
25

A Cookbook for Temporal Conceptual Data Modelling with
Description Logics

ALESSANDRO ARTALE, Free University of Bozen-Bolzano, Italy
ROMAN KONTCHAKOV, Birkbeck, University of London, UK
VLADISLAV RYZHIKOV, Free University of Bozen-Bolzano, Italy
MICHAEL ZAKHARYASCHEV, Birkbeck, University of London, UK

We design temporal description logics suitable for reasoning about temporal conceptual data models and investigate their
computational complexity. Our formalisms are based on DL-Lite logics with three types of concept inclusions (ranging from
atomic concept inclusions and disjointness to the full Booleans), as well as cardinality constraints and role inclusions. The
logics are interpreted over the Cartesian products of object domains and the flow of time (Z, <), satisfying the constant
domain assumption. Concept and role inclusions of the TBox hold at all moments of time (globally) and data assertions
of the ABox hold at specified moments of time. To express temporal constraints of conceptual data models, the languages
are equipped with flexible and rigid roles, standard future and past temporal operators on concepts and operators ‘always’
and ‘sometime’ on roles. The most expressive of our temporal description logics (which can capture lifespan cardinalities
and either qualitative or quantitative evolution constraints) turns out to be undecidable. However, by omitting some of the
temporal operators on concepts/roles or by restricting the form of concept inclusions we construct logics whose complexity
ranges between NLOGSPACE and PSPACE. These positive results are obtained by reduction to various clausal fragments of
propositional temporal logic, which opens a way to employ propositional or first-order temporal provers for reasoning about
temporal data models.

Categories and Subject Descriptors: I.2.4 [Knowledge Representation Formalisms and Methods]: Representation lan-
guages; F.4.1 [Mathematical Logic]: Temporal logic; F.2.2 [Nonnumerical Algorithms and Problems]: Complexity of
proof procedures; H.2.1 [Logical Design]: Data models.

General Terms: Languages, Theory.

Additional Key Words and Phrases: Description Logic, Temporal Conceptual Data Model.

ACM Reference Format:
Alessandro Artale, Roman Kontchakov, Vladislav Ryzhikov, and Michael Zakharyaschev. 2014. A cookbook for temporal
conceptual data modelling with description logics. ACM Trans. Comput. Logic 15, 3, Article 25 (June 2014), 45 pages.
DOI:http://dx.doi.org/10.1145/2629565

1. INTRODUCTION
The aim of this article is twofold. On the one hand, we investigate the complexity of reasoning about
temporal conceptual data models depending on the available modelling constructs. On the other
hand, we achieve this by encoding temporal conceptual data models in carefully crafted temporal
description logics (TDLs, for short). As a result, we obtain a new family of TDLs and a clear under-
standing of how their constructs affect the complexity of reasoning. Most of the constructed TDLs
feature an unexpectedly low complexity—compared to other known TDLs—such as NLOGSPACE,
PTIME, NP and PSPACE, which is good news for automated temporal conceptual modelling. How-
ever, some combinations of the constructs (which involve temporal operators on relationships) result
in undecidability, giving a new type of undecidable fragments of first-order temporal logic.

This work was partially supported by the U.K. EPSRC grant EP/H05099X/1.

DOI:http://dx.doi.org/10.1145/2629565

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:2 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

Conceptual data modelling formalisms, such as the Extended Entity-Relationship model (EER)
and Unified Modelling Language (UML), provide visual means to describe application domains in
a declarative and reusable way, and are regarded as standard tools in database design and software
engineering. One of the main tasks in conceptual modelling is to ensure that conceptual schemas
satisfy various ‘quality properties’: for instance, one may wish to check whether a given schema is
consistent, whether its entities and relationships can be populated, whether a certain individual is an
instance of a certain class, etc. That was where conceptual modelling met description logics (DLs),
a family of knowledge representation formalisms specifically designed to efficiently reason about
structured knowledge [Baader et al. 2003]. Since 2007, DLs have been recognised as the backbone
of the Semantic Web, underlying the standard Web Ontology Languages OWL and OWL 2.1

Connections between conceptual data models (CMs, for short) and DLs have been investigated
since the 1990s (see, e.g., [Calvanese et al. 1999; Borgida and Brachman 2003; Berardi et al. 2005;
Artale et al. 2007a] and references therein), which resulted in a classification of CMs according
to the computational complexity of checking schema consistency depending on the available mod-
elling constructs. The standard EER/UML constructs include generalisation (inheritance) for entities
(classes), relationships and attributes with disjointness and covering constraints on them, cardinal-
ity constraints for relationships and their refinements, multiplicity constraints for attributes and key
constraints for entities. Reasoning over CMs equipped with the full set of constructs is EXPTIME-
complete, which was shown by mapping CMs into the DLs DLR and ALCQI [Calvanese et al.
1999; Berardi et al. 2005]. With the invention of the DL-Lite family [Calvanese et al. 2005; 2007;
Artale et al. 2007b; 2009a], it became clear that reasoning over CMs can often be done using DLs
much weaker than DLR and ALCQI. For example, the NP-complete DL-Lite(HN)

bool was shown
to be adequate for representing a large class of CMs with generalisation and both disjointness and
covering constraints, but no upper cardinality bounds on specialised relationships; see [Artale et al.
2007a] and Section 2.2 for details. If we are also prepared to sacrifice covering constraints, then the
NLOGSPACE-complete fragment DL-Lite(HN)

core can do the job. (Note that DL-Lite(HN)
core contains the

OWL 2 QL profile2 of OWL 2 and the DL fragment of RDF Schema, RDFS.3)
Temporal conceptual data models (TCMs) extend CMs with means to represent constraints over

temporal database instances. Temporal constraints can be grouped into three categories: timestamp-
ing, evolution and temporal cardinality constraints. Timestamping constraints discriminate between
those classes, relationships and attributes that change over time and those that are time-invariant
(or, rigid) [Theodoulidis et al. 1991; Gregersen and Jensen 1999; Finger and McBrien 2000; Ar-
tale and Franconi 1999; Parent et al. 2006]. Evolution constraints control how the domain elements
evolve over time by migrating from one class to another [Hall and Gupta 1991; Mendelzon et al.
1994; Su 1997; Parent et al. 2006; Artale et al. 2007e]. We distinguish between qualitative evolu-
tion constraints describing generic temporal behaviour, and quantitative ones specifying the exact
time of migration. Temporal cardinality constraints restrict the number of times an instance of a
class can participate in a relationship: snapshot cardinality constraints do it at each moment of time,
while lifespan cardinality constraints impose restrictions over the entire existence of the instance as
a member of the class [Tauzovich 1991; McBrien et al. 1992; Artale and Franconi 2009].

Temporal extensions of DLs have been constructed and investigated since Schmiedel [1990] and
Schild’s [1993] seminal papers (see [Gabbay et al. 2003; Artale and Franconi 2001; 2005; Lutz
et al. 2008] for detailed surveys), with reasoning over TCMs being one of the main objectives.
The first attempts to represent TCMs by means of TDLs resulted in fragments of DLRUS and
ALCQIUS whose complexity ranged from EXPTIME and EXPSPACE up to undecidability [Artale
and Franconi 1999; Artale et al. 2002; Artale et al. 2003]. A general conclusion one could draw
from the obtained results is that—as far as there is a nontrivial interaction between the temporal

1www.w3.org/2007/OWL, www.w3.org/TR/owl2-overview
2www.w3.org/TR/owl2-profiles
3www.w3.org/TR/rdf-schema

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:3

and DL components—TDLs based on full-fledged DLs such asALC turn out to be too complex for
effective practical reasoning (in more detail, this will be discussed in Section 3.3).

