
DL-Lite with role inclusions

R. Kontchakov and M. Zakharyaschev

School of Computer Science and Information Systems
Birkbeck College London, U.K.

http://www.dcs.bbk.ac.uk/~{roman,michael}

Abstract. We analyse DL-Lite logics with role inclusions and present a
complete classification of the trade-off between their expressiveness and
computational complexity. In particular, we show that in logics with
role inclusions the data complexity of instance checking becomes P-hard
in the presence of functionality constraints, and coNP-hard if arbit-
rary number restrictions are allowed, even with a very primitive form of
concept inclusions. Moreover, the combined complexity of satisfiability in
this case jumps to ExpTime. On the positive side, it turns out that the
combined complexity for the logics without number restrictions depends
only on the form of concept inclusions and can range from NLogSpace
and P to NP; the data complexity for such logics stays in LogSpace.

1 Introduction

Description Logic, a discipline conceived in the early 1990s as a family of know-
ledge representation formalisms, which stemmed from semantic networks and
frames, has now been recognised as a ‘cornerstone of the Semantic Web’ for
providing a formal basis for the Web Ontology Language (OWL). DL-Lite is
part of OWL 1.1 (which is currently a W3C Member Submission); it belongs
to the group of its fragments that ‘can handle at least some interesting infer-
ence service in polynomial time with respect to either the number of facts in
the ontology or the size of the ontology as a whole.’ Although in many practical
cases state-of-the-art DL reasoners can cope quite well with reasoning tasks of
much higher worst-case complexity, new challenges are arising that require really
tractable reasoning. Typical examples are ontologies with huge terminologies or
a huge number of facts (data). DL-Lite was specially tailored to provide efficient
query answering on the data, which becomes increasingly important in the con-
text of data integration [18], the Semantic Web [15], P2P data management [3,
10, 13] and ontology-based data access [5, 7]. For instance, in a standard data
integration scenario, the information about objects and relationships between
them (ABox assertions, in the DL parlance) is stored in relational databases,
while a specially designed ontology (TBox) defines a new ‘logical’ view of the
stored data so that the user can query the integrated resources in terms of this
ontology. In this case, one may be interested in the combined complexity of reas-
oning, when both TBox and ABox are regarded to be the input (e.g., to check
consistency), as well as the data complexity, i.e., the complexity of solving a prob-
lem (say, instance checking or query answering) when the TBox and the query
are fixed and only the ABox may vary. DL-Lite boasts polynomial combined

complexity and LogSpace data complexity. Moreover, every conjunctive query
to a DL-Lite ontology can be rewritten into a first-order query to the underlying
databases, which can be expressed, say, in SQL, and thus the existing relational
database engines can be used to execute these queries.

The idea of DL-Lite has actually given rise not to a single language but rather
a family of related formalisms [6–8, 11]. Some of them are expressive enough
to capture Extended Entity-Relationship diagrams [1], others enjoy particularly
simple procedures for rewriting queries into SQL [8]. Unfortunately, a mechanical
union of two languages of the family can easily ruin their nice computation
properties. This situation poses a general research problem of investigating the
impact of various DL constructs on the computational complexity of reasoning
in DL-Lite logics. The impact of Boolean operators in concept inclusions as well
as arbitrary number restrictions on roles was comprehensively analysed in [2].

In this paper, we focus on DL-Lite languages with role inclusion axioms
(which are indispensable in data modelling) and present a complete picture
(summarised in Table 1) of the trade-off between their expressiveness and com-
putational complexity. In particular, we show that one cannot keep the data
complexity of instance checking in LogSpace and have functionality constraints
(or any kind of number restrictions) together with role inclusions in the language.
Even logics with very primitive concept inclusions become P-hard for data com-
plexity and coNP-hard if arbitrary number restrictions are allowed. Moreover,
the combined complexity of satisfiability in this case jumps to ExpTime (the
same as for the full-fledged logic SHIQ [21]). On the other hand, for the Horn
fragment with functionality constraints, instance checking is P-complete for data
complexity. Although this problem is not first-order reducible, it can be refor-
mulated in Datalog [16]. On the positive side, it turns out that the combined
complexity for the logics with role inclusions but without number restrictions
depends only on the form of concept inclusions and can range from NLogSpace
and P to NP; the data complexity of instance checking or satisfiability for such
logics stays in LogSpace.

2 The DL-Lite family and its neighbours

We begin by defining a description logic that can be regarded as the supremum
of the original DL-Lite family [6–8, 11] in the lattice of description logics. This
supremum will be called DL-LiteR,N

bool . The language of DL-LiteR,N
bool contains ob-

ject names a0, a1, . . . , atomic concept names A0, A1, . . . , and atomic role names
P0, P1, . . . ; its complex roles R and concepts C are defined as follows:

B ::= ⊥ | Ai | ≥ q R, R ::= Pi | P−i ,

C ::= B | ¬C | C1 u C2,

where q ≥ 1. The concepts of the form B are called basic. A DL-LiteR,N
bool TBox,

T , is a finite set of concept inclusion and role inclusion axioms of the form

C1 v C2 and R1 v R2,

and an ABox, A, is a finite set of assertions of the form Ak(ai) and Pk(ai, aj).
Taken together, T and A constitute the DL-LiteR,N

bool knowledge base K = (T ,A).
As usual in description logic, an interpretation is a structure of the form

I =
(
∆, aI0 , aI1 , . . . , AI0 , AI1 , . . . , P I0 , P I1 , . . .

)
, (1)

where ∆ 6= ∅, aIi ∈ ∆, AIi ⊆ ∆, P Ii ⊆ ∆ ×∆, and aIi 6= aIj , for all i 6= j. The
role and concept constructors are interpreted in I in the standard way:

(P−i)I = {(y, x) ∈ ∆×∆ | (x, y) ∈ P Ii }, (inverse role)

⊥I = ∅, (the empty set)

(≥q R)I =
{
x ∈ ∆ |]{y ∈ ∆ | (x, y) ∈ RI} ≥ q

}
, (‘at least q R-successors’)

(¬C)I = ∆ \ CI , (‘not in C’)

(C1 u C2)I = CI1 ∩ CI2 , (‘both in C1 and C2’)

where]X denotes the cardinality of X. We also use the standard abbreviations:
C1 tC2 := ¬(¬C1 u ¬C2), > := ¬⊥, ∃R := (≥ 1 R) and ≤ q R := ¬(≥ q + 1 R).

