
Query Rewriting over Shallow Ontologies

S. Kikot1, R. Kontchakov1, V. Podolskii2, and M. Zakharyaschev1

1 Department of Computer Science and Information Systems
Birkbeck, University of London, U.K.

{kikot,roman,michael}@dcs.bbk.ac.uk
2 Steklov Mathematical Institute, Moscow, Russia

podolskii@mi.ras.ru

Abstract. We investigate the size of conjunctive query rewritings over
OWL2QL ontologies of depth 1 and 2 by means of a new formalism,
called hypergraph programs, for computing Boolean functions. Both pos-
itive and negative results are obtained. All conjunctive queries over on-
tologies of depth 1 have polynomial-size nonrecursive datalog rewritings;
tree-shaped queries have polynomial-size positive existential rewritings;
however, for some queries and ontologies of depth 1, positive existential
rewritings can only be of superpolynomial size. Both positive existential
and nonrecursive datalog rewritings of conjunctive queries and ontolo-
gies of depth 2 suffer an exponential blowup in the worst case, while
first-order rewritings can grow superpolynomially unless NP ⊆ P/poly.

1 Introduction

This paper is a continuation of the series [14, 12, 13], where we investigated the
following problems. Let q(x) be a conjunctive query (CQ) with answer variables
x and let T be an OWL2QL ontology. It is known (see, e.g., [8, 3]) that there
exists a first-order formula q′(x), called an FO-rewriting of q and T , such that
(T ,A) |= q(a) iff A |= q′(a), for any ABox A and any vector a of individuals
in the ABox (of the same length as x). Thus, to find certain answers to q(x)
over T and A, it suffices to find answers to q′(x) over the data A, which can
(hopefully) be done by conventional relational database management systems
(RDBMSs). Various experiments showed, however, that rewritings q′ can be too
large for the RDBMSs to cope with. This put forward the followings problems:

– What is the overhead of answering CQs via ontologies compared to standard
database query answering in the worst case?

– What is the size of FO-rewritings of CQs and OWL2QL ontologies in the
worst case?

– Can rewritings of one type (say, nonrecursive datalog) be substantially shorter
that rewritings of another type (say, positive existential)?

– Are there interesting and useful sufficient conditions on CQs and ontologies
under which rewritings are short?

We showed [14, 12, 13] that, for a certain sequence of (tree-shaped) CQs qn and
OWL2QL TBoxes Tn, the problem ‘A |= qn?’ is in P for combined complexity,
while the problem ‘(Tn,A) |= qn?’ is NP-complete. Moreover, any positive exis-
tential (PE) or nonrecursive datalog (NDL) rewriting of qn and Tn is of exponen-
tial size, while any FO-rewriting is of superpolynomial size unless NP ⊆ P/poly.
We also showed that NDL-rewritings are in general exponentially more succinct
than PE-rewritings, and FO-rewritings can be superpolynomially more succinct
than PE-rewritings. On the other hand, Gottlob and Schwentick [9] demon-
strated that one can always find a polynomial-zise rewriting for the price of
polynomially-many additional existential quantifiers over a domain with at least
two constants (thus confirming once again that formalisms with nondetermin-
ism are exponentially more succinct; cf. also [5]). Finally, Kikot et el. [15] give
a practically useful sufficient condition on CQs and ontologies under which PE-
rewritings are of polynomial size.

The problem we address in this paper is whether the depth of TBoxes (that
is, the maximal depth of the canonical models with single-individual ABoxes)
has any impact on the size of rewritings. (The TBoxes Tn mentioned above are
of depth n.) In particular, what happens if we restrict the depth of TBoxes to
1 or 2? (PE-rewritings over TBoxes of depth 0 are trivially polynomial.) The
obtained results are summarised below:

(1) For any CQ and TBox of depth 1, there is a polynomial-size NDL-rewriting.
(2) PE-rewritings of some CQs and TBoxes of depth 1 are of superpolynomial

size.
(3) All tree-shaped CQs and TBoxes of depth 1 have a polynomial-size PE-

rewriting.
(4) For TBoxes of depth 2, both NDL- and PE-rewritings can suffer an expo-

nential blowup, while FO-rewritings can suffer a superpolynomial blowup
(unless NP ⊆ P/poly).

Moreover, it follows from our constructions that the problem of finding short FO-
rewritings for given CQ and a TBox (of depth 2) is equivalent to the problem of
finding short Boolean circuits for NP-complete problems.

We begin by observing that the tree-witness PE-rewritings, representing all
possible homomorphisms of subqueries of a given CQ to the canonical models
with one ABox individual, give rise to a class of monotone Boolean functions
associated with hypergraphs and called hypergraph functions. In particular, hy-
pergraphs H of degree 2 (every vertex in which belongs to at most 2 hyperedges)
correspond to Boolean CQs qH and TBoxes TH of depth 1 such that answering
qH over TH and single-individual ABoxes amounts to computing the hyper-
graph function for H. We show then that representing Boolean functions as
hypergraphs of degree 2 is polynomially equivalent to representing them by non-
deterministic branching programs (NBPs) [11]. This correspondence and known
results about NBPs [18, 10] give (1) and (2) above. We show (3) using the tree
form of CQs and the fact that, over TBoxes of depth 1, CQs q can only have
≤ |q| tree witnesses. To obtain (4), we observe that hypergraphs of degree > 2
are computationally as powerful as nondeterministic Boolean circuits (NP/poly)

and encode computing the function Cliquen,k(e) (a graph with n vertices has a
k-clique) as answering some CQs over TBoxes of depth 2 (which correspond to
hypergraphs of degree 3). Although hypergraph programs for Boolean functions
are introduced as a technical means to investigate the size of CQ rewritings, they
may be of independent interest to the complexity theory of Boolean functions.

2 OWL2QL and Rewritings over H-complete ABoxes

In this paper, we use the following (simplified) syntax of OWL2QL. It contains
individual names ai, concept names Ai, and role names Pi (i ≥ 1). Roles R and
basic concepts B are defined by the grammar:

R ::= Pi | P−i , B ::= ⊥ | Ai | ∃R.

A TBox, T , is a finite set of inclusions of the form

B1 v B2, B1 uB2 v ⊥, R1 v R2, R1 uR2 v ⊥.

An ABox, A, is a finite set of atoms of the form Ak(ai) or Pk(ai, aj). The set
of individual names in A is denoted by ind(A). T and A together form the
knowledge base (KB) K = (T ,A). The semantics for OWL2QL is defined in the
usual way based on interpretations I = (∆I , ·I) [6]. We write B1 ≡ B2 as a
shortcut for B1 v B2 and B2 v B1.

For every role name R in T , we take two fresh concept names AR, AR− and
add to T the axioms AR ≡ ∃R and AR− ≡ ∃R−. We say that the resulting TBox
is in normal form and assume, without loss of generality, that every TBox in this
paper is in normal form. We denote by vT the subsumption relation induced by
T and write S1 vT S2 if T |= S1 v S2, where S1, S2 are both concepts or roles.
We say that an ABox A is H-complete with respect to T in case

R2(a, b) ∈ A if R1(a, b) ∈ A and R1 vT R2,

A2(a) ∈ A if A1(a) ∈ A and A1 vT A2,

for all concept names Ai (including the AR) and roles Ri. We write R(a, b) ∈ A
for P (a, b) ∈ A if R = P and for P (b, a) if R = P−; also, we write AR(a) ∈ A if
R(a, b) ∈ A, for some b.

A conjunctive query (CQ) q(x) is a formula ∃y ϕ(x,y), where ϕ is a con-
junction of atoms of the form Ak(z1) or Pk(z1, z2) with zi ∈ x∪ y (without loss
of generality, we assume that CQs do not contain constants). A tuple a ⊆ ind(A)
is a certain answer to q(x) over K = (T ,A) if I |= q(a) for all I |= K; in this
case we write K |= q(a). If x = ∅, the CQ q is called Boolean; a certain answer
to such a q over K is ‘yes’ if K |= q and ‘no’ otherwise. Where convenient, we
regard a CQ q as the set of its atoms.

