′) ∧ T (x, y, t′′′)

)))])
.

However, the result of replacing Q(x, y, t′) in Φ(x, t) with
Ψ(x, y, t′) is not an FO(<)-rewriting of (O, A): when eval-
uated over A = {T (a, b, 0), P (a, b, 1) }, it does not return
the certain answers (a, 0) and (a, 1); see the picture below:

0 1 2 3 4

a A A A A A

b
T P , T1 P1, T1, T2, Q P1, T1, T2, Q P1, T1, T2, Q

(Note that these answers would be found had we evaluated
the obtained ‘rewriting’ over Z rather than {0, 1}.) This
time, we miss the CI ∃(2FP1 u 2FT2) v 2F∃Q, which
follows from R and T . To fix the problem, we can take a
fresh role name Gρ, for ρ = {2FP1,2FT2 }, and add the
‘connecting axiom’ ∃Gρ v 2F∃Q to T . Then we rewrite
the extended TBox and A into Φ′(x, t) defined as follows:

A(x, t)∨∃t′
(
(t < t′)∧∃y Q(x, y, t′)

)
∨∃t′′ ∃y Gρ(x, y, t′′),

where we replace Q(x, y, t′) by Ψ(x, y, t′) and restore the
meaning of Gρ(x, y, t′′) by rewriting (R,2FP1 u 2FT2) to
P (x, y, t′′) ∧

(
T1(x, y, t′′) ∨ ∃t′

(
(t′ < t′′) ∧ T (x, y, t′)

))
and substituting it for Gρ(x, y, t′′) in Φ′(x, t).

We now formally define the connecting axioms forO, as-
suming that R contains all role names in T . Let ρ be a set
of (temporalised) roles from R consistent with R. Denote
by rρ the R-canonical rod for {S(d, e, 0) | S ∈ ρ}. By the
well-known properties of LTL , there are positive integers
s ρ ≤ |R| and p ρ ≤ 22|R| with

rρ(n) = rρ(n− p ρ), for n ≤ −s ρ,
rρ(n) = rρ(n+ p ρ), for n ≥ s ρ.

Then we take a fresh role name Gρ and fresh concept names
Dn
ρ , for −s ρ − p ρ < n < s ρ + p ρ, and construct the CIs

∃Gρ v D0
ρ, Dn

ρ v ©FDn+1
ρ , for 0 ≤ n < s ρ+p ρ−1,

Ds ρ+p ρ−1
ρ v ©FDs ρ

ρ ,

Dn
ρ v ∃S, for S ∈ rρ(n), 0 ≤ n < s ρ + p ρ,

and symmetrical ones for −s ρ − p ρ ≤ n ≤ 0. Let (con) be
the set of such CIs for all possible ρ. Set TR = T ∪ (con).
Example 5. In Example 3, for ρ = {P,©FQ}, we have
s ρ = 2, p ρ = 1, and so TR contains the CIs

∃P v D0
ρ, D0

ρ v ©FD1
ρ, D1

ρ v ©FD2
ρ,

D2
ρ v ©FD2

ρ, D0
ρ v ∃P, D1

ρ v ∃Q,
which imply ∃P v ©F∃Q. In the context of Example 4, for
ρ = {2FP1,2FT2}, we have s ρ = 1, p ρ = 1, and so TR
contains the following CIs:

∃Gρ v D0
ρ, D0

ρ v ©FD1
ρ, D1

ρ v ©FD1
ρ,

D1
ρ v ∃P1, D1

ρ v ∃T2, D1
ρ v ∃Q.

We denote by T †R the LTL2©
bool TBox obtained from TR by

replacing every basic concept B with its surrogate B†.
Theorem 14. A DL-Lite2©bool/horn OMAQ (O, A) with a ⊥-
free O = T ∪ R is L-rewritable whenever
– the LTL2©

bool OMAQ (T †R, A) is L-rewritable and
– the LTL2©

horn OMAQ (R, R) is L-rewritable, for every tem-
poralised role inR.
As a first consequence of Theorems 13 and 14, we obtain:

Theorem 15. Every DL-Lite2©bool/horn ontology is FO(RPR)-
rewritable.