The satisfaction relation |= is also standard:

I |= C1 v C2 iff CI1 ⊆ CI2 , I |= R1 v R2 iff RI1 ⊆ RI2 ,

I |= Ak(ai) iff aIi ∈ AIk , I |= Pk(ai, aj) iff (aIi , aIj) ∈ P Ik .

A knowledge base (KB) K = (T ,A) is said to be satisfiable if there is an inter-
pretation satisfying all the members of T and A; such an interpretation is called
a model of K.

We will consider restrictions of DL-LiteR,N
bool along three axes: Boolean op-

erators (bool) on concepts, number restrictions (N) and role inclusions (R). A
DL-LiteR,N

bool TBox T is a Krom TBox if its concept inclusions are of the form

B1 v B2 or B1 v ¬B2 or ¬B1 v B2, (Krom)

where the Bi are basic concepts. T is called a Horn TBox if its concept inclusions
are of the form l

k

Bk v B. (Horn)

We use
d

k Bk v
d

i B′
i as an abbreviation for the set of inclusions

d
k Bk v B′

i.
Finally, we call T a core TBox if its concept inclusions are of the form

B1 v B2 or B1 v ¬B2. (core)

As B1 v ¬B2 is equivalent to B1 u B2 v ⊥, core TBoxes can be regarded as
sitting precisely in the intersection of Krom and Horn TBoxes.

The fragments of DL-LiteR,N
bool with Krom, Horn and core TBoxes will be

denoted by DL-LiteR,N
krom, DL-LiteR,N

horn and DL-LiteR,N
core , respectively.

Let α ∈ {core, krom, horn, bool}. Denote by DL-LiteR,F
α the fragment of

DL-LiteR,N
α in which number restrictions can occur only in functionality con-

straints of the form ≥ 2 R v ⊥ (saying that R is functional: if (x, y), (x, z) ∈ RI

then y = z). The fragment of DL-LiteR,N
α without number restrictions at all,

i.e., without concepts of the form ≥ q R, is denoted by DL-LiteRα . The fragments
obtained by omitting the role inclusions—that is, DL-LiteNα (with arbitrary num-
ber restrictions), DL-LiteFα (with functionality constraints only), and DL-Liteα

(without any number restrictions)—have been analysed in [2]. Note that our
notation is somewhat different from the original one; cf. [6, 7, 11, 8, 2].

We concentrate on three standard reasoning tasks for our logics L:

– satisfiability : given an L-KB K, decide whether K is satisfiable;
– instance checking : given an object name a, a basic concept B and an L-KB
K, decide whether aI ∈ BI whenever I |= K;

– query answering : given a positive existential query q(x), an L-KB K and a
tuple a of object names from its ABox, decide whether K |= q(a).

As is well known, many other reasoning tasks for description logics are Log-
Space reducible to the satisfiability problem; for details see [2]. In particular,
this is true of instance checking: an object a is an instance of concept B in every
model of K = (T ,A) iff the KB (T ∪ {A¬B v ¬B}, A ∪ {A¬B(a)}) is not
satisfiable, where A¬B is a fresh concept name.

Our aim is to investigate (i) the combined complexity of the satisfiability
problem for the logics of our family, where the whole KB K is regarded as an
input, and (ii) the data complexity (or ABox complexity) of the instance checking
and query answering problems, where the given TBox is assumed to be fixed,
while the input ABox can vary. The obtained results are summarised in Table 1.

complexity
language concept number combined data

name inc. restric. satisfiability inst. checking query answering

DL-LiteRcore core − NLogSpace [≤Th.1] in LogSpace in LogSpace
DL-LiteR,F

core core f ExpTime [≥Th.3] P [≥Th.6] P
DL-LiteR,N

core core + ExpTime coNP [≥Th.5] coNP

DL-LiteRkrom Krom − NLogSpace [≤Th.1] in LogSpace coNP ≥[7]

DL-LiteR,F
krom Krom f ExpTime coNP [≥Th.4] coNP

DL-LiteR,N
krom Krom + ExpTime coNP coNP

DL-LiteRhorn Horn − P [≤Th.1] in LogSpace in LogSpace [8]

DL-LiteR,F
horn Horn f ExpTime P ≥[8] P ≤[12]

DL-LiteR,N
horn Horn + ExpTime coNP coNP

DL-LiteRbool Bool − NP [≤Th.1] in LogSpace [Th.2] coNP

DL-LiteR,F
bool Bool f ExpTime coNP coNP

DL-LiteR,N
bool Bool + ExpTime ≤[14] coNP coNP ≤[14]

Table 1. Complexity of DL-Lite logics with role inclusions.

3 DL-LiteR
bool and first-order logic with one variable

We begin by considering the logic DL-LiteRbool and its fragments. The key ob-
servation which clearly explains their computational behaviour is that the sat-
isfiability problem for DL-LiteRbool knowledge bases is LogSpace reducible to

the satisfiability problem for the one-variable fragment QL1 of first-order logic
(without equality and function symbols) and that this reduction preserves the
properties of core, Krom, or Horn formulas.

Let K = (T ,A) be a DL-LiteRbool KB. Denote by role(K) the set of role names
occurring in T and A, by role±(K) the set {Pk, P−k | Pk ∈ role(K)}, and by ob(A)
the set of object names in A.