Suppose T is a TBox and q(x) a CQ. An FO-formula q′(x) with free variables
x and without constants is an FO-rewriting of q and T over H-complete ABoxes
if, for any H-complete (with respect to T) ABox A and any a ⊆ ind(A), we

have (T ,A) |= q(a) iff A |= q′(a). If an FO-rewriting q′ is a positive existential
formula, we call it a PE-rewriting of q and T . We also consider rewritings in
the form of nonrecursive Datalog queries. We remind the reader that a Datalog
program, Π, is a finite set of Horn clauses ∀x (γ1∧· · ·∧γm → γ0), where each γi is
an atom of the form P (x1, . . . , xl) with xi ∈ x. The atom γ0 is called the head of
the clause, and γ1, . . . , γm its body. All variables occurring in the head must also
occur in the body. A predicate P depends on a predicate Q in Π if Π contains a
clause whose head is P and whose body contains Q. Π is called nonrecursive if
this dependence relation for Π is acyclic. For a nonrecursive Datalog program Π
and an atom q′(x), we say that (Π, q′) is an NDL-rewriting of q(x) and T over
H-complete ABoxes in case (T ,A) |= q(a) iff Π,A |= q′(a), for any H-complete
ABox A and any a ⊆ ind(A). Rewritings over arbitrary ABoxes are defined by
dropping the condition that the ABoxes are H-complete.

Proposition 1. Suppose (Π, q′) is an NDL-rewriting of q and T over H-com-
plete ABoxes. Then there is an NDL-rewriting (Π ′, q′) of q and T over arbitrary
ABoxes such that |Π ′| ≤ |Π|+O(|T |2). A similar result holds for PE- and FO-
rewritings.

Proof. We assume without loss of generality that q′ is not a concept or role name
in T . Let Π∗ be the result of replacing each A and P in Π with fresh predicates
A∗ and P ∗, where A is a concept and P a role name, respectively. Define Π ′ to
be the union of Π∗ and the following clauses:

A∗(x)← B(x), for concept names A and concepts B with B vT A,
P ∗(x, y)← R(x, y), for role names P and roles R with R vT P,

where B(x) = R(x, z), for a fresh z, if B = ∃R and R(x, y) = S(x, y) if R = S
and R(x, y) = S(y, x) if R = S−, for a role name S. It should be clear that
(Π ′, q′) is an NDL-rewriting of q and T over arbitrary ABoxes. The cases of
PE- and FO-rewritings are similar (except that in these cases we replace each A
and P with a disjunction of the bodies in their defining clauses). q

3 The Tree-Witness Rewriting

In this section, we define one particular PE-rewriting over H-complete ABoxes,
which will be used to establish links with formulas and circuits computing certain
monotone Boolean functions.

Recall [8, 15] that, for any TBox T and ABox A, there is a canonical model
CT ,A of (T ,A) such that (T ,A) |= q(a) iff CT ,A |= q(a), for all CQs q(x)
and a ⊆ ind(A). The domain of CT ,A consists of the individuals in ind(A) and
the witnesses introduced by the existential quantifiers in T . Every individual
a ∈ ind(A) with (T ,A) |= AR(a) is a root of a (possibly infinite) sub-tree CRT (a)
of CT ,A, which may intersect another such tree only on their common root a.
Every CRT (a) is isomorphic to the canonical model of (T , {AR(a)}).

a1 : AR1 a2 : AR1 , AR2
a3

CR1
T (a1) CR1

T (a2) CR2
T (a2)

P1, P
−
2 P2

We say that T is of depth ω if at least one of CRT (a) is infinite; T is of depth d,
1 ≤ d < ω, if there is a chain of the form w0R0w1 . . . wd−1Rd−1wd in the trees
CRT (a), R a tole in T , but there is no such chain of greater length.

By definition, CT ,A |= q(a) iff there is a homomorphism h : q(a) → CT ,A.
Such a homomorphism h splits q into the subquery mapped by h to ind(A) and
the subquery mapped to the trees CRT (a). We can think of a rewriting of q and
T as listing possible splits of q into such subqueries.

Suppose q′ ⊆ q and there is a homomorphism h : q′ → CRT (a), for some a,
such that h maps all answer variables in q′ to a. Let tr = h−1(a) and let ti be
the remaining set of (existentially quantified) variables in q′. Suppose ti 6= ∅. We
call the pair t = (tr, ti) a tree witness for q and T generated by R if the query q′

is a minimal subset of q such that, for any y ∈ ti, every atom in q containing y
belongs to q′. In this case, we denote q′ by qt. By definition, we have

qt =
{
S(z) ∈ q | z ⊆ tr ∪ ti and z 6⊆ tr

}
.

Note that the same tree witness t = (tr, ti) can be generated by different roles
R. We denote the set of all such roles by Ωt and define the formula

twt =
∨
R∈Ωt

∃z
(
AR(z) ∧

∧
x∈tr

(x = z)
)
. (1)

Tree witnesses t and t′ are consistent if qt∩qt′ = ∅. Each consistent set Θ of tree
witnesses (in which any pair of distinct tree witnesses is consistent) determines
a subquery qΘ of q that comprises all atoms of qt, for t ∈ Θ. The subquery qΘ is
to be mapped to the CRT (a), whereas the remainder, q\qΘ, obtained by removing
the atoms of qΘ from q, is mapped to ind(A). The following PE-formula qtw is
called the tree-witness rewriting of q and T over H-complete ABoxes:

qtw(x) =
∨

Θ consistent

∃y
(

(q \ qΘ) ∧
∧
t∈Θ

twt

)
. (2)

Example 1. Consider the KB K = (T , {A(a)}), where

T = {A v ∃R, A v ∃R−, AR ≡ ∃R, AR− ≡ ∃R−},

and the CQ q(x1, x4) = {R(x1, y2), R(y3, y2), R(y3, x4)} shown in the picture
below alongside the canonical model CT ,A (with AR and AR− omitted).

t1

t2
x1

y2

y3

x4

R R R

A
a

R−R

CT ,A

There are two tree witnesses for q and T : t1 = (t1r , t
1
i) generated by R and

t2 = (t2r , t
2
i) generated by R−, with

t1r = {x1, y3}, t1i = {y2}, twt1 = ∃z (AR(z) ∧ (x1 = z) ∧ (y3 = z)),

t2r = {y2, x4}, t2i = {y3}, twt2 = ∃z (AR−(z) ∧ (x4 = z) ∧ (y2 = z)).

We have qt1 = {R(x1, y2), R(y3, y2)} and qt2 = {R(y3, y2), R(y3, x4)}, so t1 and
t2 are inconsistent. Thus, we obtain the following tree-witness rewriting:

qtw(x1, x4) = ∃y2, y3
[
(R(x1, y2) ∧R(y3, y2) ∧R(y3, x4)) ∨

(R(y3, x4) ∧ twt1) ∨ (R(x1, y2) ∧ twt2)
]
.

Theorem 1. For any ABox A that is H-complete with respect to T and any
a ⊆ ind(A), we have CT ,A |= q(a) iff A |= qtw(a).

Note that |qtw| = O(|Ξ| · |q| · |T |), where Ξ is the collection of all consistent
sets of tree witnesses for q and T and the |T | factor comes from the twt-formulas
and multiple roles that may generate a tree witness. Note also that the number of
tree witnesses for q and T may be exponential in q [15]. If any two tree-witnesses
for q and T are compatible, that is, they are either consistent or one is included
in the other, then qtw can be equivalently transformed into the PE-rewriting

q′tw(x) = ∃y
∧

S(z)∈q

(
S(z) ∨

∨
t a tree witness for q and T

S(z)∈qt

twt

)
,

which is of polynomial size whenever the number of tree witnesses for q and
T is polynomial. Our aim now is to investigate transformations of this kind
in the more abstract setting of Boolean functions. In Section 8, we shall see an
example of q and T with only |q|-many tree witnesses any PE-rewriting of which
is of superpolynomial size because of multiple combinations of inconsistent tree
witnesses.

4 Hypergraph Functions

The tree-witness rewriting qtw above gives rise to monotone Boolean functions
we call hypergraph functions. For the complexity theory of monotone Boolean
functions, the reader is referred to [2, 11].

Let H = (V,E) be a hypergraph with vertices v ∈ V and hyperedges e ∈ E,
E ⊆ 2V . We call a subset X ⊆ E independent if e ∩ e′ = ∅, for any distinct
e, e′ ∈ X. The set of vertices that occur in the hyperedges of X is denoted by
VX . With each vertex v ∈ V and each hyperedge e ∈ E we associate propositional
variables pv and pe, respectively. The hypergraph function fH for H is given by
the Boolean formula

fH =
∨

X independent

(∧
v∈V \VX

pv ∧
∧
e∈X

pe

)
. (3)

The rewriting qtw of q and T defines a hypergraph whose vertices are the atoms
of q and hyperedges are the sets qt, for tree witnesses t for q and T . We denote
this hypergraph by HqT . The formula (3) defining fHqT is basically the same as

the rewriting (2) with the atoms S(z) ∈ q and tree witness formulas twt treated
as propositional variables. We denote these variables by pS(z) and pt (rather
than pv and pe), respectively.