Note that, as follows from (Artale et al. 2015, Theorem 9),
satisfiability of LTL©horn KBs is NC1-hard for data com-
plexity, and so satisfiability of DL-Lite2©bool/horn ontologies is
NC1-complete.

6 FO(<,≡N)-Rewritability of DL-Lite2©krom/core
If O = T ∪ R is a DL-Lite2©krom/core ontology, then the
TBox TR constructed above is in DL-Lite2©krom/core, and so,
by Theorem 14, we can show L-rewritability of O by es-
tablishing L-rewritability of every LTL2©

krom OMAQ. It is
known from (Artale et al. 2020) that LTL©krom OMAQs
are FO(<,≡N)-rewritable. Here we establish FO(<,≡N)-
rewritability of all LTL2©

krom OMAQs. The proof utilises
the monotonicity of the 2 operators, similarly to the proof
of (Artale et al. 2020, Theorem 11). However, the latter
relies on partially-ordered NFAs accepting the models of
(O,A), which do not work in the presence of ©. Our key
observation here is that every model of (O,A) has at most
O(|O|) timestamps such that the same 2-concepts hold be-
tween any two nearest of them. The placement of these
timestamps and their concept types can be described by an
FO(<)-formula. However, to check whether these types
are compatible (i.e., satisfiable in some model), we require
FO(<,≡N)-formulas similar to those in the proof of (Artale
et al. 2020, Theorem 14).
Theorem 16. LTL2©

krom OMAQs are FO(<,≡N)-rewritable.

Proof. Let q = (O, A) be an LTL2©
krom OMAQ. We can as-

sume that A occurs in O, which has no nested occurrences
of temporal operators and contains CIs ©B ≡ A©B , for
every ©B in O with © ∈ {©F ,©P}. Define an NFA AO
that recognises ABoxes A consistent with O, represented as
words XminA, . . . , XmaxA, where

Xi =
{
B | B(i) ∈ A and B occurs in O

}
, i ∈ tem(A).

The set T of states in AO comprises maximal sets τ of con-
cepts of O consistent with O; we refer to such τ as types
forO. Now, for any τ, τ ′ ∈ T and an alphabet symbolX , the
NFA AO has a transition τ →X τ ′ just in case the following
conditions hold: (i) X ⊆ τ ′, (ii) ©FC ∈ τ iff C ∈ τ ′, (iii)
2FC ∈ τ iff C,2FC ∈ τ ′, and their past counterparts. As
τ →X τ ′ implies τ →∅ τ ′, for any X , we omit ∅ from→∅.
Since all τ in T are consistent withO, every state in AO has
a→-predecessor and a→-successor. Thus, for any ABoxA
represented asX0, X1, . . . , Xm, a timestamp ` (0 ≤ ` ≤ m)
is not a certain answer to q over A iff there is a path

π = τ−1 →X0 τ0 →X1 τ1 →X2 . . .→Xm τm,



in AO with A /∈ τ`. This criterion can be encoded by an
infinite FO-expression Ψ(t) of the form

¬
[ ∨
τ0→...→τm
is a path in AO

( ∧
0≤i≤m

typeτi(i) ∧
∨

0≤i≤m withA/∈τi

(t = i)
)]
,

where the disjunction is over all (possibly infinitely many)
paths and typeτ (t) is a conjunction of all ¬B(t) withB /∈ τ ,
for concept names B in O: the first conjunct ensures, by
contraposition, that any B from Xi also belongs to τi, while
the second conjunct guarantees that A /∈ τ` in case ` = t.

We write τ →2 τ ′ if τ and τ ′ satisfy (iii), but not nec-
essarily (ii). One can show that any path τ0 → . . . → τm
in AO contains a subsequence

τs0 →2 τs1 →2 . . .→2 τsd−1
→2 τsd

such that 0 = s0 < s1 < · · · < sd−1 < sd = m for
d ≤ 2|O| + 1 and, for all i < d, either 2C,C ∈ τsi , τj
or 2C /∈ τsi , τj , for all 2C in O, 2 ∈ {2P ,2F}, and all
j ∈ (si, si+1).