With every ai ∈ ob(A) we associate the individual constant ai of QL1 and
with every concept name Ai the unary predicate Ai(x) from the signature of
QL1. For each pair of roles Pk, P−k ∈ role±(K), we introduce a pair of fresh unary
predicates EPk(x) and EP−k (x), which will represent the domain and range of
Pk, respectively (in other words, EPk(x) and EP−k (x) are the sets of points
with at least one Pk-successor and at least one Pk-predecessor, respectively).
Additionally, for each pair of roles Pk, P−k ∈ role±(K), we take a pair of fresh
individual constants dpk and dp−k of QL1, which will serve as ‘representatives’ of
the points from the domains of Pk and P−k (provided that they are not empty).
Furthermore, for each pair ai, aj ∈ ob(A) and each R ∈ role±(K), we take a
fresh propositional variable Raiaj of QL1 to encode R(ai, aj). By induction on
the construction of a DL-LiteRbool concept C we define the QL1-formula C∗:

⊥∗ = ⊥, (Ai)∗ = Ai(x), (∃R)∗ = ER(x),
(¬C)∗ = ¬C∗(x), (C1 u C2)∗ = C∗1 (x) ∧ C∗2 (x).

A DL-LiteRbool TBox T corresponds then to the QL1-sentence

T ∗ =
∧

C1vC2∈T
∀x (

C∗1 (x) → C∗2 (x)
) ∧

∧

R1vR2∈T

[
∀x (

ER1(x) → ER2(x)
) ∧ ∀x (

inv(ER1)(x) → inv(ER2)(x)
)]

,

where inv(ER) = EP−k if R = Pk and inv(ER) = EPk if R = P−k . For every
role R ∈ role±(K), we also need the following QL1-sentence:

ε(R) = ∀x (
ER(x) → inv(ER)(inv(dr))

)
,

where inv(dr) = dp−k if R = Pk and inv(dr) = dpk if R = P−k . This sentence
says that if the domain of R is not empty then its range is not empty either: it
contains the representative inv(dr).

It should be clear how to translate a DL-LiteRbool ABox A into QL1:

A† =
∧

A(ai)∈A
A(ai) ∧

∧

P (ai,aj)∈A
Paiaj .

We also need formulas representing the relationship of the Raiaj with the unary
predicates for the role domain and range. For R ∈ role±(K), let

R† =
∧

ai,aj∈ob(A)

(
Raiaj → ER(ai)

) ∧
∧

ai,aj∈ob(A)

(
Raiaj → inv(R)ajai

)
,

where inv(R)ajai is the propositional variable P−k ajai if R = Pk and Pkajai if
R = P−k . Finally, for the DL-LiteRbool knowledge base K = (T ,A), we set

K† =
[
T ∗ ∧

∧

R∈role±(K)

ε(R)
]

∧
[
A† ∧

∧

R∈role±(K)

R†
]
.

Lemma 1. A DL-LiteRbool knowledge base K = (T ,A) is satisfiable iff the QL1-
sentence K† is satisfiable.

Proof. Every model for K gives rise to a model for K† in an obvious way. The
converse can be proved by ‘unravelling’ a first-order model for K† similarly to
the unravelling construction in [2]. We only note here the main difference from
that construction for DL-LiteNbool: as DL-LiteRbool has no number restrictions, one
can create as many R-successors to a point as required without violating the
TBox axioms (it was not the case for DL-LiteNbool; on the other hand the latter
does not have role inclusions, which may force additional R-successors). q

As the reduction ·† is computable in LogSpace and K† is a universal sen-
tence, we can use the known complexity results for the relevant fragments of
QL1 (see, e.g., [4]):

Theorem 1. The satisfiability problem is NLogSpace-complete for DL-LiteRcore
and DL-LiteRkrom, P-complete for DL-LiteRhorn and NP-complete for DL-LiteRbool.

Now we show that as far as data complexity is concerned, satisfiability of
DL-LiteRbool KBs can be solved using only logarithmic space in the size of the
ABox. In what follows, without loss of generality, we assume that all role names
of a given KB K = (T ,A) occur in its TBox and write role±(T) instead of
role±(K). Let Σ(T) = {ER(dr) | R ∈ role±(T)}, and, for Σ0 ⊆ Σ(T), let

coreΣ0(T) =
∧

ER(dr)∈Σ0

ER(dr) ∧
∧

R∈role±(T)

(
T ∗[dr] ∧

∧

R′∈role±(T)

ε(R′)[dr]
)
,

projΣ0
(K, a) =

∧

inv(ER)(inv(dr))∈Σ(T)\Σ0

¬ER(a) ∧ T ∗[a] ∧ A[(a),

where T ∗[c] and ε(R′)[c] are instantiations of the universal quantifier in the
respective formulas with the constant c, and A[(a) is defined as below:

A[(a) =
∧

A(a)∈A
A(a) ∧

∧

Pk∈role(K)

[∧

Pk(a,a1)∈A
EPk(a) ∧

∧

Pk(a1,a)∈A
EP−k (a)

]
.

Lemma 2. K is satisfiable iff there is a subset Σ0 of Σ(T) such that (i) coreΣ0(T)
is satisfiable and (ii) projΣ0

(K, a) is satisfiable for every a ∈ ob(A).

Proof. If I |= K, then we take Σ0 = {ER(dr) | R ∈ role±(T), (∃R)I 6= ∅}
and the first-order model M induced by I. It should be clear that we have
M |= coreΣ0(T) and M |= projΣ0

(K, a), for all a ∈ ob(A).