Example 2. Consider again the CQ q and TBox T from Example 1. The hyper-
graph HqT is shown in the picture below

R(x1, y2)

R(y3, y2)

R(y3, x4)

t1 t2

and

fHqT = (pR(x1,y2) ∧ pR(y3,y2) ∧ pR(y3,x4))∨ (pR(y3,x4) ∧ pt1)∨ (pR(x1,y2) ∧ pt2).

Suppose the function fHqT is computed by some Boolean formula χHqT . Con-

sider the FO-formula χ̂HqT obtained by replacing each pS(z) in χHqT with S(z),

each pt with twt, and adding the prefix ∃y. By comparing (3) and (2), we see
that the resulting FO-formula is a rewriting of q and T over H-complete ABoxes.
This gives the first claim in the following theorem:

Theorem 2. Suppose q is a CQ and T a TBox.

(i) If the function fHqT is computed by a propositional Boolean formula χHqT ,
then χ̂HqT is an FO-rewriting of q and T over H-complete ABoxes.

(ii) If fHqT is computed by a monotone Boolean circuit C, then there is an NDL-

rewriting of q and T over H-complete ABoxes of size O(|C| · (|q|+ |T |)).

Proof. We only prove (ii). First, we define a unary predicate D0 by the rules

D0(z)← A(z), (4)

for every concept name A (including the AR) in T and q. Assuming that x and
y are answer and existential variables in q, respectively, we then set z = x ∪ y
and define the |z|-ary predicate

D(z)←
∧
z∈z

D0(z). (5)

We need the predicate D to ensure that all the rules in our datalog program are
safe (that is, every variable in the head occurs in the body).

Suppose HqT has m vertices and l edges. Let g1, . . . , gn be the nodes of C or-
dered in such a way that g1, . . . , gm correspond to the atoms S1(z1), . . . , Sm(zm)
of q, gm+1, . . . , gm+l correspond to the tree witnesses t1, . . . , tl generated by roles

in sets Ω1, . . . , Ωl, respectively, and gm+l+1, . . . , gn correspond to the gates of C
with gn its output. For 1 ≤ i ≤ m, we take the rules

Gi(z)← Si(zi) ∧D(z). (6)

For m < i ≤ m+ l, take the rules

Gi(z)← AR(z0) ∧
∧

y∈ti−m
r

(z0 = y) ∧D(z), for R ∈ Ωi−m. (7)

where z0 is a fresh variable. For i > m+ l, we take the rules

Gi(z)← Gj(z) ∧Gk(z) ∧D(z), if gi = gj ∧ gk, (8)

Gi(z)← Gj(z) ∧D(z),
Gi(z)← Gk(z) ∧D(z),

if gi = gj ∨ gk. (9)

Denote the resulting set of rules (4)–(9) by Π. We claim that (Π,Gn) is an
NDL-rewriting of q and T over complete ABoxes. To see this, we can transform
(Π,Gn) to a PE-formula of the form

∃y
[
ψ(x,y) ∧

∧
z∈x∪y

(∨
A in q, T

A(z)
)]
,

where ∃y ψ(x,y) can be constructed by taking the Boolean formula representing
C and replacing pS(z) with S(z) and pt with twt. It follows from part (i) that
∃y ψ(x,y) is a rewriting of q and T . It should be clear that the big conjunction
does not change this fact. q

Thus, the problem of constructing short rewritings is reducible to the problem
of finding short Boolean formulas computing the hypergraph functions. Hyper-
graphs of degree ≤ 2, in which every vertex belongs to at most two hyperedges,
are of particular interest to us because (i) TBoxes of depth one have hypergraphs
of degree ≤ 2, and (ii) their hypergraph functions are the functions computed
by branching programs of polynomial size.

We call a hypergraph H representable if there are a CQ q and a TBox T
such that H is isomorphic to HqT . A hypergraph is said to be of degree 2 if every
vertex in it belongs to exactly two hyperedges. In the next section, we show that
hypergraphs of degree 2 are representable by means of TBoxes of depth 1, and,
conversely, all CQs over TBoxes of depth 1 define hypergraphs of degree ≤ 2.

5 Hypergraphs of Degree 2 and TBoxes of Depth 1

Theorem 3. (i) If q is a CQ and T a TBox of depth one, then the hypergraph
HqT is of degree ≤ 2.

(ii) The number of distinct tree witnesses for q and T does not exceed the
number of variables in q.

Proof. We have to show that every atom in q belongs to at most two qt, t a tree
witness for q and T . Suppose t = (tr, ti) is a tree witness (generated by some R)
and y ∈ ti. Then tr consists of all those variables z in q for which S(y, z) ∈ q
or S(z, y) ∈ q, for some S. By the definition of tree witness, ti = {y}. Thus,
different tree witnesses have different ‘internal’ variables y. An atom of the form
A(u) ∈ q is in qt iff u = y. An atom of the form P (u, v) ∈ q is in qt iff either
u = y or v = y. In other words, P (u, v) ∈ q can only be covered by the tree
witness with internal u and by the tree witness with internal v. q

Let H = (V,E) be a hypergraph of degree 2. We can assume that it comes
with two fixed maps i1, i2 : V → E such that i1(v) 6= i2(v), v ∈ i1(v) and
v ∈ i2(v), for any v ∈ V . We now define a Boolean CQ qH and a TBox TH such
that H is isomorphic to H

qH
TH . For every hyperedge e ∈ E, we take an individual

variable ze and denote by z the vector of all such variables. For every vertex
v ∈ V , we take a role name Rv and set:

qH = ∃z
∧
v∈V

Rv(zi1(v), zi2(v)).

For every hyperedge e ∈ E, let Ae be a concept name and Se a role name.
Consider the TBox TH with the following inclusions, for each e ∈ E:

Ae ≡ ∃Se,
Se v R−v , for v ∈ V with i1(v) = e,

Se v Rv, for v ∈ V with i2(v) = e.

Example 3. Let H = (V,E) with V = {v1, v2, v3, v4} and E = {e1, e2, e3}, where
e1 = {v1, v2, v3}, e2 = {v3, v4}, e3 = {v1, v2, v4}. Suppose also that

i1 : v1 7→ e1, v2 7→ e3, v3 7→ e1, v4 7→ e2,

i2 : v1 7→ e3, v2 7→ e1, v3 7→ e2, v4 7→ e3.

The hypergraph H is shown in the picture below, where each vertex vi is repre-
sented by an edge, i1(vi) is indicated by the circle-shaped end of the edge and
i2(vi) by the diamond-shaped end of the edge; the hyperedges ej are shown as
large grey squares:

e2

e1

e3

v1
v2

v4

v3

hy
pe

rg
ra

ph
H

tree witness te1

ze1

ze2 , ze3

Ae1

Se1R
− v 3

R
v
2

R
− v 1

Then

qH = ∃ze1ze2ze3
(
Rv1(ze1 , ze3) ∧Rv2(ze3 , ze1) ∧Rv3(ze1 , ze2) ∧Rv4(ze2 , ze3)

)
and the TBox TH contains the following inclusions:

Ae1 ≡ ∃Se1 , Se1 v R−v1 , Se1 v Rv2 , Se1 v R−v3 ,
Ae2 ≡ ∃Se2 , Se2 v Rv3 , Se2 v R−v4 ,
Ae3 ≡ ∃Se3 , Se3 v Rv1 , Se3 v R−v2 , Se3 v Rv4 .

The canonical model CSe1

TH (a) is shown on the right-hand side of the picture above.
We observe now that each variable ze uniquely determines the tree witness te

with qte = {Rv(zi1(v), zi2(v)) | v ∈ e}; qte and qte′ are consistent iff e∩ e′ 6= ∅. It
follows that H is isomorphic to H

qH
TH .

In fact, this example generalises to the following:

Theorem 4. Any hypergraph H of degree 2 is representable; more precisely, H
is isomorphic to H

qH
TH .