To deal with the ©-operators, we consider the LTL©krom
ontology Õ obtained from O by first extending it with the
CIs 2FC v ©

F2FC and 2FC v ©
FC for all 2FC in

O and their past counterparts, which are obvious LTL2©
krom

tautologies, and then replacing every 2PC and 2FC with
its surrogate, a fresh concept name. Let GÕ be the infi-
nite directed graph whose vertices are pairs (L, n), for a
simple literal L (a concept name or its negation) in Õ and
n ∈ Z. It contains an edge from (L, n) to (L′, n + k), for
k ∈ {−1, 0, 1}, iff Õ |= L v ©kL′, where ©k denotes ©kF
if k ≥ 0 and ©−kP if k < 0. We write (L1, n1) ; (L2, n2)
if GÕ has a path from (L1, n1) to (L2, n2), which means
that Õ |= ©n1L1 v ©n2L2. We slightly abuse notation
and write, for example, L ∈ τ for a type τ in case L is the
surrogate for 2PC and τ contains 2PC.

Lemma 17. For any ABox A, a timestamp ` ∈ tem(A) is
not a certain answer to q over A iff there are d ≤ 2|O|+ 2,
a sequence τ0 →2 . . .→2 τd of types forO and a sequence
minA = s0 < · · · < sd = maxA such that

– B ∈ τi, for all B(si) ∈ A;
– (B,n) 6; (¬B′, n′), for si < n, n′ < si+1 with
B(n), B′(n′) ∈ A;

– (L, si) 6; (¬B′, n′), for L ∈ τi and si < n′ < si+1 with
B′(n′) ∈ A;

– (B,n) 6; (¬L′, si+1), for si < n < si+1 withB(n) ∈ A
and L′ ∈ τi+1;

– (L, si) 6; (¬L′, si+1), for L ∈ τi and L′ ∈ τi+1;
– ` = si, for some i (0 ≤ i ≤ d) such that A /∈ τi.

We can now define an FO(<,≡N)-rewriting Q(t) of q by
encoding the conditions of Lemma 17 as follows:

Q(t) = ¬
[ ∨
d≤2|O|+2

∨
τ0→2...→2τd

∃t0, . . . , td(
pathτ0→2...→2τd

(t0, . . . , td) ∧
∨

0≤i≤d withA/∈τi

(t = ti)
)]
,

where pathτ0→2...→2τd
(t0, . . . , td) is the formula

(t0 = min) ∧ (td = max) ∧
∧

0≤i<d

(ti < ti+1) ∧
∧

0≤i≤d

typeτi(ti)

∧
∧

0≤i<d

[ ∧
L∈τi, L′∈τi+1

¬entL,¬L′(ti, ti+1)

∧
∧
L∈τi

∀t′ ∈ (ti, ti+1)
(
B′(t′)→ ¬entL,¬B′(ti, t′)

)
∧

∧
L′∈τi+1

∀t ∈ (ti, ti+1)
(
B(t)→ ¬entB,¬L′(t, ti+1)

)
∧
∧

B,B′ in Õ

∀t, t′∈(ti, ti+1)
(
B(t)∧B′(t′)→¬entB,¬B′(t, t′)

)]
and where entL1,L2 is such that SA |= entL1,L2(n1, n2) iff
Õ |= ©n1L v ©n2L2, for any n1, n2 ∈ tem(A); see (Ar-
tale et al. 2020, Theorem 14). Note that the outermost dis-
junction in Q(t) can be empty, in particular when O is in-
consistent, in which case the rewriting Q(t) is simply >. q

As a consequence of Theorems 13, 14 and 16, we obtain:

Theorem 18. DL-Lite2©krom/core ontologies are FO(<,≡N)-
rewritable.