The possibility to capture CMs using logics of the DL-Lite family gave a glimpse of hope that
automated reasoning over TCMs can finally be made practical. The first temporal extension of
DL-Lite(HN)

bool was constructed by Artale et al. [2007c]. It featured rigid roles, with temporal and
Boolean operators applicable not only to concepts but also to TBox axioms and ABox assertions.
The resulting logic was shown to be EXPSPACE-complete. (To compare: the same temporalisation
of ALC is trivially undecidable [Artale et al. 2002; Gabbay et al. 2003].) This encouraging result
prompted a systematic investigation of TDLs suitable for reasoning about TCMs.

Our aim in this article is to design DL-Lite-based TDLs that are capable of representing various
sets of TCM constructs and have as low computational complexity as possible. Let us first formulate
our minimal requirements for such TDLs. At the model-theoretic level, we are interested in temporal
interpretations that are Cartesian products of object domains and the flow of time (Z, <). At each
moment of time, we interpret the DL constructs over the same domain (thus complying with the
constant domain assumption adopted in temporal databases [Chomicki et al. 2001]). We want to
be able to specify, using temporal ABoxes, that a finite number of concept and role membership
assertions hold at specific moments of time. We regard timestamping constraints as indispensable;
this means, in particular, that we should be able to declare that certain roles and concepts are rigid
(time-invariant) in the sense that their interpretations do not change over time. Other temporal and
static (atemporal) modelling constraints are expressed by means of TBox axioms (concept and role
inclusions). In fact, we observe that to represent TCM constraints, we only require concept and role
inclusions that hold globally, at every time instant; thus, temporal and Boolean operators on TBox
axioms [Artale et al. 2007c; Baader et al. 2008; 2012] are not needed for our aims (but may be useful
to impose constraints on schema evolution). Finally, in order to represent cardinality constraints
(both snapshot and lifespan), we require number restrictions; thus, we assume this construct to be
available in all of our formalisms.

The remaining options include the choice of (i) the underlying dialect of DL-Lite for disjointness
and covering constraints; (ii) the temporal operators on concepts for different types of evolution
constraints, and (iii) the temporal operators on roles for lifespan cardinality constraints. For (i), we
consider three DLs: DL-Lite(HN)

bool and its sub-Boolean fragments DL-Lite(HN)
krom and DL-Lite(HN)

core .
For (ii), we take various subsets of the standard future and past temporal operators (since and until,
next and previous time, sometime and always in the future/past, or simply sometime and always).
Finally, for (iii), we only use the undirected temporal operators ‘always’ and ‘sometime’ (referring
to all time instants); roles in the scope of such operators are called temporalised.

Our most expressive TDL, based on DL-Lite(HN)
bool , captures all the standard types of temporal

constraints: timestamping, evolution and temporal cardinality. Unfortunately, and to our surprise,
this TDL turns out to be undecidable. As follows from the proof of Theorem 6.1, it is a subtle
interaction of functionality constraints on temporalised roles with the temporal operators and full
Booleans on concepts that causes undecidability. On a more positive note, we show that even small
restrictions of this interaction result in TDLs with better computational properties.

First, keeping DL-Lite(HN)
bool as the base DL but limiting the temporal operators on concepts to ‘al-

ways’ and ‘sometime,’ we obtain an NP-complete logic, which can express timestamping and life-
span cardinalities. To appreciate this result, recall that a similar logic based on ALC is 2EXPTIME-
complete [Artale et al. 2007d]. Second, by giving up temporalised roles but retaining temporal oper-
ators on concepts, we obtain PSPACE- or NP-complete logics depending on the available temporal
operators, which matches the complexity of the underlying propositional temporal logic. These
TDLs have sufficient expressivity to capture timestamping and evolution constraints, but cannot
represent temporal cardinality constraints (see Section 3). We prove these upper complexity bounds
by a reduction to the propositional temporal logic PT L, which opens a way to employ the existing
temporal provers for checking quality properties of TCMs. Again, we note that a similar logic based
on ALC is undecidable [Wolter and Zakharyaschev 1999; Artale et al. 2002; Gabbay et al. 2003].

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:4 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

We can reduce the complexity even further by restricting DL-Lite(HN)
bool to its sub-Boolean frag-

ments DL-Lite(HN)
krom and DL-Lite(HN)

core , which are unable to capture covering constraints. This re-
sults in logics within NP and PTIME. And if the temporal operators on concepts are limited to
‘always’ and ‘sometime’ then the two sub-Boolean fragments are NLOGSPACE-complete. To ob-
tain these results we consider sub-Boolean fragments of PT L by imposing restrictions on both the
type of clauses in Separated Normal Form [Fisher 1991] and the available temporal operators. We
give a complete classification of such fragments according to their complexity (see Table III).

The rest of the article is organised as follows. Section 2 introduces, using a simple example, con-
ceptual data modelling languages and illustrates how they can be captured by various dialects of
DL-Lite, which are formally defined in Section 2.2. Section 3 introduces temporal conceptual mod-
elling constraints using a temporal extension of our example. In Section 3.2, we design DL-Lite
based TDLs that can represent those constraints. Section 3.3 gives a detailed overview of the results
obtained in this article together with a discussion of related work. Section 4 gives the reduction of
TDLs to PT L mentioned above. In Section 5, we establish the complexity results for the clausal
fragments of propositional temporal logic. Section 6 studies the complexity of TDLs with tempo-
ralised roles. We discuss the obtained results, open problems and future directions in Section 7.

2. CONCEPTUAL MODELLING AND DESCRIPTION LOGIC
Description logics (DLs; see, e.g., [Baader et al. 2003]) were designed in the 1980s as logic-based
formalisms for knowledge representation and reasoning; their major application areas include on-
tologies in life sciences and the Semantic Web. Conceptual modelling languages [Chen 1976] are
a decade older, and were developed for abstract data representation in database design. Despite
apparent notational differences, both families of languages are built around concepts (or entities)
and relationships using a number of ‘natural’ constructs; a close correspondence between them was
discovered and investigated in [Calvanese et al. 1999; Borgida and Brachman 2003; Berardi et al.
2005; Artale et al. 2007a].

The DL-Lite description logics [Calvanese et al. 2005; 2007; Poggi et al. 2008; Artale et al.
2007b; 2009a] and the DL-Lite-based profile OWL 2 QL of OWL 2 have grown from the idea of
linking relational databases and ontologies in the framework of ontology-based data access [Dolby
et al. 2008; Heymans et al. 2008; Poggi et al. 2008]. The chief aims that determined the shape of the
DL-Lite logics are: (i) the ability to represent basic constraints used in conceptual modelling, and
(ii) the ability to support query answering using standard relational database systems. In this article,
we concentrate on DL-Lite as a modelling language and briefly return to the issue of ontology-based
data access (OBDA) in Section 7.

In this section, we give an intuitive example illustrating the main constructs of conceptual data
models and their DL-Lite representations. In the example, we use the Extended Entity-Relationship
(EER) language [Elmasri and Navathe 2007]; however, one can easily employ other conceptual
modelling formalisms such as UML class diagrams (www.uml.org). Then we formally define the
syntax and semantics of the DL-Lite logics to be used later on in this article.

2.1. A Motivating Example
Let us consider the EER diagram in Fig. 1 representing (part of) a company information system.
The arrow from the entity Manager to the entity Employee stands for the statement ‘all managers
are employees.’ The double arrow with a circle below Manager means that the set of managers is the
union of the set of area managers and the set of top managers. These statements can be represented
in the language of description logic as inclusions between concepts:

Manager v Employee, AreaManager v Manager,
Manager v AreaManager t TopManager, TopManager v Manager.