Proof. We show that the map h : v 7→ Rv(zi1(v), zi2(v)) is an isomorphism be-
tween H and H

qH
TH . By the definition of qH , h is a bijection between V and the

atoms of qH . For any e ∈ E, there is a tree witness te = (ter , t
e
i) generated by Se

with
tei = {ze} and ter = {ze′ | e′ ∩ e 6= ∅},

and qte consists of the h(v), for v ∈ e. Conversely, every tree witness t for qH
and TH contains ze ∈ ti, for some e ∈ E, and so qt = {h(v) | v ∈ e}. q

We now show that answering the CQ qH over TH and certain single-individual
ABoxes amounts to computing the Boolean function fH . Let H = (V,E) be a
hypergraph of degree 2 with V = {v1, . . . , vn} and E = {e1, . . . , em}. We denote
by α(vi) the i-th component of α ∈ {0, 1}n and by β(ej) the j-th component of
β ∈ {0, 1}m. Define a single-individual ABox Aα,β by taking

Aα,β = {Rvi(a, a) | α(vi) = 1} ∪ {Aej (a) | β(ej) = 1}.

Theorem 5. Let H = (V,E) be a hypergraph of degree 2. Then

(TH ,Aα,β) |= qH iff fH(α,β) = 1,

for any α ∈ {0, 1}|V | and β ∈ {0, 1}|E|.

Proof. (⇐) LetX be an independent subset of E such that
∧
v∈V \VX

pv∧
∧
e∈X pe

is true on α (for the pv) and β (for the pe). Define h : qH → CTH ,Aα,β
by taking

h(ze) =

{
we, if e ∈ X,
a, otherwise,

where we is the element of the canonical model CTH ,Aα,β
introduced to witness

∃Se. It is readily checked that h is a homomorphism, and so (TH ,Aα,β) |= qH .

(⇒) Suppose that h : qH → CTH ,Aα,β
is a homomorphism. We show that the

set X = {e ∈ E | h(ze) 6= a} is independent. Indeed, if e, e′ ∈ X and v ∈ e ∩ e′,
then h sends one end of the Rv-atom to the witness we and the other end to
the witness we′ , which is impossible. We claim then that fH(α,β) = 1. Indeed,
for each v ∈ V \ VX , h sends both ends of the Rv-atom to a, and so α(v) = 1.
For each e ∈ X, since h(ze) 6= a, we must have h(ze) = we, and so β(e) = 1. It
follows that fH(α,β) = 1. q

6 Hypergraphs of Degree 2 and NBPs

In this section, we show that a Boolean function is ‘computed’ by a hypergraph
of degree 2 iff it can be computed by a nondeterministic branching program (a
switching-and-rectifier network) [11].

Let p1, . . . , pn be propositional variables. An input to a hypergraph or non-
deterministic branching program is a vector α ∈ {0, 1}n assigning a truth value
α(pi) to each variable pi, 1 ≤ i ≤ n. We extend this notation to negated variables
and constants: α(¬pi) = ¬α(pi), α(0) = 0 and α(1) = 1.

A hypergraph program is a hypergraph H = (V,E) with each vertex labelled
by 0, 1, pi or ¬pi. We say that the hypergraph program H computes a Boolean
function f in case, for any input α, we have f(α) = 1 iff there is an independent
subset X ⊆ E covering all zeros—the vertices with labels ` such that α(`) = 0.
The size of a hypergraph program is the number of hyperedges in it. A hyper-
graph program is monotone if there are no negated variables among its vertex
labels. In the remainder of this section, we concentrate on hypergraph programs
H of degree ≤ 2.

It turns out that the monotone hypergraph programs capture the computa-
tional power of hypergraph functions. Note first that a monotone hypergraph
program H computes the subfunction of fH obtained by setting pe = 1, for all
e ∈ E, and setting pv to be equal to the label of v. On the other hand, any
hypergraph function fH can be computed by a small hypergraph program.

Lemma 1. For any hypergraph H of degree ≤ 2 with N hyperedges, there is
a monotone hypergraph program H ′ of degree ≤ 2 and size 2N computing the
function fH .

Proof. Consider a hypergraph H = (V,E) and label each of its vertices v by a
variable pv. For each hyperedge e ∈ E, we add two fresh vertices ae, be labelled
by 1 and pe, respectively; then we create a new hyperedge e′ = {ae, be} and add
the vertex ae to e. We claim that the resulting hypergraph program H ′ computes
fH . Indeed, for any input α with α(pe) = 0, we have to include the edge e′ into
the cover, and so cannot include the edge e itself. Thus, the program outputs 1
iff there is an independent set X of hyperedges with α(pe) = 1, for all e ∈ X,
covering all zeros of the variables pv. It follows that H ′ computes fH . q

Lemma 2. If f is computable by a (monotone) hypergraph program of degree
≤ 2 and size N , then it can also be computed by a (monotone) hypergraph
program of size N + 3 such that all its vertices are of degree 2.

Proof. Consider a hypergraph program of degree ≤ 2 computing f . We extend
it with three vertices, x, y and z, labelled by 1, 0 and 0, respectively, and three
hyperedges e1 = {v1, . . . , vl, x, y}, e2 = {v1, . . . , vk, x, z} and e3 = {y, z}, where
v1, . . . , vk are vertices of degree 0 and vk+1, . . . , vl vertices of degree 1. It is easy
to see that each cover should contain e3 but cannot contain e1, e2. Indeed, y
and z should both be covered. However, e1 and e2 intersect and cannot be both
in the same cover. Thus, y and z should be covered by e3, while e1 and e2,
intersecting e3, are not in the cover. After these choices we are left with the
original hypergraph. Clearly, this construction preserves monotonicity. q

A nondeterministic branching program (NBP) [11] is a directed multigraph
with two distinguished vertices, s (source) and t (sink), and the arcs labelled by
0, 1, pi or ¬pi (the arcs of the first type have no effect, the arcs of the second type
are called rectifiers, and those of the third and fourth types contacts). We assume
that s has no incoming arcs and t has no outgoing arcs, and note that NBPs
may have multiple parallel arcs (with distinct labels) connecting two nodes. We
say that t is reachable from s under α (s→α t, in symbols) if there is a directed
path from s to t such that each arc of the path is labelled by ` with α(`) = 1. An
NBP computes a Boolean function f if f(α) = 1 just in case s →α t. The size
of an NBP is the number of arcs in it. We denote by NBP(f) the minimal size
of NBPs computing f . An NBP is monotone if it has no negated variables in its
labels. For a monotone f , we denote by NBP+(f) the minimal size of monotone
NBPs computing f .

We are going to show now that a Boolean function f is computable by a
polynomial-size NBP iff ¬f is computable by a polynomial-size hypergraph pro-
gram of degree 2.

Lemma 3. Any Boolean function f is computable by a hypergraph program of
degree ≤ 2 and size 2NBP(¬f).

Any monotone Boolean function f is computable by a monotone hypergraph
program of degree ≤ 2 and size 2NBP+(f∗), where f∗ is the Boolean function
dual to f .

Proof. We only prove the first claim; the second is proved by the same argument.
Let ¬f be computable by an NBP G. We construct a hypergraph program

of degree ≤ 2 as follows. For each labelled arc e in G, the hypergraph has two
vertices e0 and e1, which represent the beginning and the end of the arc. The
vertex e0 is labelled by the negated label of e in G and e1 is labelled by 1. We
also take a vertex t labelled by 0. For each arc e in G, the hypergraph has an
e-hyperedge {e0, e1}. For each vertex v in G but s and t, the hypergraph has a
v-hyperedge that consists of all vertices e1, for the arcs e leading to v, and all
vertices e0, for the arcs e leaving v. For the vertex t, the hypergraph contains a
hyperedge that consists of t and all vertices e1, for the arcs e leading to t.

We claim that the constructed hypergraph program computes f . Indeed, if
s 6→α t in G then the following subset of hyperedges is independent and covers
all zeros: all e-hyperedges, for the arcs e reachable from s and labelled by ` with
α(`) = 1, and all v-hyperedges with s 6→α v. Conversely, if s→α t then it can be
shown by induction that, for each arc ei of the path, the ei-hyperedge must be
in the cover of all zeros. Thus, no independent set can cover t, which is labelled
by 0. q

Lemma 4. If f is computable by a hypergraph program of degree 2 and size N ,
then ¬f can be computed by an NBP of size O(N3).

If f is computable by a monotone hypergraph program of degree 2 and size
N , then f∗ can be computed by a monotone NBP of size O(N3).

Proof. We prove the first claim; the second is shown using the same argument.
Let H be a hypergraph program of degree 2 with hyperedges e1, . . . , eN .

We first provide a graph-theoretic characterisation of independent sets cover-
ing all zeros based on the implication graph [4] (or the chain criterion of [7,
Lemma 8.3.1]). Fix an input α and consider a set Φα of propositional binary
clauses with variables pi, for 1 ≤ i ≤ N , consisting of

– ¬pi∨¬pj if ei∩ej 6= ∅ (informally: intersecting hyperedges cannot be chosen
at the same time),

– pi ∨ pj if there is v ∈ ei ∩ ej such that α(v) = 0 (informally: all zeros must
be covered; note that all vertices have at most two incident edges).