Conversely, let MΣ0 be an Herbrand model of coreΣ0(T) and Ma an Herbrand
model of projΣ0

(K, a), for a ∈ ob(A). By definition, the domain of MΣ0 con-
sists of |role±(T)| elements and the domains of the Ma are singletons. Clearly,
MΣ0 |= T ∗ and MΣ0 |= ε(R), for every R ∈ role±(T), and Ma |= T ∗, for every
a ∈ ob(A). We construct a model M by taking the disjoint union of MΣ0 with all
of the Ma, where we set Pkaia

M
j to be true iff Pk′(ai, aj) ∈ A or P−k′ (aj , ai) ∈ A

for a sub-role Pk′ of Pk. Let us show that M |= K†. We have M |= T ∗ because T ∗
is universal, does not contain constants and is true in every component model.
Consider now ε(R) = ∀x ψ(x), where ψ(x) = (ER(x) → inv(ER)(inv(dr))). We
show that, for every d in the domain of M, we have M |= ψ[d]. If d is of the
form dr′M, for some R′ ∈ role±(T), then clearly M |= ψ[d], since MΣ0 |= ε(R).
If d is of the form aM, for a ∈ ob(A), then it trivially holds if Ma 6|= ER(a).
Otherwise, Ma |= ER(a), and so inv(ER)(inv(dr)) /∈ Σ(T) \ Σ0. Therefore,
M |= inv(ER)(inv(dr)) and M |= ψ[d]. And we clearly have M |= R† ∧ A†. q

This lemma states that satisfiability of a DL-LiteRbool KB can be checked loc-
ally: one guesses which roles are empty and which are not (i.e., the set Σ0) and
then checks whether each object in the ABox (independently of the others) sat-
isfies the TBox and the role emptiness constraints Σ0. This observation suggests
a high degree of parallelism in the satisfiability check:

Theorem 2. The data complexity of the satisfiability and instance checking
problems for DL-LiteRbool knowledge bases is in LogSpace.

Proof. Since the instance checking problem is reducible to (un)satisfiability, we
consider only the latter. The following algorithm checks whether K = (T ,A)
is satisfiable: for every Σ0 ⊆ Σ(T), compute coreΣ0(T), check whether it is
satisfiable and then, for every object name a ∈ ob(A), compute projΣ0

(K, a)
and check whether it is satisfiable. This deterministic algorithm requires space
bounded by a logarithmic function in |A|. Indeed, it takes |role±(T)| cells of
the worktape to enumerate all subsets Σ0 of Σ(T)—this does not depend on
|A|. In order to enumerate all objects a ∈ ob(A) one needs log |A| worktape
cells. As coreΣ0(T) does not depend on A, the time to compute it does not
depend on |A| either. For each a ∈ ob(A), the size of projΣ0

(K, a) does not
depend on |A| as A[(a) contains at most one occurrence of every basic concept
of T ; this formula can be computed in LogSpace w.r.t. |A|: to compute A[,
log |A| cells are required to enumerate all objects a1. Finally, both formulas are
in essence propositional Boolean formulas and their satisfiability can be checked
deterministically (though in time exponential and in space linear in the length
of the formula, which in our case does not depend on |A|). q

In fact, this algorithm shows that satisfiability and instance checking for
DL-LiteRbool KBs belong to the parallel complexity class AC0 (see, e.g., [19]).

Let us see now what happens if we extend DL-LiteRbool and its fragments with
number restrictions.

4 Satisfiability: DL-LiteR,F
core is ExpTime-hard

As follows from [14, Theorem 10 and Lemma 11], satisfiability of DL-LiteR,N
bool

knowledge bases can be decided in ExpTime. Our aim is to show that this
upper bound cannot be improved even for the seemingly rather weak language
DL-LiteR,F

core . We need the following observation showing that in certain cases in
the core and Krom languages we can actually use intersections in the left-hand
side of concept inclusions, which is not strictly speaking allowed by the syntax.

Suppose that a knowledge base K contains a concept inclusion of the form
A1uA2 v C. Define a new KB K′ by replacing this axiom in K with the following
set of new axioms, where R1, R2, R3, R12, R23 are fresh role names:

A1 v ∃R1 A2 v ∃R2, (2)
R1 v R12, R2 v R12, (3)

≥ 2 R12 v ⊥, (4)
∃R−1 v ∃R−3 , (5)
∃R3 v C, (6)
R3 v R23, R2 v R23, (7)

≥ 2 R−23 v ⊥. (8)

Lemma 3. (i) If I |= K′ then I |= K, for every interpretation I.
(ii) If I |= K and CI 6= ∅ then there is an extension I ′ of I such that it

agrees with I on every symbol of K and I ′ |= K′.
Proof. (i) Let I |= K′ and x ∈ AI1 ∩ AI2 . By (2), there is y with (x, y) ∈ RI1 ,
and so y ∈ (∃R−1)I , and there is z with (x, z) ∈ RI2 . By (3), (x, y), (x, z) ∈ RI12,
whence y = z by (4). By (5), y ∈ (∃R−3)I and then there is u with (u, y) ∈ RI3
and u ∈ (∃R3)I . By (6), u ∈ CI and, by (7), (u, y) ∈ RI23, and we also have
(x, y) ∈ RI23. Finally, it follows from (8) that u = x; so x ∈ CI . Thus, I |= K.

(ii) Take some point c ∈ CI and define an extension I ′ of I to the new
role names by setting RI

′
1 = {(x, x) | x ∈ AI1}, RI

′
2 = {(x, x) | x ∈ AI2},

RI
′

3 = {(x, x) | x ∈ (A1 u A2)I} ∪ {(c, x) | x ∈ (A1 u ¬A2)I}, RI
′

12 = RI
′

1 ∪ RI
′

2

and RI
′

23 = RI
′

2 ∪RI
′

3 . It is readily seen that I ′ |= K′. q

We are now in a position to prove the following:

Theorem 3. The satisfiability problem for DL-LiteR,F
core KBs is ExpTime-hard.

Proof. First we show how to encode polynomial-space-bounded alternating Tur-
ing machines (ATMs) by means of DL-LiteR,F

horn KBs. As APSpace = ExpTime,
where APSpace is the class of problems accepted by polynomial-space-bounded
ATMs (see, e.g., [17]), this will establish ExpTime-hardness of satisfiability for
DL-LiteR,F

horn. And then we will use Lemma 3 to get rid of the conjunctions in the
left-hand side of the concept inclusions involved in this encoding of ATMs.