Here Manager, Employee, AreaManager, TopManager are concept names (or unary predicates) and
the symbols v and t denote the usual set-theoretic inclusion and union, respectively. In a similar

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:5

Department Interest Group

d

Organisational Unit

Member

(1,∞)

org

Area Manager Top Manager

Manager

Employee
mbr

Salary(Integer)Name(String)
Payroll Number(Integer)

Manages
man

(1,1)

Works On
emp

Project

Project Code(String)

prj

(1,1)

act

(3,∞)

Fig. 1. A conceptual data model of a company information system.

way we read and represent the part of the EER diagram located below Organisational Unit; the only
new ingredient here is the circled d, indicating that the union is disjoint:

Department v OrganisationalUnit, OrganisationalUnit v Department t InterestGroup,
InterestGroup v OrganisationalUnit, Department u InterestGroup v ⊥.

Here ⊥ denotes the empty set and u the set-theoretic intersection.
The entity Employee in Fig. 1 has three attributes: Name, which is a string, and Payroll Number

and Salary, both of which are integers. The attribute Payroll Number (underlined) is a key for the en-
tity Employee. In description logic, we can encode attributes by means of roles (binary predicates).
For example, to say that every employee has a salary, which is an integer number, we can represent
the attribute Salary by a role, salary, together with the concept inclusions

Employee v ∃salary, ∃salary− v Integer,

where ∃salary denotes the domain of salary, and salary− is the inverse of salary, so that ∃salary−

is the range of salary. Then the fact that each individual has a unique salary attribute value can be
expressed by the concept inclusion

≥ 2 salary v ⊥,

where≥ 2 salary stands for the set of all domain elements with at least two values of salary attached
to them (which must be empty according to this inclusion, i.e., salary is a functional role). The at-
tributes Payroll Number and Name are represented in a similar manner. The fact that Payroll Number
is a key for Employee can be encoded by the inclusion

≥ 2 payrollNumber− v ⊥.

Relationships are used to describe connections among objects from (possibly) different entities.
Works On, Member and Manages in Fig. 1 are binary relationships. The argument emp of Works On
is of type Employee in the sense that its values always belong to the entity Employee (in other words,
Employee participates in Works On as emp). Likewise, the argument act of Works On is of type
Project. In description logic, a binary relationship such as Works On can be represented by a role,
say, worksOn. If we agree that the first argument of worksOn corresponds to emp and the second to
act, then the domain of worksOn belongs to Employee and its range to Project:

∃worksOn v Employee, ∃worksOn− v Project.

The expression (3,∞) labelling the argument act of Works On is a cardinality constraint meaning
that every element of the set Project participates in at least three distinct tuples in the relationship
Works On (each project involves at least three employees). This can be represented by the inclusion

Project v ≥ 3 worksOn−. (1)

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:6 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

The expression (1, 1) labelling the argument prj of the relationship Manages means that each ele-
ment of Project participates in at least one and at most one (that is, exactly one) tuple in Manages,
which is represented by two inclusions:

Project v ∃manages−, Project v ≤ 1 manages−.

Relationships of arity greater than 2 are encoded by using reification [Calvanese et al. 2001]
(binary relationships can also be reified). For instance, to reify the binary relationship Works On,
we introduce a new concept name, say C-WorksOn, and two functional roles, emp and act, satisfying
the following concept inclusions:

C-WorksOn v ∃emp, ≥ 2 emp v ⊥, ∃emp v C-WorksOn, ∃emp− v Employee, (2)

C-WorksOn v ∃act, ≥ 2 act v ⊥, ∃act v C-WorksOn, ∃act− v Project. (3)

Thus, each element of C-WorksOn is related, via the roles emp and act, to a unique pair of elements
of Employee and Project. Cardinality constraints are still representable for reified relations, e.g., the
cardinality expressed by the formula (1) becomes

Project v ≥ 3 act−. (4)

Of the data modelling constructs not used in Fig. 1, we mention here relationship generalisation,
i.e., a possibility to state that one relationship is a subset of another relationship. For example, we
can state that everyone managing a project must also work on the project. In other words: Manages
is a sub-relationship of Works On, which can be represented in description logic as the role inclusion

manages v worksOn

if both relationships are binary and not reified. On the other hand, if both relationships are reified
then we need a concept inclusion between the respective reifying concepts as well as role inclusions
between the functional roles for their arguments:

C-Manages v C-WorksOn, prj v act, man v emp.

To represent database instances of a conceptual model, we use assertions such as Manager(bob)
for ‘Bob is a manager’ and manages(bob, cronos) for ‘Bob manages Cronos.’

As conceptual data models can be large and contain non-trivial implicit knowledge, it is important
to make sure that the constructed conceptual model satisfies certain quality properties. For example,
one may want to know whether it is consistent, whether all or some of its entities and relationships
are not necessarily empty or whether one entity or relationship is (not) subsumed by another. To
automatically check such quality properties, it is essential to provide an effective reasoning support
during the construction phase of a conceptual model.

We now define the reasoning problems formally, by giving the syntax and semantics of description
logics containing the constructs discussed above.

2.2. DL-Lite Logics
We start with the logic called DL-LiteNbool in the nomenclature of Artale et al. [2009a]. The lan-
guage of DL-LiteNbool contains object names a0, a1, . . . , concept names A0, A1, . . . , and role names
P0, P1, RolesR, basic conceptsB and conceptsC of this language are defined by the grammar:

R ::= Pk | P−k ,

B ::= ⊥ | Ak | ≥ q R,
C ::= B | ¬C | C1 u C2,

where q is a positive integer represented in binary. A DL-LiteNbool TBox, T , is a finite set of concept
inclusion axioms of the form

C1 v C2.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:7

An ABox, A, is a finite set of assertions of the form

Ak(ai), ¬Ak(ai), Pk(ai, aj), ¬Pk(ai, aj).

Taken together, T and A constitute the knowledge base (KB, for short) K = (T ,A).
An interpretation I = (∆I , ·I) of this and other DL-Lite languages consists of a domain ∆I 6= ∅

and an interpretation function ·I that assigns to each object name ai an element aIi ∈ ∆I , to each
concept nameAk a subsetAIk ⊆ ∆I , and to each role name Pk a binary relation P Ik ⊆ ∆I×∆I . As
in databases, we adopt the unique name assumption (UNA): aIi 6= aIj for all i 6= j (note, however,
that OWL does not use the UNA). The role and concept constructs are interpreted in I as follows:

(P−k)I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ P Ik }, ⊥I = ∅,
(≥q R)I =

{
x ∈ ∆I |]{y ∈ ∆I | (x, y) ∈ RI} ≥ q

}
, (¬C)I = ∆I \ CI ,

(C1 u C2)I = CI1 ∩ CI2 ,
where]X denotes the cardinality of X . We use the standard abbreviations:

C1 t C2 = ¬(¬C1 u ¬C2), > = ¬⊥, ∃R = (≥ 1R), ≤ q R = ¬(≥ q + 1R).

Concepts of the form≤ q R and≥ q R are called number restrictions, and those of the form ∃R are
called existential concepts.

The satisfaction relation |= is defined as expected:

I |= C1 v C2 iff CI1 ⊆ CI2 ,
I |= Ak(ai) iff aIi ∈ AIk , I |= Pk(ai, aj) iff (aIi , a

I
j) ∈ P Ik ,

I |= ¬Ak(ai) iff aIi /∈ AIk , I |= ¬Pk(ai, aj) iff (aIi , a
I
j) /∈ P Ik .