By inspection of the definition, X is an independent set covering all zeros iff
X = {ei | 1 ≤ i ≤ N and β(pi) = 1}, for some assignment β satisfying Φα.
By [7, Lemma 8.3.1], Φα is satisfiable iff there is no ei with a (directed) cycle
going through both e+i and e−i in the directed graph Bα = (V,Eα), where

V =
{
e+i , e

−
i | 1 ≤ i ≤ N

}
,

Eα =
{

(e+i , e
−
j) | ei ∩ ej 6= ∅

}
∪
{

(e−i , e
+
j) | v ∈ ei ∩ ej with α(v) = 0

}
.

(V is the set of all ‘literals’ for the variables of Φα and Eα is the arcs for the
implicational form of the clauses of Φα; note that ¬pi ∨ ¬pj gives rise to two
implications, pi → ¬pj and pj → ¬pi, and so to two arcs in the graph). It will
be convenient for us to regard the Bα, for assignments α, as a single labelled
directed graph B with arcs of the from (e+i , e

−
j) labelled by 1 and arcs of the

form (e−i , e
+
j) labelled by ¬v, for all v ∈ ei ∩ ej . It should be clear that Bα has

a cycle going through e+i and e−i iff e+i is reachable from e−i and the other way
round, or, using the NBP notation, iff e−i →α e+i and e+i →α e−i in B. Thus,
the required NBP contains two distinguished vertices, s and t, and, for each
hyperedge ei, two separate copies, B+

i and B−i , of B with arcs from s to the e−i
vertex of B+

i , from the e+i vertex of B+
i to the e+i vertex of B−i and from the e−i

vertex of B−i to t. This construction guarantees that s→α t iff there is ei such
that Bα contains a cycle going through e+i and e−i . q

As is well-known (see, e.g., [18]), in terms of the expressive power NBPs
sit between Boolean formulas and Boolean circuits. And, as shown above, the
computational power of monotone hypergraphs of degree 2 is the same as that
of monotone NBPs. Thus, a Boolean function computable by some monotone
Boolean formula can also be computed by an at most polynomially larger mono-
tone NBP, and so, by Lemma 3, by an at most polynomially larger monotone
hypergraph program, for some hypergraph of degree 2. On the other hand, a
Boolean function computable by some monotone hypergraph program of de-
gree 2 is computable, by Lemma 4, by an at most polynomially larger monotone
NBP, and so by an at most polynomially larger monotone Boolean circuit.

In the next section, we shall see that monotone hypergraphs of unbounded
degree (in fact, degree 3) are substantially more powerful than monotone hy-
pergraphs of degree 2; more precisely, polynomial-size monotone hypergraph
programs of degree 3 can compute NP-hard Boolean functions.

7 Hypergraph Programs and Nondeterministic Circuits

A Boolean function f : {0, 1}n → {0, 1} is computed by a nondeterministic
Boolean circuit C(x,y), for x ∈ {0, 1}n and y ∈ {0, 1}m, if for each x we
have f(x) = 1 iff there is y such that C(x,y) = 1. The variables in y are called
advice variables. We say that a nondeterministic circuit C(x,y) is monotone if
the negations in C are only applied to variables from y.

Lemma 5. If a Boolean function f is computable by a (monotone) hypergraph
program of size N then it can also be computed by a (monotone) nondeterministic
circuit of size poly(N).

Proof. Given a hypergraph program, we construct a nondeterministic circuit
C(x,y). Its x-variables are the variables of the program, and its advice variables
correspond to the edges of the program. The circuit C will return 1 on (x,y)
iff the family {ei | yi = 1} of edges of the hypergraph forms an independent set
covering all zeros. It is easy to construct a polynomial-size circuit checking this
property. Indeed, for each pair of intersecting edges ei, ej , it is enough to compute
¬ei ∨ ¬ej and for each vertex of the hypergraph labelled by t and adjacent to

edges e1, . . . , ek to compute t∨
∨k
i=1 ei. It then remains to take a conjunction of

all computed expressions.
It is easy to see that the resulting nondeterministic circuit is monotone if

hypergraph program is monotone. q

Lemma 6. If f is computable by a (monotone) nondeterministic Boolean cir-
cuit of size N then it can also be computed by a (monotone) hypergraph program
of size poly(N) and degree ≤ 3.

Proof. Let f be computed by a nondeterministic circuit C(x,y) with input
variables x and advice variables y.

Let g1, . . . , gn be the nodes of C (including the x and y). For each node gi,
we take a vertex g labelled by 0 in the hypergraph and a pair of hyperedges ēgi

and egi , both containing gi. No other edge will contain gi and thus either ēgi or
egi should be present in any cover of zeros. Intuitively, given an input, if a node
gi is positive then egi will belong to the cover; otherwise, ēgi will be there.

To ensure this property, for each input variable xi, we add a fresh vertex
labelled by ¬xi to exi

and a fresh vertex labelled by xi to ēxi
. For each gate gi,

we consider three cases.

– If gi = ¬gj then we add a fresh vertex labelled by 1 to both egi and ēgj and
a fresh vertex labelled by 1 to both ēgi and egj .

– If gi = gj ∨ gk then we add a fresh vertex labelled by 1 to egj and ēgi , add a
fresh vertex labelled by 1 to egk and ēgi . Then we add fresh vertices hj and
hk labelled by 1 to ēgj and ēgk , respectively, and a fresh vertex ui labeled
by 0 to ēgi . Finally, we add two new hyperedges {hj , ui} and {hk, ui}.

– If gi = gj ∧ gk then we use the dual of the construction above.

It is not hard to see that egi is in the cover iff it contains ēgj and that egi is in
the cover iff it contains either egj or egk . Indeed, if, say, the cover contains egj
then it cannot contain ēgi . On the other hand, if ēgj is not in the cover then we
can add the hyperedge {hj , ui} to cover ui. Conversely, if neither egj nor egk is
in the cover, then it must contain both ēgj and ēgk and so, neither {hj , ui} nor
{hk, ui} can belong to the cover and we will have to include ēgi to the cover.

Finally we add one more fresh vertex labelled by 0 to the edge eg that corre-
sponds to the output gate of C. It is easy to see by induction on the structure of
C that, for each x there is y such that C(x,y) = 1 iff the hypergraph program
returns 1 on x.

If C is a monotone Boolean circuit, then we remove all vertices labeled by
¬xi. It should be clear that there is a cover in the hypergraph on given x iff
there are y and x′ ≤ x such that C(x′,y) = 1. q

8 The Size of Rewritings over TBoxes of Depth 1

We are now in a position to apply the machinery developed above. Our aim in
this section is to show that all CQs over TBoxes of depth 1 can be rewritten
as polynomial-size NDL-queries, but not as polynomial-size PE-queries. On the
other hand, tree-shaped CQs over TBoxes of depth 1 always have polynomial-size
PE-rewritings.

Theorem 6. For any CQ q and any TBox T of depth 1, there is an NDL-
rewriting of q and T of polynomial size.

Proof. Take a CQ q and a TBox T of depth 1. By Theorem 3, the hypergraph
HqT is of degree ≤ 2, and so, by Lemma 1 and 2, there is a hypergraph program
of degree 2 computing fHqT of size polynomial in |q|. By Lemma 4, we have
a monotone NBP of polynomial size computing f∗

HqT
. But then we also have a

polynomial-size monotone Boolean circuit that computes f∗
HqT

(see, e.g., [18]).

By replacing ∧ with ∨, and ∨ with ∧ in this circuit, we obtain a monotone circuit
computing fHqT whose size is polynomial in |q|. It remains to apply Theorem 2
and Proposition 1. q

On the other hand, our next theorem shows that there exist CQs and TBoxes
of depth 1 for which there are no polynomial-size PE-rewritings:

Theorem 7. There is a sequence of CQs qn and TBoxes Tn of depth 1 such that

any PE-rewriting of qn and Tn (over H-complete ABoxes) is of size 2Ω(log2 n).

Proof. It is known [10] that there exists a sequence of Boolean functions fn(x)
that are computable by polynomial-size monotone NBPs, but any monotone
Boolean formulas computing fn are of size 2Ω(log2 n). (Grigni and Sipser [10]
consider fn(x) that takes the adjacency matrix of a directed graph of n vertices
with a distinguished vertex s as input and returns 1 iff there is a directed path
from s to some vertex of outdegree at least two.)