7 Conclusions
We extended the DL-Lite family of description logics by
languages with Krom, Horn and arbitrary Boolean role in-
clusions and identified their computational complexity. We
observed, in particular, that Boolean RIs make DL-Lite as
expressive as FO2, while covering Krom RIs > v R1 t R2

come for free as far as satisfiability is concerned.
We used those languages as a basis for defining a new

type of temporal DLs. So far the main approach to design-
ing well-behaved fragments of first-order temporal logic has
been the monodicity principle, which disallows temporal op-
erators before a formula with two or more free variables.
The main contribution of this paper is to show that by re-
stricting the use of classical connectives one can obtain nat-
ural and decidable fragments whose expressivity for binary
relations is not captured by the monodicity principle.

Interesting directions of future work include establish-
ing the tight combined complexity of DL-Lite2©horn/krom and
the data complexity of DL-Lite with Krom RIs. We also
plan to investigate the problem of answering queries me-
diated by ontologies in our temporal languages. Answer-
ing unions of conjunctive queries (UCQs) is undecidable
with DL-Litekrom

krom ontologies (Rosati 2007) and 2EXPTIME-
complete for DL-Liteg-bool

bool (Bárány, Gottlob, and Otto 2014;
Bourhis et al. 2016; Hernich 2020). UCQs with DL-Litehorn

horn
ontologies are FO(<)-rewritable; with DL-Liteg-bool

bool ontolo-
gies they are CONP-complete for data complexity. Temporal
instance queries are FO(<)-rewritable for DL-Lite2core and
FO(<,≡N)-rewritable for DL-Lite©core (Artale et al. 2015).
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Bárány, V.; Gottlob, G.; and Otto, M. 2014. Querying the
guarded fragment. Logical Methods in Computer Science
10(2).
Berger, R. 1966. The Undecidability of the Domino Prob-
lem. American Mathematical Society.
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Grädel, E. 1999. On the restraining power of guards. J.
Symb. Log. 64(4):1719–1742.
Gutiérrez-Basulto, V.; Jung, J. C.; and Kontchakov, R. 2016.
Temporalized EL ontologies for accessing temporal data:
Complexity of atomic queries. In Proc. of the 25th Int. Joint
Conf. on Artificial Intelligence, IJCAI 2016, 1102–1108. IJ-
CAI/AAAI Press.
Halpern, J. Y., and Vardi, M. Y. 1989. The complexity of
reasoning about knowledge and time. I. Lower bounds. J.
Comput. Syst. Sci. 38(1):195–237.
Hernich, A.; Lutz, C.; Papacchini, F.; and Wolter, F.
2020. Dichotomies in Ontology-Mediated Querying with
the Guarded Fragment. ACM Trans. Comput. Logic 20:1-47
Hustadt, U., and Schmidt, R. A. 1998. Issues of decidability
for description logics in the framework of resolution. In Au-
tomated Deduction in Classical and Non-Classical Logics,
Selected Papers, volume 1761 of LNCS, 191–205. Springer.
Immerman, N. 1999. Descriptive Complexity. Springer.
Lutz, C., and Sattler, U. 2000a. The complexity of reasoning
with Boolean modal logics. In Advances in Modal Logic 3,
329–348. World Scientific.
Lutz, C., and Sattler, U. 2000b. Mary likes all cats. In Proc.
of the 2000 Int. Workshop on Description Logics DL 2000,
CEUR Workshop Proceedings, 213–226. CEUR-WS.
Lutz, C.; Sattler, U.; and Wolter, F. 2001. Modal logic and
the two-variable fragment. In Proc. of the 15th Int. Work-
shop on Computer Science Logic, CSL 2001, volume 2142
of LNCS, 247–261. Springer.
Lutz, C.; Wolter, F.; and Zakharyaschev, M. 2008. Temporal
description logics: A survey. In Proc. of the 15th Int. Sym-
posium on Temporal Representation and Reasoning, TIME
2008, 3–14.
Rosati, R. 2007. The limits of querying ontologies. In
Proc. of the 11th Int. Conf. on Database Theory, ICDT 2007,
volume 4353 of LNCS, 164–178. Springer.
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