Without loss of generality, we can only consider ATMs M with binary com-
putational trees. This means that, for every non-halting state q and every sym-
bol a from the tape alphabet, M has precisely two instructions of the form

(q, a) ;0
M (q′, a′, d′) and (q, a) ;1

M (q′′, a′′, d′′), where d′, d′′ ∈ {→,←} and →
(respectively, ←) means ‘move the head right (left) one cell.’ We remind the
reader that each non-halting state of M is either an and-state or an or-state.

Given such an ATM M, a polynomial function p(n) such that any run of M
on any input of length n uses≤ p(n) tape cells, and an input word a = a1, . . . , an,
we construct a DL-LiteR,F

horn knowledge base KM,a with the following properties:
(i) the size of KM,a is polynomial in the size of M, a, and (ii) M accepts a
iff KM,a is not satisfiable. Denote by Q the set of states and by Σ the tape
alphabet of M. To encode the instructions of M, we need the following roles:

– Sq, S
0
q , S1

q , for each q ∈ Q: informally, x ∈ ∃S−q means that x represents
a configuration of M with the state q, and x ∈ ∃Sk

q that the next state,
according to the transition ;k

M, is q, where k = 0, 1;
– Hi, H

0
i ,H1

i , for each i ≤ p(n): informally, x ∈ ∃H−
i means that x represents

a configuration of M where the head scans the ith cell, and x ∈ ∃Hk
i that,

according to the transition ;k
M, k = 0, 1, in the next configuration the head

scans the ith cell;
– Cia, C0

ia, C1
ia, for all i ≤ p(n) and a ∈ Σ: informally, x ∈ ∃C−ia means that x

represents a configuration of M where the ith cell contains a, and x ∈ ∃Ck
ia

that, according to ;k
M, in the next configuration the ith cell contains a.

This intended meaning can be encoded using the following TBox axioms: for
every instruction (q, a) ;k

M (q′, a′,→) of M and every i < p(n),

∃S−q u ∃H−
i u ∃C−ia v ∃Hk

i+1 u ∃Sk
q′ u ∃Ck

ia′ , (9)

and for every instruction (q, a) ;k
M (q′, a′,←) of M and every i, 1 < i ≤ p(n),

∃S−q u ∃H−
i u ∃C−ia v ∃Hk

i−1 u ∃Sk
q′ u ∃Ck

ia′ , (10)

To preserve the symbols on the tape that are not in the active cell, we use the
following axioms, for k = 0, 1, i, j ≤ p(n) with j 6= i, and a ∈ Σ:

∃H−
j u ∃C−ia v ∃Ck

ia. (11)

To ‘synchronise’ our roles, we need two more (functional) roles T0 and T1 to rep-
resent the 0- and 1-successors of a configuration, and a number of role inclusions
are added to the TBox: for all k = 0, 1, i ≤ p(n), q ∈ Q and a ∈ Σ,

Ck
ia v Cia, Hk

i v Hi, Sk
q v Sq, (12)

Ck
ia v Tk, Hk

i v Tk, Sk
q v Tk, (13)

≥ 2 Tk v ⊥. (14)

It remains to encode the acceptance conditions for M on a. This can be done
with the help of role names Y0 and Y1 and concept name A: for q ∈ Q, k = 0, 1,

∃S−q v A, q an accepting state, (15)

Yk v Tk, (16)

≥ 2 T−k v ⊥, (17)

∃T−k uA v ∃Y −
k , (18)

∃S−q u ∃Yk v A, q an or-state, (19)

∃S−q u ∃Y0 u ∃Y1 v A, q an and-state. (20)

The TBox T of the DL-LiteR,F
horn knowledge base KM,a we are constructing con-

sists of axioms (9)–(20) together with the auxiliary axiom

A uB v ⊥, (21)

where B is a fresh concept name. The ABox A of KM,a is comprised of the
following assertions, for some object name s:

s : ∃S−q0
, s : ∃H−

1 , s : ∃C−iai
, for i ≤ p(n), and s : B, (22)

where q0 is the initial state and ai the ith symbol on the input tape, i ≤ p(n).
Clearly, KM,a = (T ,A) is a DL-LiteR,F

horn KB and its size is polynomial in the
size of M, a. The proof of the following lemma is routine and left to the reader.

Lemma 4. The ATM M accepts a iff the KB KM,a is not satisfiable.

Before applying Lemma 3 in order to eliminate the conjunctions in the left-
hand side of (9)–(11), (18)–(20), we check first that if KM,a is satisfiable then
it is satisfiable in an interpretation I such that I |= KM,a and CI2 6= ∅, for any
C2 occurring in an axiom of the form C0 uC1 v C2 in K. Consider, for instance,
axiom (9) and assume that I |= KM,a, but (∃Sk

q′)
I = ∅. Then we can add to the

domain of I two new points, say x and y, and set (x, y) ∈ (Sk
q′)
I , (x, y) ∈ (Sq′)I ,

(x, y) ∈ T Ik . Furthermore, if q′ is an accepting state, we also set y ∈ AI and
(x, y) ∈ Y I

k . One can readily check that the resulting interpretation is still a
model for KM,a. The remaining axioms are considered analogously.

Note that after an application of Lemma 3 we may have a conjunction in
the left-hand side of A1 v ∃R1. To eliminate it (using the same lemma), we
observe that if (∃R1)I

′
= ∅, then we can always add two new points, say x and

y, to the domain of I ′ and set x ∈ CI
′
, (x, y) ∈ RI

′
1 , (x, y) ∈ RI

′
12, (x, y) ∈ RI

′
3 ,

and (x, y) ∈ RI
′

23. It is readily checked that the resulting interpretation is still a
model for the KB under consideration, and so we can apply Lemma 3 again. q

5 Instance checking with number restrictions

Theorem 4. The instance checking problem (and query answering problem) for
DL-LiteR,F

krom is data complete for coNP.
Proof. The coNP upper bound follows from [14, Theorem 12]. We prove the
matching lower bound by reduction of the non-satisfiability problem for 2+2CNF,
which is known to be coNP-complete [20]. Given a 2+2CNF

ϕ =
n∧

k=1

(ak,1 ∨ ak,2 ∨ ¬ak,3 ∨ ¬ak,4),

where each ak,j is one of the propositional variables a1, . . . , am, we construct a
DL-LiteR,F

krom KB (T ,Aϕ) whose TBox T does not depend on ϕ and ABox Aϕ is
a linear encoding of ϕ. We will use the object names f , c1, . . . , cn and a1, . . . , am,
role names S, Sf and Pj , Pj,t, Pj,f, for 1 ≤ j ≤ 4, and concept names A,D.