We apply Lemmas 3 and 2 to fn(x) and obtain a sequence H ′n of polynomial-
size monotone hypergraph programs of degree 2 computing f∗n. Then we apply
Theorem 4 to the hypergraph Hn of each H ′n and obtain a sequence of CQs
qn and TBoxes Tn such that Hn is isomorphic to H

qn
Tn . We show that any PE-

rewriting q′n of qn and Tn can be transformed into a monotone Boolean formula
computing fn and having size ≤ |q′n|.

To define χn, we eliminate the quantifiers in q′n in the following way: take a
constant a and replace every subformula of the form ∃xψ(x) in q′n with ψ(a),
repeating this operation as long as possible. The resulting formula q′′n is built
from atoms of the form Ae(a), Rv(a, a) and Se(a, a) using ∧ and ∨. For every
ABox A with a single individual a, we have (Tn,A) |= qn iff A |= q′′n. Let χn be
the result of replacing Se(a, a) in q′′n with ⊥, Ae(a) with pe and Rv(a, a) with
pv. Clearly, |χn| ≤ |q′n|. By the definition of Aα,β and Theorem 5, we obtain:

χn(α,β) = 1 iff Aα,β |= q′′n iff (Tn,Aα,β) |= qn iff fHn
(α,β) = 1.

As H ′n computes f∗n, we can obtain f∗n from fHn by replacing each pe with 1 and
each pv with the label of v in H ′n . The same substitution in χn (with > and ⊥
in place of 1 and 0) gives a monotone formula that computes f∗n. By swapping
∨ and ∧ in it, we obtain a monotone formula χ′n computing fn. It remains to

recall that |q′n| ≥ |χ′n| ≥ 2Ω(log2 n). q

It may be of interest to note that the function fn in the proof above is in
the complexity class NLogSpace. The algorithm computing this function by
querying the NDL-rewriting of Theorem 6 over single-individual ABoxes runs
in polynomial time; but if such an algorithm uses any PE-rewriting then, by
Theorem 7, superpolynomial time is required.

Note also that, by Theorem 3, the number of distinct tree witnesses for qn and
Tn does not exceed the number of variables in qn. However, many of these tree-
witnesses are inconsistent with each other, which results in long PE-rewrtings.
Such a situation can never happen for tree-shaped CQs.

8.1 Tree-Shaped Queries and TBoxes of Depth 1

Let q be a CQ and z a subset of the set of existentially quantified variables in q.
By a z-partition of q we understand any disjoint sets of atoms q1, . . . , qk, called

z-components, that cover q and are such that if, for i = 1, 2, each of Si(zi) ∈ q
contains a variable zi ∈ z and z1 is connected to z2 by a path coming through
variables in z only, then both Si(zi) are in the same component. Note that, for
any z-partition of q, every tree witness for ∃z q and any T is contained in some
z-component of the partition.

Given a TBox T and a CQ q(x) = ∃y ϕ(x,y), we define a CQ q†(x) = ∃y qy,
where qz is computed recursively as follows: we take a z-partition q1, . . . , qk of q,
take zj to be the set of the variables in z that occur in qj , for each j = 1, . . . , k,
(z1, . . . ,zk form a partition of z) and set qz = q∗z1

1 ∧ · · · ∧ q∗zk

k , where

q
∗zj

j =

(qj)

zj\{zj} ∨
∨

tree witness t for ∃zj qj and T
with zj∈ti

(
twt ∧ (qj \ qt)zj\(tr∪ti)

)
, if there is zj ∈ zj ,

qj , otherwise.

Note that qz depends on the choice of q1, . . . , qk and zj ∈ zj , which can be
arbitrary. Intuitively, the first disjunct of qz reflects the situation where zj is
mapped to an ABox element; so we treat zj as a free variable when rewriting qj .
The other disjuncts reflect the case when zj is mapped to the non-ABox part
of the canonical model, in which case zj belongs to the internal part ti of a tree
witness t = (tr, ti) for ∃zj qj and T . As the variables in tr must be mapped to
ABox elements, this leaves the set qj \ qt of atoms with existentially quantified
zj \ (tr ∪ ti) for further rewriting (this set of variables does not contain zj).

Theorem 8. For any ABox A that is H-complete with respect to T and any
a ⊆ ind(A), we have CT ,A |= q(a) iff A |= q†(a).

Example 4. Take q and T from Example 1. The only {y2, y3}-component of q
is q. Then we pick, say y2, and obtain q{y2,y3} = q{y3} ∨

(
twt1 ∧ R(y3, x4)∅

)
.

Now, q has two {y3}-components, {R(x1, y2)} and q1 = {R(y3, y2), R(y3, x4)}.
The former gives R(x1, y2), while in the latter we have to pick y3 and obtain
q∅1 ∨ twt2 , assuming that the empty set of atoms is >. This gives the rewriting:

q†(x1, x4) = ∃y2, y3
[(
R(x1, y2) ∧

((
R(y3, y2) ∧R(y3, x4)

)
∨ twt2

))
∨(

twt1 ∧R(y3, x4)
)]
.

A CQ q is said to be tree-shaped if its primal graph is a tree. In each com-
ponent qj of a tree-shaped CQs q, we can choose a variable zj that splits it in
half. More formally, we have the following:

Proposition 2. For any tree T = (V,E), there is a vertex v ∈ V such that each

connected component obtained by removing v from T contains ≤ |V |2 vertices.

By Proposition 2, any tree-shaped CQ can be split into components each of
which contains less than a half of atoms of the CQ. By applying this argument
recursively and using the fact that, if a TBox T is of depth 1 then, for any
variable z in q, the number of tree witnesses t = (tr, ti) for q and T with z ∈ ti
does not exceed 2, we obtain our final result:

Theorem 9. Any tree-shaped CQ over any TBox of depth one has a polynomial
PE-rewriting.

Proof. We show that the rewriting q† is of size O(|q|2 · |T |). We will assume
(without loss of generality) that each formula twt is of the form

twt =
∧

x∈tr\{x0}

(x = x0) ∧
∨
R∈Ωt

AR(x0),

where x0 is a distinguished term in tr. Thus, the length of each twt does not
exceed |T | · (|tr| − 1). Denote by F (n) the maximal size of |qz| for sets z and
CQs q with at most n atoms. We claim that F (n) ≤ |T | · n2.

The proof is by induction and the indiction basis is clear. For the inductive
step, observe that since the TBox T is of depth 1, each variable z can belong
to ti in at most one tree witness t for q and T . Thus, by the definition of qz,
for each z-component with nj atoms we have a formula of the length that does
not exceed F (nj) + F (nj −mj) + |T | · (mj − 1), where mj , 1 ≤ mj ≤ nj , is the
number of terms in tr for the tree witness (note that each term of tr occurs in at
least one atom in qt). By the induction hypothesis, we have

F (nj −mj) + |T | · (mj − 1) ≤ |T | · (nj −mj)
2 + |T | · (mj − 1) ≤ |T | · n2j .

So, by Proposition 2, we can partition q with n atoms into z-components
q1, . . . , qk such that

∑k
j=1 nj = n and each nj ≤ n/2, where nj is the num-

ber of atoms in qj . Then we have

F (n) ≤
k∑
j=1

(
F (nj) + |T | · n2j

)
≤

k∑
j=1

2|T | · n2j ≤ 2|T | · n/2 ·
k∑
j=1

nj = |T | · n2.

This finishes the proof of the theorem. q

9 Lower Bounds for Rewritings over TBoxes of Depth 2

As we saw above, CQs and TBoxes of depth 1 can be used to compute monotone
Boolean functions, and the computational power of this (exotic) formalism is the
same as that of monotone hypergraph programs of degree 2. In this section, we
show that CQs and TBoxes of depth 2, as well as monotone hypergraphs of
degree 3, can compute more complex Boolean functions, in particular, the NP-
complete function checking whether a graph with n vertices contains a k-clique.

We remind the reader (see, e.g., [2] for details) that the monotone Boolean
function Cliquen,k(e) of n(n − 1)/2 variables ejj′ , 1 ≤ j < j′ ≤ n, returns
1 iff the graph with vertices {1, . . . , n} and edges {{i, j} | ejj′ = 1} contains
a k-clique. Clearly, Cliquen,k is NP-complete. A series of papers, started by
Razborov’s [17], gave an exponential lower bound for the size of monotone cir-

cuits computing Cliquen,k: 2Ω(
√
k) for k ≤ 1

4 (n/ log n)2/3 [1]. For monotone

formulas, an even better lower bound is known: 2Ω(k) for k = 2n/3 [16].