A knowledge base K = (T ,A) is said to be satisfiable (or consistent) if there is an interpretation
I satisfying all the members of T and A. In this case we write I |= K (as well as I |= T and
I |= A) and say that I is a model of K (and of T and A). The satisfiability problem—given a
KB K, decide whether K is satisfiable—is the main reasoning problem we consider in this article.
Subsumption (given an inclusion C1 v C2 and a TBox T , decide whether I |= CI1 ⊆ CI2 for
every model I of T ; or T |= C1 v C2 in symbols) and concept satisfiability (given a concept C
and a TBox T , decide whether there is a model I of T such that CI 6= ∅; or T 6|= C v ⊥) are
reducible to satisfiability. For example, to check whether T |= C1 v C2 we can construct a new
KB K = (T ∪ {A v C1, A v ¬C2}, {A(a)}) with a fresh concept name A, and check whether K
is not satisfiable.

The two sub-languages of DL-LiteNbool we deal with in this article are obtained by restricting the
Boolean operators on concepts. In DL-LiteNkrom TBoxes,4 concept inclusions are of the form

B1 v B2, B1 v ¬B2 or ¬B1 v B2. (krom)

(Here and below B1, B2 are basic concepts.) DL-LiteNcore only uses concept inclusions of the form

B1 v B2 or B1 uB2 v ⊥. (core)

AsB1 v ¬B2 is equivalent toB1uB2 v ⊥, DL-LiteNcore is a sub-language of DL-LiteNkrom. Although
the Krom fragment does not seem to be more useful for conceptual modelling than DL-LiteNcore, we
shall see in Remark 3.2 that temporal extensions of DL-LiteNkrom can capture some important tempo-
ral modelling constructs that are not representable by the corresponding extensions of DL-LiteNcore.

Most of the constraints in the company conceptual model from Section 2.1 were represented
by means of DL-LiteNcore concept inclusions. The only exceptions were the covering constraints

4The Krom fragment of first-order logic consists of formulas in prenex normal form whose quantifier-free part is a conjunc-
tion of binary clauses.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:8 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

Table I. Complexity of the DL-Lite logics.

concept role inclusions
inclusions DL-LiteNα DL-Lite(HN)

α DL-LiteHNα

Bool NP NP EXPTIME

Krom NLOGSPACE NLOGSPACE EXPTIME

core NLOGSPACE NLOGSPACE EXPTIME

Manager v AreaManager t TopManager and OrganisationalUnit v Department t InterestGroup,
which belong to the language DL-LiteNbool, and the role inclusion manages v worksOn. The ex-
tra expressive power, gained from the addition of covering constraints to DL-LiteNcore, comes at a
price [Artale et al. 2007b]: the satisfiability problem is NLOGSPACE-complete for DL-LiteNcore and
DL-LiteNkrom KBs and NP-complete for DL-LiteNbool KBs.

The straightforward extension of DL-LiteNcore with role inclusions of the form

R1 v R2 (with I |= R1 v R2 iff RI1 ⊆ RI2)

leads to an even higher complexity: satisfiability becomes EXPTIME-complete [Artale et al. 2009a].
The reason for this is the interaction of functionality constraints and role inclusions such as

R1 v R2 and ≥ 2R2 v ⊥.

Note that inclusions of this sort are required when we use relationship generalisation with reification
(see Section 2.1). If we restrict this interaction in TBoxes T by requiring that no role R can occur
in T in both a role inclusion of the form R′ v R and a number restriction ≥ q R or ≥ q R−
with q ≥ 2, then the complexity of satisfiability checking with such TBoxes matches that of the
language without role inclusions. The extension of DL-LiteNα , where α ∈ {core, krom, bool}, with
role inclusions satisfying the condition above is denoted by DL-Lite(HN)

α ; without this condition,
the extension is denoted by DL-LiteHNα . Table I summarises the complexity of the KB satisfiability
problem for DL-Lite logics (for details, consult [Artale et al. 2009a]).

Thus, already in the atemporal case, a conceptual data model engineer has to search for a suitable
compromise between the expressive power of the modelling language and efficiency of reasoning. In
the temporal case, the trade-off between expressiveness and efficiency becomes even more dramatic.

In the next section, we extend the atemporal conceptual data model considered above with a
number of temporal constructs and use them to design a family of temporal description logics that
are suitable for temporal conceptual modelling.

3. TEMPORAL CONCEPTUAL MODELLING AND TEMPORAL DESCRIPTION LOGIC
Temporal conceptual data models extend standard conceptual schemas with means to visually rep-
resent temporal constraints imposed on temporal database instances [Theodoulidis et al. 1991; Tau-
zovich 1991; Jensen and Snodgrass 1999; Artale et al. 2003; Parent et al. 2006; Combi et al. 2008].

When introducing a temporal dimension into conceptual data models, time is usually modelled
by a linearly ordered set of time instants, so that at each moment of time we can refer to its past and
future. In this article, we assume that the flow of time is isomorphic to the strictly linearly ordered
set (Z, <) of integer numbers. (For a survey of other options, including interval-based and branching
models of time, consult, e.g., [Gabbay et al. 1994; Gabbay et al. 2000; Gabbay et al. 2003].)

We will now introduce the most important temporal conceptual modelling constructs by extend-
ing the company information system example from Section 2.1.

3.1. The Motivating Example Temporalised
A basic assumption in temporal conceptual models is that entities, relationships and attributes may
freely change over time as long as they satisfy the constraints of the schema at each time instant.
Temporal constructs are used to impose constraints on the temporal behaviour of various com-

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:9

Department S Interest Group

d

Organisational Unit

Member S

(1,∞)

org

Area Manager Top Manager

DEV

Manager TPEX

Employee S

DEX−

mbr

Salary(Integer)

T
Name(String)

S

Payroll Number(Integer)

S

Manages
man[1,5]

(1,1)

Works On T
emp

ProjectExProject TEX

Project Code(String)

S

prj

(1,1)

act

(3,∞)

Fig. 2. A temporal conceptual model of a company information system.

ponents of conceptual schemas. We group these constructs into three categories—timestamping,
evolution and temporal cardinality constraints—and illustrate them by the model in Fig. 2.

Timestamping constraints [Theodoulidis et al. 1991; Gregersen and Jensen 1998; 1999; Finger
and McBrien 2000; Artale and Franconi 1999; Parent et al. 2006] distinguish between entities,
relationships and attributes that are

– temporary in the sense that no element belongs to them at all moments of time,
– snapshot, or time-invariant, in the sense that their interpretation does not change with time,
– unconstrained (all others).

In temporal entity-relationship diagrams, the temporary entities, relationships and attributes are
marked with T and the snapshot ones with S. In Fig. 2, Employee and Department are snapshot
entities, Name, Payroll Number and Project Code are snapshot attributes and Member a snapshot
relationship. On the other hand, Manager is a temporary entity, Salary a temporary attribute, and
Works On a temporary relationship.

There are (at least) two ways of representing timestamping constraints in temporal description
logics. One of them is to introduce special names for temporary and snapshot concepts and roles,
and interpret them accordingly. Another way is to employ a temporal operator 2∗ , which is read
as ‘always’ or ‘at all—past, present and future—time instants.’ Intuitively, for a concept C, 2∗ C
contains those elements that belong to C at all time instants. Using this operator, the constraints
‘Employee is a snapshot entity’ and ‘Manager is a temporary entity’ can be represented as follows:

Employee v 2∗ Employee, 2∗ Manager v ⊥.
The first inclusion says that, at any moment of time, every element of Employee has always been
and will always be an element of Employee. The second one states that no element can belong to
Manager at all time instants. Note that both of these concept inclusions are meant to hold globally,
that is, at all moments of time.