Define Aϕ to be the set of the following assertions, for 1 ≤ k ≤ n:

S(f, ck), P1(ck, ak,1), P2(ck, ak,2), P3(ck, ak,3), P4(ck, ak,4)

and let T consist of the axioms

≥ 2 Pj v ⊥, for 1 ≤ j ≤ 4, (23)
Pj,f v Pj , Pj,t v Pj , for 1 ≤ j ≤ 4, (24)

¬∃Pj,t v ∃Pj,f, for 1 ≤ j ≤ 4, (25)

∃P−j,f v ¬A, ∃P−j,t v A, for 1 ≤ j ≤ 4, (26)

∃P1,f u ∃P2,f u ∃P3,t u ∃P4,t v ∃S−f , (27)

≥ 2 S− v ⊥, (28)
Sf v S, (29)
∃Sf v D. (30)

It should be clear that (T ,Aϕ) is LogSpace computable (in |ϕ|). Note, however,
that axiom (27) does not belong to DL-LiteR,F

krom because of the conjunctions in
its left-hand side. However, they can be eliminated with the help of Lemma 3.
So let us prove that (T ,Aϕ) |= D(f) iff ϕ is not satisfiable.

Suppose first that ϕ is satisfiable. Then there is an assignment a of the truth-
values t and f to propositional variables such that a(ak,1) = t or a(ak,2) = t or
a(ak,3) = f or a(ak,4) = f, for all k ∈ {1, . . . , n}. Consider the interpretation I
with ∆I = {x1, . . . , xm, y1, . . . , yn, z} and

– fI = z, cIk = yk, for 1 ≤ k ≤ n, aIi = xi, for 1 ≤ i ≤ m,
– AI = {xi | a(ai) = t} ∪ {yk | 1 ≤ k ≤ n} ∪ {z},
– P Ij,t = {(yk, aIk,j) | 1 ≤ k ≤ n, a(ak,j) = t} ∪ {(xi, xi) | a(ai) = t} ∪ {(z, z)},

P Ij,f = {(yk, aIk,j) | 1 ≤ k ≤ n, a(ak,j) = f} ∪ {(xi, xi) | a(ai) = f},
P Ij = P Ij,t ∪ P Ij,f, for 1 ≤ j ≤ 4,

– SI = {(z, yk) | 1 ≤ k ≤ n},
SIf = {(z, yk) | 1 ≤ k ≤ n, a(ak,1 ∨ ak,2 ∨ ¬ak,3 ∨ ¬ak,4) = f} = ∅,

– DI = {z | a(ϕ) = f} = ∅.
It is not hard to check that I |= (T ,Aϕ), and clearly I 6|= D(f).

Assume now that ϕ is not satisfiable and I |= (T ,Aϕ). Define an assignment
a by taking a(ai) = t iff aIi ∈ AI . As ϕ is not satisfiable, there is k, 1 ≤ k ≤ n,
such that a(ak,1) = a(ak,2) = f, a(ak,3) = a(ak,4) = t. In view of (25), for each j,
1 ≤ j ≤ 4, we have cIk ∈ (∃Pj,t)I ∪ (∃Pj,f)I , and by (24), cIk ∈ (∃Pj)I . Therefore,
by (23) and (26), cIk ∈ (∃Pj,t)I if a(ak,j) = t and cIk ∈ (∃Pj,f)I if a(ak,j) = f,
and hence, by (27), cIk ∈ (∃S−f)I . Then by (28) and (29), we have fI ∈ (∃Sf)I ,
from which, by (30), fI ∈ DI . It follows that (T ,Aϕ) |= D(f). q

If the functionality constraints are relaxed just a bit to allow for axioms of
the form ≥ 2 R v A then the same complexity result holds for the core fragment:

Theorem 5. The instance checking problem (and query answering problem) for
DL-LiteR,N

core is data complete for coNP.

Proof. The coNP upper bound again follows from [14, Theorem 12], and the
matching lower bound is proved by reduction of the non-satisfiability problem for
2+2CNF. The main difference from the previous proof is that DL-LiteR,N

core , unlike
DL-LiteR,F

krom, cannot express ‘covering conditions’ like (25). It turns out, however,
that we can use number restrictions to represent this kind of constraints. Given
a 2+2CNF ϕ, we take the ABox Aϕ constructed in the proof of Theorem 4 (and
computable in LogSpace in |ϕ|). The (ϕ independent) DL-LiteR,N

core TBox T ,
describing the meaning of any such representation of 2+2CNF ψ in terms of Aψ,
is also defined in the same way as in that proof except that axiom (25) is now
replaced by the following set of axioms:

Tj,1 v Tj , Tj,2 v Tj , Tj,3 v Tj , (31)

≥ 2 T−j v ⊥, (32)

∃Pj v ∃Tj,1, ∃Pj v ∃Tj,2, (33)

∃T−j,1 u ∃T−j,2 v ∃T−j,3, (34)

≥ 2 Tj v ∃Pj,t ∃Tj,3 v ∃Pj,f, (35)

where Tj , Tj,1, Tj,2, Tj,3 are fresh role names, for 1 ≤ j ≤ 4. It should be clear
that (T ,Aϕ) is LogSpace computable (in |ϕ|). The conjunctions in the left-
hand side of (27) and (34) can be eliminated by using Lemma 3. So it remains
to prove that (T ,Aϕ) |= D(f) iff ϕ is not satisfiable.