In this section, we first construct a monotone hypergraph program that com-
putes the function Cliquen,k and then use the intuition behind the construction
to encode Cliquen,k by means of a Boolean CQ qn,k and a TBox Tn,k of poly-
nomial size. As a consequence, any PE- or NDL-rewriting of qn,k and Tn,k is
of exponential size, while any FO-rewriting is of superpolynomial size unless
NP ⊆ P/poly.

Given n and k as above, let Hn,k be a monotone hypergraph program with
the vertices

– vi labelled by 0, for 1 ≤ i ≤ k,
– wjj′ labelled by the propositional variable ejj′ , for 1 ≤ j < j′ ≤ n,
– ujj′ labelled by 1, for 1 ≤ j 6= j′ ≤ n,

and the hyperedges

– f ij = {vi} ∪ {ujj′ | 1 ≤ j′ ≤ n, j′ 6= j}, for 1 ≤ i ≤ k and 1 ≤ j ≤ n,

– hjj
′

= {wjj′ , ujj′} and hj
′j = {wjj′ , uj′j}, for 1 ≤ j < j′ ≤ n.

Informally, the vertices vi of the hypergraph Hn,k represent a k-clique in a given
graph with n vertices. The vertices wjj′ represent the edges of the complete graph
with n vertices; they can be turned ‘on’ or ‘off’ by means of the Boolean variables
ejj′ . The vertex ujj′ together with the hyperedge hjj

′
represent the ‘half’ of the

edge connecting j and j′ that is adjacent to j. The edges f ij correspond to
the choice of the jth vertex of the graph as the ith vertex in the clique. The
hypergraph H4,2 is shown below:

h12

h21

h23h32

h34

h43

h14h41

h24

h42 h13

h31

f13

f14

f11

f12

f22

f21

f24

f23

v1v2

1

23

4

w12

w23

w34

w14

w24 w13

u12

u21

u23u32

u34

u43

u41 u14

u24

u42 u13

u31

Theorem 10. The hypergraph programs Hn,k compute Cliquen,k.

Proof. We have to show that, for each Boolean vector e ∈ {0, 1}n(n−1)/2, there is
an independent set X of hyperedges covering all 0s in Hn,k iff Cliquen,k(e) = 1.

(⇐) Let λ : {1, . . . , k} → {1, . . . , n} be such that C = {λ(i) | 1 ≤ i ≤ k} is a
k-clique in the graph, G, given by e. We claim that

X = {f iλ(i) | 1 ≤ i ≤ k} ∪ {hjj
′
| j /∈ C, j′ ∈ C} ∪ {hjj

′
| j, j′ /∈ C and j < j′}

is independent and covers all vertices labelled by zeros. Indeed, X is independent
because, in every hjj

′ ∈ X, the index j does not belong to C. By definition, each
f iλ(i) covers vi, for 1 ≤ i ≤ k. Thus, it remains to show that any wjj′ with
ejj′ = 0 (that is, the edge {j, j′} belongs to the complement of G) is covered
by some hyperedge. All edges of the complement of G can be divided into two
groups: those that are adjacent to C, and those that are not. The wjj′ that

correspond to the edges of the former group are covered by the hjj
′

from the
middle disjunct of X, where j corresponds to the end of the edge {j, j′} that is
not C. To cover wjj′ of the latter group, take hjj

′
from the last disjunct of X.

(⇒) Suppose X is an independent set covering all zeros labelling the vertices
of the hypergraph Hn,k, for an input e. The vertex vi, 1 ≤ i ≤ k, is labelled by 0,
and so there is λ(i) such that f iλ(i) ∈ X. We claim that C = {λ(i) | 1 ≤ i ≤ k} is
a k-clique. Indeed, suppose that the graph given by e contains no edge between
some vertices j, j′ ∈ C, that is, ejj′ = 0 for j < j′. Since wjj′ is labelled by 0,

it must be covered by a hyperedge in X, which can only be either hjj
′

or hj
′j

(see the picture above). But hjj
′

intersects fλ
−1(j)j and hj

′j intersects fλ
−1(j′)j′ ,

which is a contradiction. q

We are now in a position to define the Boolean CQ qn,k and the TBox Tn,k
of polynomial size (in n) that can compute Cliquen,k. Let qn,k contain the
following atoms:

Tij(vi, zij), for 1 ≤ i ≤ k and 1 ≤ j ≤ n,
Pjj′(wjj′ , xjj′), Pj′j(wjj′ , xj′j), for 1 ≤ j < j′ ≤ n,
Q(ujj′ , xjj′), U(ujj′ , zij), for 1 ≤ j 6= j′ ≤ n and 1 ≤ i ≤ k.

The picture below illustrates the fragments of qn,k centred around each variable
of the form zij and xjj′ (the fragment centred around xj′j is similar to that of
xjj′ except the index of the wjj′):

vi

zij

ujj′

for j′ 6= j

xjj′

zij′
for j′ 6=j

zi′j
for i′ 6=i

T
ij

U

QU

T
ij
′

CRij

Tn,k
(a)

cij

c′ij

R
ij

R
′ ij

wjj′

xjj′

ujj′

xj′j zij
for all i

P
j
j
′

P
j
′ j

Q

U

CSjj′

Tn,k
(a)

djj′

d′jj′

S
j
j
′

S
′ jj
′

The whole CQ qn,k is illustrated by the picture in Appendix A.

The TBox Tn,k mimics the arrangement of atoms in the layers depicted above
and contains the following inclusions: for 1 ≤ i ≤ k and 1 ≤ j 6= j′ ≤ n,

Aij ≡ ∃Rij , Rij v T−ij′ , Rij v U−, Rij v Q−, ∃R−ij v A
′
ij

A′ij ≡ ∃R′ij , R′ij v Tij , R′ij v U,
Bjj′ ≡ ∃Sjj′ , Sjj′ v P−j′j , Sjj′ v U−, ∃S−jj′ v B

′
jj′ ,

B′jj′ ≡ ∃S′jj′ , S′jj′ v Pjj′ , S′jj′ v Q.

The picture above also shows the elements and ‘generating roles’ of the models

CRij

Tn,k
(a) and CSjj′

Tn,k
(a). The omitted roles are uniquely determined by the role

inclusions in Tn,k. Those roles, in fact, appear in the respective layer of the
depicted CQ fragments, while the horizontal dashed lines show possible ways
of embedding the fragments of qn,k into the respective canonical models. These
embeddings give rise to the following tree witnesses for qn,k and Tn,k:

– tij = (tijr , t
ij
i) generated by Rij , for 1 ≤ i ≤ k and 1 ≤ j ≤ n, where

tijr = {zij′ , xjj′ | 1 ≤ j′ ≤ n, j′ 6= j} ∪ {zi′j | 1 ≤ i′ ≤ k, i 6= i′},
tiji = {vi, zij} ∪ {ujj′ | 1 ≤ j′ ≤ n, j′ 6= j};

– sjj
′

= (sjj
′

r , sjj
′

i) and sj
′j = (sj

′j
r , sj

′j
i), generated by Sjj′ and Sj′j , where

sjj
′

r = {xj′j} ∪ {zij | 1 ≤ i ≤ k}, sj
′j

r = {xjj′} ∪ {zij′ | 1 ≤ i ≤ k},
sjj
′

i = {wjj′ , ujj′ , xjj′}, sj
′j

i = {wjj′ , uj′j , xj′j}.

The tree witnesses tij , sjj
′

and sj
′j are uniquely determined by their most

remote (from the root) variable, zij , xjj′ and xj′j , respectively, and correspond to

the hyperedges f ij , hjj
′
, hj

′j of the hypergraph Hn,k; their internal variables of
the form vi, wjj′ and ujj′ correspond to the vertices in the respective hyperedge.

Given a Boolean vector e representing a graph with n vertices, we construct
an ABox Ae with a single individual a and the following atoms:

A(a), Q(a, a), U(a, a),

Pjj′(a, a) and Pj′j(a, a), for 1 ≤ j < j′ ≤ n with ejj′ = 1.

Lemma 7. (Tn,k,Ae) |= qn,k iff Cliquen,k(e) = 1.

Proof. (⇒) Suppose (Tn,k,Ae) |= qn,k. Then there is a homomorphism g from
qn,k to the canonical model C of (Tn,k,Ae). Since the only points of C that
belong to ∃Tij are of the form cij (in the picture above) and qn,k contains atoms
of the form Tij(vi, zij), there is a function λ : {1, . . . , k} → {1, . . . , n} such that
g(vi) = ciλ(i). We claim that C = {λ(i) | 1 ≤ i ≤ k} is a k-clique in the graph
given by e.