The same temporal operator 2∗ together with rigid roles (i.e., roles that do not change over time)
can be used to capture timestamping of reified relationships. If the relationship Member is reified
by the concept C-Member with two functional roles org and mbr, satisfying the concept inclusions
similar to (2) and (3), then the requirement that both roles org and mbr are rigid ensure that Member
is a snapshot relationship. On the other hand, for the reified temporary relationship Works On we
require the concept inclusion

2∗ C-WorksOn v ⊥
and two flexible roles emp and act, which can change arbitrarily. Rigid roles are also used to repre-
sent both snapshot attributes and snapshot binary relationships. Temporary attributes can be captured
by flexible roles or by using temporalised roles:

∃2∗ salary v ⊥,

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:10 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

where 2∗ salary denotes the intersection of the relations salary at all time instants.
Evolution constraints control how the domain elements evolve over time by ‘migrating’ from one

entity to another [Hall and Gupta 1991; Mendelzon et al. 1994; Su 1997; Artale et al. 2007e]. We
distinguish between qualitative evolution constraints that describe generic temporal behaviour but
do not specify the moment of migration, and quantitative evolution (or transition) constraints that
specify the exact moment of migration. The dashed arrow marked with TEX (Transition EXtension5)
in Fig. 2 is an example of a quantitative evolution constraint meaning that each project expires in
exactly one time unit (one year) and becomes an instance of ExProject. The dashed arrow marked
with DEV (Dynamic EVolution) is a qualitative evolution constraint meaning that every area manager
will eventually become a top manager. The DEX− (Dynamic EXtension) dashed arrow says that
every manager was once an employee, while the PEX (Persistent EXtension) dashed arrow means
that a manager will always be a manager and cannot be demoted.

In temporal description logic, these evolution constraints are represented using temporal operators
such as ‘at the next moment of time’ ©F , ‘sometime in the future’ 3F , ‘sometime in the past’ 3P

and ‘always in the future’ 2F :

Project v ©
F ExProject, AreaManager v 3F TopManager,

Manager v 3P Employee, Manager v 2F Manager.

Again, these concept inclusions must hold globally. In the following, the evolution constraints that
involve 3F and 3P will be called migration constraints.

Temporal cardinality constraints [Tauzovich 1991; McBrien et al. 1992; Gregersen and Jensen
1998] restrict the number of times an instance of an entity participates in a relationship. Snapshot
cardinality constraints do that at each moment of time, while lifespan cardinality constraints impose
restrictions over the entire existence of the instance as a member of the entity. In Fig. 2, we use
(k, l) to specify the snapshot cardinalities and [k, l] the lifespan cardinalities: for example, at any
moment, every top manager manages exactly one project, but not more than five different projects
over the whole career. If the relationship Manages is not reified and represented by a role in temporal
description logic then these two constraints can be expressed by the following concept inclusions:

TopManager v ∃manages u ≤ 1 manages, TopManager v ≤ 53∗ manages,

where 3∗ means ‘sometime’ (in the past, present or future), and so 3∗ manages is the union of the
relations manages over all time instants. Snapshot and lifespan cardinalities can also be expressed
in a similar way even for reified relationships (see, e.g., (4) which captures snapshot cardinalities).
Observe that the above inclusions imply, in particular, that no one can remain a top manager for
longer than five years (indeed, each top manager manages at least one project a year, each project
expires in a year, and no top manager can manage more than five projects throughout the lifetime).
However, this is inconsistent with ‘every manager always remains a manager’, and so the entity
Manager cannot be populated by instances, which, in turn, means that Project must also be empty
(since each project is managed by a top manager). One can make these entities consistent by, for
example, dropping the persistence constraint on Manager or the upper lifespan cardinality bound
on the number of projects a top manager can manage throughout the lifetime. In large schemas,
situations like this can easily remain undetected if the quality check is performed manually.

To represent temporal database instances, we use assertions like ©P Manager(bob) for ‘Bob was
a manager last year’ and ©F manages(bob, cronos) for ‘Bob will manage Cronos next year.’

3.2. Temporal DL-Lite Logics
It is known from temporal logic [Gabbay et al. 1994] that all the temporal operators used in the pre-
vious section can be expressed in terms of the binary operators S ‘since’ and U ‘until’ (details will
be given below). So we formulate our ‘base’ temporal extension TUSDL-LiteNbool of the description

5We refer to [Artale et al. 2010] for a detailed explanation of the various evolution constraints and their naming convention.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:11

logic DL-LiteNbool using only these two operators. The language of TUSDL-LiteNbool contains object
names a0, a1, . . . , concept names A0, A1, . . . , flexible role names P0, P1, . . . , and rigid role names
G0, G1, Role names S and roles R are defined by taking

S ::= Pi | Gi and R ::= S | S−.

We say R is a rigid role if it is of the form Gi or G−i , for a rigid role name Gi. Basic concepts B,
concepts C and temporal concepts D are given by the following grammar:

B ::= ⊥ | Ai | ≥ q R,
C ::= B | D | ¬C | C1 u C2,

D ::= C | C1 U C2 | C1 S C2,

where, as before, q is a positive integer given in binary. (We use two separate rules for C andD here
because in the definitions of the fragments of TUSDL-LiteNbool below these rules will be restricted to
the corresponding sub-Boolean and temporal fragments.) A TUSDL-LiteNbool TBox, T , is a finite set
of concept inclusions of the form C1 v C2. An ABox, A, consists of assertions of the form

©nAk(ai), ©n¬Ak(ai), ©nS(ai, aj) and ©n¬S(ai, aj),

where Ak is a concept name, S a (flexible or rigid) role name, ai, aj object names and, for n ∈ Z,

©n = ©F · · ·©F︸ ︷︷ ︸
n times

, if n ≥ 0, and ©n = ©P · · ·©P︸ ︷︷ ︸
−n times

, if n < 0.

Note that we use©n as an abbreviation and take the size of©n to be n (in other words, the numbers
n in ABox assertions are given in unary). Taken together, the TBox T and ABox A form the
knowledge base (KB) K = (T ,A).

A temporal interpretation is a pair I = (∆I , ·I(n)), where ∆I is a non-empty interpretation
domain and I(n) gives a standard DL interpretation for each time instant n ∈ Z:

I(n) =
(
∆I , aI0 , . . . , A

I(n)
0 , . . . , P

I(n)
0 , . . . , GI0 , . . .

)
.

We assume, however, that the domain ∆I and the interpretations aIi ∈ ∆I of object names and
GIi ⊆ ∆I × ∆I of rigid role names are the same for all n ∈ Z. (For a discussion of the constant
domain assumption, consult [Gabbay et al. 2003]. Recall also that we adopt the UNA.) The inter-
pretations AI(n)

i ⊆ ∆I of concept names and P I(n)
i ⊆ ∆I ×∆I of flexible role names can vary.

The atemporal constructs are interpreted in I(n) as before; we write CI(n) for the extension of C
in I(n). The interpretation of the temporal operators is as follows:

(C1 U C2)I(n) =
⋃
k>n

(
C
I(k)
2 ∩

⋂
n<m<k

C
I(m)
1

)
,

(C1 S C2)I(n) =
⋃
k<n

(
C
I(k)
2 ∩

⋂
n>m>k

C
I(m)
1

)
.

Thus, for example, x ∈ (C1 U C2)I(n) iff there is a moment k > n such that x ∈ CI(k)
2 and

x ∈ CI(m)
1 , for all moments m between n and k. Note that the operators S and U (as well as

the 2 and 3 operators to be defined below) are ‘strict’ in the sense that their semantics does not
include the current moment of time. The non-strict operators, which include the current moment,
are obviously definable in terms of the strict ones.