Suppose first that ϕ is satisfiable. Then there is an assignment a of the truth-
values t and f to propositional variables such that a(ak,1) = t or a(ak,2) = t or
a(ak,3) = f or a(ak,4) = f, for all k, 1 ≤ k ≤ n. Consider the interpretation I
with ∆I = {x1, . . . , xm, z} ∪ {yk, uk,j,1, uk,j,2 | 1 ≤ j ≤ 4, 1 ≤ k ≤ n} and

– fI = z, cIk = yk, for 1 ≤ k ≤ n, aIi = xi, for 1 ≤ i ≤ m,
– AI = {xi | 1 ≤ i ≤ m, a(ai) = t},
– P Ij,t = {(yk, aIk,j) | 1 ≤ k ≤ n, a(ak,j) = t}, for 1 ≤ j ≤ 4,
– P Ij,f = {(yk, aIk,j) | 1 ≤ k ≤ n, a(ak,j) = f}, for 1 ≤ j ≤ 4,
– P Ij = P Ij,t ∪ P Ij,f, for 1 ≤ j ≤ 4,
– T Ij,1 = {(yk, uk,j,1) | 1 ≤ k ≤ n}, for 1 ≤ j ≤ 4,
– T Ij,2 = {(yk, uk,j,2) | 1 ≤ k ≤ n, a(ak,j) = t} ∪

{(yk, uk,j,1) | 1 ≤ k ≤ n, a(ak,j) = f}, for 1 ≤ j ≤ 4,
– T Ij,3 = {(yi, uk,j,1) | 1 ≤ k ≤ n, a(ak,j) = f}, for 1 ≤ j ≤ 4,
– T Ij = T Ij,1 ∪ T Ij,2, for 1 ≤ j ≤ 4,
– SIf , SI and DI are defined in the same way as in the proof of Theorem 4.

It is not hard to check that I |= (T ,Aϕ), and clearly I 6|= D(f).

Assume now that ϕ is not satisfiable and I |= (T ,Aϕ). Define an assignment
a by taking a(ai) = t iff aIi ∈ AI . As ϕ is not satisfiable, there is k, 1 ≤ k ≤ n,
such that a(ak,1) = a(ak,2) = f, a(ak,3) = a(ak,4) = t.

For each j, 1 ≤ j ≤ 4, we have cIk ∈ (∃Pj)I ; by (33), cIk ∈ (∃Tj,1)I , (∃Tj,2)I .
So there are v1, v2 such that (cIk , v1) ∈ T Ij,1 and (cIk , v2) ∈ T Ij,2. If v1 6= v2 then
cIk ∈ (≥ 2 Tj)I and, by (35), cIk ∈ (Pj,t)I . Otherwise, if v1 = v2 = v, we have
by (34), v ∈ (∃T−j,3)I , and so by (31) and (32), cIk ∈ (∃Tj,3)I , from which, by (35),
cIk ∈ (Pj,f)I . Therefore, cIk ∈ (∃Pj,t)I ∪(∃Pj,f)I , and by (24), cIk ∈ (∃Pj)I . Thus,
by (23) and (26), cIk ∈ (∃Pj,t)I if a(ak,j) = t and cIk ∈ (∃Pj,f)I if a(ak,j) = f,
and hence, by (27), cIk ∈ (∃S−f)I . Then by (28) and (29), we have fI ∈ (∃Sf)I ,
from which, by (30), fI ∈ DI . It follows that (T ,Aϕ) |= D(f). q

However, the core fragment with only functionality constraints is data com-
plete for P (the lower bound would follow from [8, Theorem 6, item 2] but
unfortunately the proof in [8] is fallacious).
Theorem 6. The instance checking problem (and query answering problem) for
DL-LiteR,F

core is data complete for P.

Proof. The polynomial upper bound follows from [12]. We prove the matching
lower bound by reduction of the entailment problem for Horn-CNF, which is
known to be P-complete (see, e.g., [4, Exercise 2.2.4]). Given a Horn-CNF

ϕ =
n∧

k=1

(¬ak,1 ∨ ¬ak,2 ∨ ak,3) ∧
p∧

l=1

al,0,

where each ak,j and each al,0 is one of the propositional variables a1, . . . , am, we
construct a DL-LiteR,F

core knowledge base (T ,Aϕ) whose TBox T does not depend
on ϕ and ABox Aϕ is computed in LogSpace from ϕ. We will need the object
names c1, . . . , cn and vk,j,i, for 1 ≤ k ≤ n, 1 ≤ j ≤ 3, 1 ≤ i ≤ m (for each
variable, we take one object name for each possible occurrence of this variable
in each non-unit clause), role names S, St and Pj , Pj,t, for 1 ≤ j ≤ 3, and a
concept name A. Define Aϕ to be the set containing the assertions:

S(v1,1,i, v1,2,i), S(v1,2,i, v1,3,i), S(v1,3,i, v2,1,i), S(v2,1,i, v2,2,i), S(v2,2,i, v2,3,i), . . .
. . . , S(vn,2,i, vn,3,i), S(vn,3,i, v1,1,i), for 1 ≤ i ≤ m,

Pj(vk,j,i, ck) iff ak,j = ai, for 1 ≤ i ≤ m, 1 ≤ k ≤ n, 1 ≤ j ≤ 3,

A(v1,1,i) iff al,0 = ai, for 1 ≤ i ≤ m, 1 ≤ l ≤ p

(all objects for each variable are organised in an S-cycle and Pj(vk,j,i, ck) ∈ Aϕ

iff the variable ai occurs in the kth non-unit clause of ϕ in the jth position).
And let T consist of the following concept and role inclusions:

St v S, ≥ 2 S v ⊥, A v ∃St, ∃S−t v A, (36)
Pj,t v Pj , ≥ 2 Pj v ⊥, A v ∃Pj,t, for 1 ≤ j ≤ 2, (37)
P3,t v P3, (38)

≥ 2 P−3 v ⊥, (39)

∃P−1,t u ∃P−2,t v ∃P−3,t, (40)

∃P3,t v A. (41)

It should be clear that (T ,Aϕ) is LogSpace computable (in |ϕ|). As in the
previous proofs, here we have an axiom, namely (40), that does not belong to
DL-LiteR,F

core because of the conjunctions in its left-hand side. As before, this
conjunction is eliminated with the help of Lemma 3. Our aim is to show that
(T ,Aϕ) |= A(v1,1,i0) iff ϕ |= ai0 .