We first show that λ(i) 6= λ(i′), for 1 ≤ i 6= i′ ≤ k. Indeed, otherwise we
would have λ(i) = λ(i′) = j, for some distinct i, i′. Since both Tij(vi, zij) and

Ti′j(vi′ , zi′j) are in qn,k, we have g(zij) = c′ij and g(zi′j) = c′i′j . Take some j′ 6= j.
Since U(ujj′ , zij), U(ujj′ , zi′j) ∈ qn,k, we obtain g(ujj′) = cij and g(ujj′) = ci′j ,
contrary to i 6= i′.

Next, we show that ejj′ = 1, for all j, j′ ∈ C with j < j′. Since U(ujj′ , zij)
is in qn,k, we have g(ujj′) = cij , and so g(xjj′) = a. Similarly, we also have
g(uj′j) = ci′j′ and g(xj′j) = a. Then, since qn,k contains both Pjj′(wjj′ , xjj′)
and Pj′j(wjj′ , xj′j) and C contains no pair of points in both Pjj′ and Pj′j apart
from (a, a), we obtain ejj′ = 1 whenever g(xjj′) = g(xj′j) = a (see the picture
below).

wjj′

xj′juj′jzi′j′vi′

P
j ′
jQU

T
i ′j ′

xjj′ujj′zijvi

P jj
′QU

Tij

(⇐) Suppose that λ : {1, . . . , k} → {1, . . . , n} is a k-clique and denote by C
the set {λ(i) | 1 ≤ i ≤ k}. We construct a homomorphism g from qn,k to the
canonical model of (Tn,k,Ae) by taking, for 1 ≤ i ≤ k and 1 ≤ j < j′ ≤ n,

g(vi) = ciλ(i),

g(zij) =

{
c′ij , if j = λ(i),

a otherwise,
g(wjj′) =

a, if j, j′ ∈ C,
dj′j , if j′ /∈ C and j ∈ C,
djj′ , otherwise,

and, for 1 ≤ j 6= j′ ≤ n,

g(ujj′) =

cλ−1(j)j , if j ∈ C,
djj′ , if j /∈ C, j′ ∈ C,
djj′ , if j, j′ /∈ C, j < j′,

a, if j, j′ /∈ C, j′ < j,

g(xjj′) =

a, if j ∈ C,
d′jj′ , if j /∈ C, j′ ∈ C,
d′jj′ , if j, j′ /∈ C, j < j′,

a, if j, j′ /∈ C, j′ < j.

This homomorphism mimics the cover X constructed for Hn,k in the proof of
Theorem 10. For example, in the definition of g(ujj′), the first case corresponds

to ujj′ ∈ fλ
−1(j)j ∈ X; the second and third cases to ujj′ ∈ hjj

′ ∈ X; and in the
fourth case, ujj′ is not covered by X. It follows that (Tn,k,Ae) |= qn,k. q

Theorem 11. There exists a sequence of CQs qn and TBoxes Tn of depth 2
such that any PE- and NDL-rewriting of qn and Tn is of exponential size, while
any FO-rewriting of qn and Tn is of superpolynomial size (unless NP ⊆ P/poly).

Proof. Given a PE-, FO- or NDL-rewriting q′n,k of qn,k and Tn,k, we show how
to construct, respectively, a monotone Boolean formula, a Boolean formula or a
monotone Boolean circuit for the function Cliquen,k of size |q′n,k|.

Suppose first that q′n,k is a PE-rewriting of qn,k and Tn,k. To begin with, we
eliminate the quantifiers in q′n,k. Namely, we replace every subformula of the form
∃xψ(x) in q′n with ψ(a). In the resulting formula q′′n,k, we replace each Pjj′(a, a)
and Pj′j(a, a) by ejj′ , each Tij(a, a) by 0, each U(a, a) and Q(a, a) by 1, each
Aij(a) and Bjj′(a) by 1 and each A′ij(a) and B′jj′(a) by 0. One can check that
the resulting propositional monotone Boolean formula computes Cliquen,k.

If q′n,k is an FO-rewriting of qn,k, then we eliminate the quantifiers by re-
placing both ∃xψ(x) and ∀xψ(x) in q′n,k with ψ(a), and then carry out the
replacing procedure described above, obtaining a propositional Boolean formula
that computes Cliquen,k.

If (Π, q′n,k) is an NDL-rewriting of qn,k, we replace all the individual vari-
ables in Π with a and then perform the replacement described above. Denote
the resulting propositional NDL-program by Π ′. The program Π ′ can now be
transformed into a monotone Boolean circuit computing Cliquen,k: for every
(propositional) variable p occurring in the head of a clause in Π ′, we introduce
an ∨-gate whose output is p and inputs are the bodies of the clauses with the
head p; and for each such body, we introduce an ∧-gate whose inputs are the
propositional variables in the body.

Now Theorem 11 follows from the lower bounds for monotone Boolean cir-
cuits and formulas computing Cliquen,k given at the beginning of this section.

q

10 Open Questions

Although the hypergraph technique developed in this paper proves to be fruitful
and elegant, some natural questions in this area still remain open:

– Is it possible to obtain non-trivial upper and lower bounds for the size of
PE-, FO- and NDL-rewritings for tree-shaped CQs and theories of bounded
depth? (Note that in [12] we present exponential lower bounds for PE- and
NDL- rewritings for tree-shaped queries and theories of unbounded depth.)

– Is it possible to obtain general ‘representation theorems’ for hypergraphs,
similar to Theorem 5, which would witness the correspondence between
classes of hypergraphs and classes of TBoxes?

A CQ qn,k

References

1. N. Alon and R. Boppana. The monotone circuit complexity of Boolean functions.
Combinatorica, 7(1):1–22, 1987.

2. S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2009.

3. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite
family and relations. Journal of Artificial Intelligence Research (JAIR), 36:1–69,
2009.

4. B. Aspvall, M. Plass, and R. Tarjan. A linear-time algorithm for testing the truth of
certain quantified boolean formulas. Information Processing Letters, 8(3):121–123,
1979.

5. J. Avigad. Eliminating definitions and Skolem functions in first-order logic. In Proc.
of the 16th Annual IEEE Symposium on Logic in Computer Science (LICS’91),
pages 139–146. IEEE Computer Society, 2001.

6. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

7. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspec-
tives in Mathematical Logic. Springer, 1997.

8. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning, 39(3):385–429, 2007.

9. G. Gottlob and T. Schwentick. Rewriting ontological queries into small nonrecur-
sive datalog programs. In Proc. of the 24th Int. Workshop on Description Logics
(DL 2011), volume 745 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

10. M. Grigni and M. Sipser. Monotone separation of logarithmic space from logarith-
mic depth. J. Comput. Syst. Sci., 50(3):433–437, 1995.

11. S. Jukna. Boolean Function Complexity — Advances and Frontiers, volume 27 of
Algorithms and combinatorics. Springer, 2012.

12. S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev. Exponential lower
bounds and separation for query rewriting. In Proc. of the 39th Int. Colloquium on
Automata, Languages, and Programming (ICALP 2012), volume 7392 of LNCS,
pages 263–274. Springer, 2012.

13. S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev. Long rewritings,
short rewritings. In Proc. of the 2012 Int. Workshop on Description Logics (DL
2012), volume 846 of CEUR Workshop Proceedings. CEUR-WS.org, 2012.

14. S. Kikot, R. Kontchakov, and M. Zakharyaschev. On (In)Tractability of OBDA
with OWL 2 QL. In Proc. of the 24th Int. Workshop on Description Logics
(DL 2011), volume 745 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

15. S. Kikot, R. Kontchakov, and M. Zakharyaschev. Conjunctive query answering
with OWL 2 QL. In Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the 13th Int. Conf. KR 2012. AAAI Press, 2012.

16. R. Raz and A. Wigderson. Monotone circuits for matching require linear depth.
J. ACM, 39(3):736–744, 1992.

17. A. Razborov. Lower bounds for the monotone complexity of some Boolean func-
tions. Dokl. Akad. Nauk SSSR, 281(4):798–801, 1985.

18. A. Razborov. Lower bounds for deterministic and nondeterministic branching
programs. In Proc. of the 8th Int. Symposium on Fundamentals of Computation
Theory (FCT’91), volume 529 of LNCS, pages 47–60. Springer, 1991.