As noted above, for the aims of TCM it is enough to interpret concept inclusions in I globally:

I |= C1 v C2 iff C
I(n)
1 ⊆ CI(n)

2 for all n ∈ Z.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:12 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

ABox assertions are interpreted relatively to the initial moment, 0. Thus, we set:

I |= ©nAk(ai) iff aIi ∈ A
I(n)
k , I |= ©nS(ai, aj) iff (aIi , a

I
j) ∈ SI(n),

I |= ©n¬Ak(ai) iff aIi /∈ A
I(n)
k , I |= ©n¬S(ai, aj) iff (aIi , a

I
j) /∈ SI(n).

We call I a model of a KB K and write I |= K if I satisfies all elements of K. K is satisfiable if it
has a model. A concept C (role R) is satisfiable with respect to K if there are a model I of K and
n ∈ Z such that CI(n) 6= ∅ (respectively, RI(n) 6= ∅). It is readily seen that the concept and role
satisfiability problems are equivalent to KB satisfiability.

We now define a few fragments and extensions of the base language TUSDL-LiteNbool. Recall that
to say that C is a snapshot concept, we need the ‘always’ operator 2∗ with the following meaning:

(2∗ C)I(n) =
⋂
k∈Z

CI(k).

The dual operator ‘sometime’ is defined as usual: 3∗ C = ¬2∗ ¬C. In terms of S and U , it can be
represented as 3∗ C = >U (>SC). Define TUDL-LiteNbool to be the sublanguage of TUSDL-LiteNbool
the temporal concepts D in which are of the form

D ::= C | 2∗ C. (U)

Thus, in TUDL-LiteNbool, we can express timestamping constraints (see Section 3.1).
The temporal operators 3F (‘sometime in the future’) and 3P (‘sometime in the past’) that are

required for qualitative evolution constraints with the standard temporal logic semantics

(3FC)I(n) =
⋃
k>n

CI(k) and (3PC)I(n) =
⋃
k<n

CI(k)

can be expressed via U and S as 3FC = > U C and 3PC = > S C; the operators 2F (‘always
in the future’) and 2P (‘always in the past’) are defined as dual to 3F and 3P : 2FC = ¬3F¬C
and 2PC = ¬3P¬C. We define the fragment TFPDL-LiteNbool of TUSDL-LiteNbool by restricting the
temporal concepts D to the form

D ::= C | 2FC | 2PC. (FP)

Clearly, we have the following equivalences:

2∗ C = 2F2PC and 3∗ C = 3F3PC.

In what follows, these equivalences will be regarded as definitions for 2∗ and 3∗ in those languages
where they are not explicitly present. Thus, TFPDL-LiteNbool is capable of expressing both time-
stamping and qualitative (but not quantitative) evolution constraints.

The temporal operators ©F (‘next time’) and ©P (‘previous time’), used in quantitative evolution
constraints, can be defined as ©FC = ⊥ U C and ©PC = ⊥ S C, so that we have

(©FC)I(n) = CI(n+1) and (©PC)I(n) = CI(n−1).

The fragment of TUSDL-LiteNbool with temporal concepts of the form

D ::= C | 2FC | 2PC | ©FC | ©PC (FPX)

will be denoted by TFPXDL-LiteNbool. In this fragment, we can express timestamping, qualitative and
quantitative evolution constraints.

Thus, we have the following inclusions between the languages introduced above:

TUDL-LiteNbool ⊆ TFPDL-LiteNbool ⊆ TFPXDL-LiteNbool ⊆ TUSDL-LiteNbool.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:13

Similarly to the atemporal case, we can identify sub-Boolean fragments of the above languages.
A temporal TBox is called a Krom or a core TBox if it contains only concept inclusions of the form

D1 v D2, D1 v ¬D2, ¬D1 v D2, (krom)
D1 v D2, D1 uD2 v ⊥, (core)

respectively, where the Di are temporal concepts defined by (FPX), (FP) or (U) with

C ::= B | D.
Note that no Boolean operators are allowed in the Di. This gives us 6 fragments: TFPXDL-LiteNα ,
TFPDL-LiteNα and TUDL-LiteNα , for α ∈ {core, krom}.

Remark 3.1. We do not consider the core and Krom fragments of the full language with since
(S) and until (U) because, as we shall see in Section 4.4 (Theorem 4.5), these operators allow one
to go beyond the language of binary clauses of the core and Krom fragments, and the resulting
languages would have the same complexity as TUSDL-LiteNbool (but less expressive).

Remark 3.2. The introduced fragments of the full language TUSDL-LiteNbool do not contain 3F

and 3P . Both operators, however, can be defined in the Krom and Bool fragments. For example, the
concept inclusion 3PB1 v 3FB2 can be represented by means of the inclusions

2FA2 v 2PA1 and Ai v ¬Bi, ¬Bi v Ai, for i = 1, 2.

In the core fragments, where we do not have negation in the left-hand side, this trick does not work.
Therefore, evolution constraints involving 3P or 3F (such as Manager v 3P Employee) are not
expressible in the core fragments (but timestamping remains expressible).

As we have seen in our running example, in order to express lifespan cardinality constraints,
temporal operators on roles are required. For a role R of the form

R ::= S | S− | 3∗ R | 2∗ R,

we define the extensions of 3∗ R and 2∗ R in an interpretation I by taking

(3∗ R)I(n) =
⋃
k∈Z

RI(k) and (2∗ R)I(n) =
⋂
k∈Z

RI(k).

In this article we consider three extensions of DL-LiteNbool with such temporalised roles, which are
denoted by T ∗βDL-LiteNbool, for β ∈ {X,FP,U}, where T ∗X DL-LiteNbool allows only ©P ,©F as the
temporal operators on concepts.

We can also extend our languages with role inclusions, which are interpreted globally (in the
same way as concept inclusions):

I |= R1 v R2 iff R
I(n)
1 ⊆ RI(n)

2 , for all n ∈ Z.
These extensions are denoted by TUSDL-LiteHNbool , TFPDL-Lite(HN)

bool , etc.
In the remaining part of the article, we investigate the computational complexity of the satisfia-

bility problem for the temporal extensions of the DL-Lite logics designed above. But before that we
briefly summarise the obtained results in the more general context of temporal description logics.

3.3. Summary of the Complexity Results and Related Work
The temporal DL-Lite logics we analyse here are collected in Table II together with the obtained
and known complexity results. (Note that the complexity bounds in Table II are all tight except the
case of TFPDL-LiteNcore, where we only have an upper bound.) To avoid clutter, we omitted from the
table the logics of the form TβDL-Lite(HN)

α , whose complexity is the same as the complexity of the
respective TβDL-LiteNα .

The analysis of the constructs required for temporal conceptual modelling in Sections 2.1 and 3.1
has led us to temporalisations of DL-Lite logics, interpreted over the Cartesian products of object

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:14 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

Table II. Complexity of the temporal DL-Lite logics.

concept temporal constructs
inclusions U/S,©F /©P , 2F /2P

a 2F /2P 2∗

Bool
TUSDL-LiteNbool

TFPXDL-LiteNbool

PSPACE
Thm. 4.4 TFPDL-LiteNbool

NP
Thm. 4.6 TUDL-LiteNbool

NP
Thm. 4.6

Krom TFPXDL-LiteNkrom
NP

Thm. 4.7 TFPDL-LiteNkrom
NP

Thm. 4.7 TUDL-LiteNkrom
NLOGSPACE

Thm. 4.9

core TFPXDL-LiteNcore
NP

Thm. 4.7 TFPDL-LiteNcore
≤ PTIME
Thm. 4.8 TUDL-LiteNcore NLOGSPACE

temporalised
roles T ∗XDL-LiteNbool

undec.
Thm. 6.1 T ∗FPDL-LiteNbool

undec.
Thm. 6.1 T ∗UDL-LiteNbool

NP
Thm. 6.3

unrestricted
role

inclusions
TUSDL-LiteHNbool

undec.
[Gabbay

et al. 2003]
TFPDL-LiteHNbool

undec.
[Gabbay

et al. 2003]
T ∗UDL-LiteHNbool

2EXPTIME
[Artale et al.