Suppose ϕ 6|= ai0 . Then there is an assignment a with a(ϕ) = t and a(ai0) = f.
We construct a model I for (T ,Aϕ) such that I 6|= A(v1,1,i0). Define I by taking
∆I = {xk,j,i, zk,j,i | 1 ≤ k ≤ n, 1 ≤ j ≤ 3, 1 ≤ i ≤ m} ∪ {yk | 1 ≤ k ≤ n},
cIk = yk, for 1 ≤ k ≤ n, vIk,j,i = xk,j,i, for 1 ≤ k ≤ n, ≤ j ≤ 3, 1 ≤ i ≤ m. The
extensions of the concept and role names are defined as in Fig. 1. It is routine
to check that we indeed have I |= (T ,Aϕ) and I 6|= A(v1,1,i0).

.

.

a1 a2 a3 a4 a5

¬a1 ∨ ¬a2 ∨ a3 ¬a2 ∨ ¬a4 ∨ a5

zk,j,i

xk,j,i

y1 y2
St, S

S

Pj,t, Pj

Pj

¬A

A

Fig. 1. The model I satisfying (T ,Aϕ), for ϕ = (¬a1 ∨ ¬a2 ∨ a3) ∧ (¬a2 ∨ ¬a4 ∨ a5).

Conversely, assume now that ϕ |= ai0 . Consider some I |= (T ,Aϕ) and define
a to be the assignment such that a(ai) = t iff vI1,1,i ∈ AI , for 1 ≤ i ≤ m. By (36),
for each i, 1 ≤ i ≤ m, we have either vIk,j,i ∈ AI , for all k, j with 1 ≤ k ≤ n,
1 ≤ j ≤ 3, or vIk,j,i /∈ AI , for all k, j with 1 ≤ k ≤ n, 1 ≤ j ≤ 3.

Now, if we have a(ak,1) = t and a(ak,2) = t, for 1 ≤ k ≤ n then, by (37),
cIk ∈ (∃P−1,t)

I , (∃P−2,t)
I . By (40), cIk ∈ (∃P−3,t)

I and hence, by (39) and (38),
vIk,3,i ∈ (∃P3,t)I , where ak,3 = ai, which means, by (41), that vIk,3,i ∈ AI , and so
vI1,1,i ∈ AI and a(ai) = t. It follows that a(ϕ) = t, and hence a(ai0) = t, which,
by definition, means that vI1,1,i0

∈ AI . As I was an arbitrary model of (T ,Aϕ),
we can conclude that (T ,Aϕ) |= A(v1,1,i0). q

6 Conclusion

The results obtained in this paper and [2] show the following: (1) One can add
either number restrictions or role inclusions to the basic (core, horn, krom and
bool) DL-Lite logics without changing their complexity. (2) However, taken to-
gether, these constructs spoil the nice computational properties of the basic
DL-Lite logics. (3) If both of them are really needed for an application, one
should try and restrict their interaction (e.g., by avoiding axioms of the form
R v P with functional role P , as suggested in [9]). Exploring in depth this in-
teraction, as well as the impact of other constructs (transitive roles, Booleans on

roles, etc.) on the computational properties of DL-Lite logics is an interesting
and practically important area for further research.

References

1. A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev.
Complexity of reasoning over Entity-Relationship models. In Proc. of DL, pages
163–170, 2007.

2. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. DL-Lite in the
light of first-order logic. In Proc. of AAAI, pages 361–366, 2007.

3. P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and
I. Zaihrayeu. Data management for peer-to-peer computing: A vision. In Proc. of
WebDB, 2002.

4. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspect-
ives in Mathematical Logic. Springer, 1997.

5. A. Borgida, R. Brachman, D. McGuinness, and L. Alperin Resnick. CLASSIC: A
structural data model for objects. In Proc. of ACM SIGMOD, pages 59–67, 1989.

6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable description logics for ontologies. In Proc. of AAAI, pages 602–607, 2005.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tailoring
OWL for data intensive ontologies. In Proc. of OWLED, 2005.

8. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proc. of KR, pages 260–
270, 2006.

9. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi and R. Rosati.
Linking data to ontologies: the description logic DL-LiteA. In Proc. OWLED, 2006.

10. D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Logical foundations
of peer-to-peer data integration. In Proc. of PODS, pages 241–251, 2004.

11. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning, 39:385–429, 2007.

12. T. Eiter, G. Gottlob, M. Ortiz, and M. Šimkus. Query answering in the description
logic Horn-SHIQ. In Proc. of JELIA, 2008.

13. E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. Queries and updates in
the coDB peer-to-peer database system. In Proc. of VLDB, pages 1277–1280, 2004.

14. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for
the description logic SHIQ. In Proc. of IJCAI, pages 399–404, 2007.

15. J. Heflin and J. Hendler. A portrait of the Semantic Web in action. IEEE Intelligent
Systems, 16:54–59, 2001.

16. U. Hustadt, B. Motik, and U. Sattler. Reasoning in description logics by a reduction
to disjunctive Datalog. J. of Automated Reasoning, 39:351–384, 2007.

17. D. Kozen. Theory of Computation. Springer, 2006.
18. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS, pages

233–246, 2002.
19. Ch. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
20. A. Schaerf. On the complexity of the instance checking problem in concept lan-

guages with existential quantification. J. Intell. Infor. Systems, 2:265–278, 1993.
21. K. Schild. A correspondence theory for terminological logics: Preliminary report.

In Proc. of IJCAI, pages 466–471. Morgan Kaufmann, 1991.