2007d]

a Sub-Boolean fragments of the language with U/S are not defined (see Remark 3.1).

domains and the flow of time (Z, <), in which (1) the future and past temporal operators can be ap-
plied to concepts; (2) roles can be declared flexible or rigid; (3) the ‘undirected’ temporal operators
‘always’ and ‘sometime’ can be applied to roles; (4) the concept and role inclusions are global, and
the database (ABox) assertions are specified to hold at particular moments of time.

The minimal logic required to capture all of the temporal and static conceptual modelling con-
straints is T ∗FPXDL-LiteHNbool ; alas, it is undecidable. In fact, even the logic T ∗XDL-LiteNbool, capturing
only the quantitative evolution constraints, lifespan cardinalities and covering, is undecidable. Re-
placing ‘quantitative’ with ‘qualitative’—i.e., considering T ∗FPDL-LiteNbool—does not beat undecid-
ability in the presence of lifespan cardinalities. Both these undecidability results will still hold if
we replace arbitrary cardinality constraints (N) with role functionality. To regain decidability in the
presence of temporalised roles, we have to limit the temporal operators on concepts to the undirected
operators 3∗ /2∗—thus restricting the language to only timestamping and lifespan cardinalities. We
show that the logic T ∗UDL-LiteNbool is NP-complete using the quasimodel technique.

Logics in the last row have arbitrary role inclusions, which together with functionality constraints
are expressive enough to model all ALC constructors [Artale et al. 2007a; Artale et al. 2009a], and
so the resulting TDLs are as complex as the corresponding temporal extensions of ALC.

On a positive note, logics with restricted role inclusions and no temporal operators on roles ex-
hibit much better computational properties. Our smallest logic, TUDL-Lite(HN)

core , is NLOGSPACE-
complete. In the temporal dimension, it can only express timestamping constraints. It can also cap-
ture all the static constraints that are different from covering and do not involve any interaction
between role inclusions and number restrictions. Extending the language with covering leads to the
loss of tractability in TUDL-Lite(HN)

bool . When covering is not needed and we are interested in tempo-
ral constraints different from lifespan cardinalities, we can regain tractability if we restrict the lan-
guage to timestamping and evolution constraints that only capture persistence (TFPDL-Lite(HN)

core).
If we also require migration constraints (that involve 3P and 3F ; see Remark 3.2) then we can use
the Krom language TFPDL-Lite(HN)

krom , which is again NP-complete. Surprisingly, the addition of the
full set of evolution constraints makes reasoning NP-complete even in TFPXDL-Lite(HN)

core .
To better appreciate the formalisms designed in this article, we consider them in a more gen-

eral context of temporal description logics (for more detailed surveys, consult [Artale and Franconi
2001; 2005; Gabbay et al. 2003; Lutz et al. 2008]). Historically, the first temporal extensions of
DLs were interval-based [Schmiedel 1990]. Bettini [1997] considered interval-based temporal ex-
tensions of ALC in the style of Halpern and Shoham [1991] and established their undecidability.
Artale and Franconi [1998] gave a subclass of decidable interval-based temporal DLs.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:15

Numerous point-based temporal DLs have been constructed and investigated since Schild’s semi-
nal paper [1993]. One of the lessons of the 20-year history of the discipline is that logics interpreted
over two- (or more) dimensional structures are very complex and sensitive to subtle interactions
between constructs operating in different dimensions. The first TDLs suggested for representing
TCMs were based on the expressive DLsDLR andALCQI [Artale and Franconi 1999]. However,
it turned out that already a single rigid role and the operator 3F (or©F) onALC-concepts led to un-
decidability [Wolter and Zakharyaschev 1999]. In fact, to construct an undecidable TDL, one only
needs a rigid role and three concept constructs: u, ∃R.C and 3F , that is, a temporalised EL [Artale
et al. 2007c]. There have been several attempts to tame the bad computational behaviour of TDLs
by imposing various restrictions on the DL and temporal components as well as their interaction.

One approach was to disallow rigid roles and temporal operators on roles, which resulted in
EXPSPACE-complete temporalisations of ALC [Artale et al. 2002; Gabbay et al. 2003]. Such tem-
poralisations reside in the monodic fragment6 of first-order temporal logic [Hodkinson et al. 2000],
for which tableau [Lutz et al. 2002; Kontchakov et al. 2004] and resolution [Degtyarev et al. 2006]
reasoning algorithms have been developed and implemented [Hustadt et al. 2004; Guensel 2005;
Ludwig and Hustadt 2010]. Another idea was to weaken the whole temporal component to the
‘undirected’ temporal operators 2∗ and 3∗ (which cannot discriminate between past, present and fu-
ture) on concepts and roles, resulting in a 2EXPTIME-complete extension of ALC [Artale et al.
2007d]. The third approach was to allow arbitrary temporal operators onALC axioms only (but not
on concepts or roles) [Baader et al. 2008; 2012], which gave an EXPTIME-complete logic. The addi-
tion of rigid concepts to this logic increases the complexity to NEXPTIME, while rigid concepts and
roles make it 2EXPTIME-complete. Finally, the fourth approach, which dates back to Schild [1993],
was to use only global axioms. In this case,ALC with temporal operators on concepts is EXPTIME-
complete, which matches the complexity of ALC itself (in contrast, temporal operators on axioms
and concepts make the less expressive DL-Litebool EXPSPACE-complete [Artale et al. 2007c]).

As argued above, global axioms are precisely what we need in TCM. On the other hand, to capture
timestamping and evolution constraints we need the full set of temporal operators on concepts,
while to capture lifespan cardinalities and timestamping on relations we need temporalised or rigid
roles. To achieve decidability in the case with rigid roles, we also weaken ALC to DL-Lite, which,
as we have seen above, perfectly suits the purpose of conceptual modelling. We thus start from
the first promising results of Artale et al. [2009b], which demonstrated that even with rigid roles
temporal extensions of DL-LiteNbool could be decidable, and extend them to various combinations
of temporal operators and different sub-Boolean fragments of DL-LiteNbool, proving encouraging
complexity results and showing how these logics can represent TCM schemas.

The results in the first three rows of Table II are established by using embeddings into the propo-
sitional temporal logic PT L. To cope with the sub-Boolean core and Krom logics, we introduce,
in Section 5, a number of new fragments of PT L by restricting the type of clauses in Separated
Normal Form [Fisher 1991] and the available temporal operators. The obtained complexity classifi-
cation in Table III helps understand the results in the first three rows of Table II.

4. REDUCING TEMPORAL DL-LITE TO PROPOSITIONAL TEMPORAL LOGIC
In this section we reduce the satisfiability problem for TUSDL-LiteNbool KBs to the satisfiability
problem for propositional temporal logic. This will be achieved in two steps. First, we reduce
TUSDL-LiteNbool to the one-variable first-order temporal logicQT L1 [Gabbay et al. 2003]. And then
we show that satisfiability of the resultingQT L1-formulas can be further reduced to satisfiability of
QT L1-formulas without positive occurrences of existential quantifiers, which are essentially propo-
sitional temporal formulas. To simplify presentation, we consider here the logic TUSDL-LiteNbool
(without role inclusions). The full TUSDL-Lite(HN)

bool requires a bit more elaborate (yet absolutely
routine) reduction that is similar to the one given by Artale et al. [2009b] for the atemporal case.

6A temporal formula is monodic if all of its sub-formulas beginning with a temporal operator have at most one free variable.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:16 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

4.1. First-Order Temporal Logic
The language of first-order temporal logicQT L contains predicatesP0, P1, . . . (each with its arity),
variables x0, x1, . . . and constants a0, a1, Formulas ϕ of QT L are defined by the grammar:

ϕ ::= Pi(t1, . . . , tki) | ⊥ | ∀xϕ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2 | ϕ1 S ϕ2,

where ki is the arity of Pi and the tj are terms—i.e., variables or constants. These formulas are
interpreted in first-order temporal models M, which, for every n ∈ Z, give a first-order structure

M(n) = (∆M, aM0 , aM1 , . . . , PM,n
0 , PM,n

1 . . .)

with the same domain ∆M, the same aMi ∈ ∆, for each constant ai, and where PM,n
i is a ki-ary

relation on ∆M, for each predicate Pi of arity ki and each n ∈ Z. An assignment in M is a function,
a, that maps variables to elements of ∆M. For a term t, we write ta,M for a(x) if t = x, and for aM
if t = a. The semantics of QT L is standard (see, e.g., [Gabbay et al. 2003]):

M, n |=a P (t1, . . . , tk) iff (ta,M1 , . . . , ta,Mk) ∈ PM,n,

M, n 6|=a ⊥,
M, n |=a ∀xϕ iff M, n |=a′ ϕ, for all assignments a′ that differ from a on x only,
M, n |=a ¬ϕ iff M, n 6|=a ϕ,

M, n |=a ϕ1 ∧ ϕ2 iff M, n |=a ϕ1 and M, n |=a ϕ2,

M, n |=a ϕ1 U ϕ2 iff there is k > n with M, k |=a ϕ2 and M,m |=a ϕ1, for n < m < k,

M, n |=a ϕ1 S ϕ2 iff there is k < n with M, k |=a ϕ2 and M,m |=a ϕ1, for k < m < n.

We use the standard abbreviations such as

> = ¬⊥, ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), ∃xϕ = ¬∀x¬ϕ,
3Fϕ = > U ϕ, 2Fϕ = ¬3F¬ϕ, ©

Fϕ = ⊥ U ϕ
as well as the past counterparts for 3P , 2P and ©P ; we also write 2∗ ϕ for 2F2Pϕ.

If a formula ϕ contains no free variables (i.e., ϕ is a sentence), then we omit the valuation a in
M, n |=a ϕ and write M, n |= ϕ. If ϕ has a single free variable x, then we write M, n |= ϕ[a] in
place of M, n |=a ϕ with a(x) = a.

A QT L1-formula is a QT L-formula which is constructed using at most one variable. Satisfia-
bility of QT L1-formulas is known to be EXPSPACE-complete [Gabbay et al. 2003]. In the propo-
sitional temporal logic, PT L, only 0-ary predicates (that is, propositional variables) are allowed.
The satisfiability problem for PT L-formulas is PSPACE-complete [Sistla and Clarke 1982].

4.2. Reduction to QT L1

Given a TUSDL-LiteNbool KB K = (T ,A), let obA be the set of all object names occurring in A and
roleK the set of rigid and flexible role names occurring in K and their inverses.

In our reduction, objects a ∈ obA are mapped to constants a, concept namesA to unary predicates
A(x), and number restrictions≥ q R to unary predicates EqR(x). Intuitively, for a role name S, the
predicates EqS(x) and EqS−(x) represent, at each moment of time, the sets of elements with at
least q distinct S-successors and at least q distinct S-predecessors; in particular, E1S(x) can be
thought of as the domain of S and E1S

−(x) as the range of S. By induction on the construction of
a TUSDL-LiteNbool concept C, we define the QT L1-formula C∗(x):

A∗ = A(x), ⊥∗ = ⊥, (≥ q R)∗ = EqR(x),

(C1 U C2)∗ = C∗1 U C∗2 , (C1 S C2)∗ = C∗1 S C∗2 , (C1 u C2)∗ = C∗1 ∧ C∗2 , (¬C)∗ = ¬C∗.
It can be easily seen that the map ·∗ commutes with all the Boolean and temporal operators: e.g.,
(3FC)∗ = 3FC

∗. For a TBox T , we consider the following sentence, saying that the concept

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:17

inclusions in T hold globally:

T † =
∧

C1vC2∈T

2∗ ∀x
(
C∗1 (x)→ C∗2 (x)

)
.

In the translation above, we replaced binary predicates (i.e., roles) by collections of unary predicates,
the EqR(x). Clearly, we have to ensure that these predicates behave similarly to the respective
number restrictions. In particular, the following three properties trivially hold in TUSDL-LiteNbool
interpretations, for all roles R at all moments of time:

– every point with at least q′ R-successors has at least q R-successors, for each q < q′;
– if R is a rigid role, then every point with at least q R-successors at some moment has at least q
R-successors at all moments of time;

– if the domain of a role is not empty, then its range is not empty either.

These conditions can be encoded by the following QT L1-sentences:∧
R∈roleK

∧
q,q′∈QT with q′>q

2∗ ∀x
(
(≥ q′R)∗(x)→ (≥ q R)∗(x)

)
, (5)

∧
R∈roleK is rigid

∧
q∈QT

2∗ ∀x
(
(≥ q R)∗(x)→ 2∗ (≥ q R)∗(x)

)
, (6)

∧
R∈roleK

2∗
(
∃x (∃R)∗(x) → ∃x (∃inv(R))∗(x)

)
, (7)

where QT is the set containing 1 and all the numbers q such that ≥ q R occurs in T , and inv(R) is
the inverse of R, i.e., inv(S) = S− and inv(S−) = S, for a role name S. As we shall see later, these
three properties are enough to ensure that the real binary relations for roles S in TUSDL-LiteNbool can
be reconstructed from the collections of unary predicates EqS(x) and EqS−(x) satisfying (5)–(7).

It is easy to extend the above reduction to ABox concept assertions: take ©nA(a) for each
©nA(a) ∈ A, and ©n¬A(a) for each ©n¬A(a) ∈ A. However, ABox role assertions need a
more elaborate treatment. For every a ∈ obA, if a has q R-successors in A at moment n—i.e.,
©nR(a, b1), . . . ,©nR(a, bq) ∈ A, for distinct b1, . . . , bq—then we include (©n≥ q R)∗(a) in the
translation ofA. When counting the number of successors, one has to remember the following prop-
erty of rigid roles S: if an ABox contains ©mS(a, b) then ©nS(a, b) holds for all n ∈ Z, and so
©mS(a, b) contributes to the number of S-successors of a and S−-successors of b at each moment.

In what follows, we assume that A contains ©nS−(b, a) whenever it contains ©nS(a, b). For
each n ∈ Z and each role R, we define the temporal slice ARn of A by taking

ARn =

{{
R(a, b) | ©mR(a, b) ∈ A for some m ∈ Z

}
, R is a rigid role,{

R(a, b) | ©nR(a, b) ∈ A
}
, R is a flexible role.

The translation A† of the TUSDL-LiteNbool ABox A is defined now by taking

A† =
∧

©nA(a)∈A

©nA(a) ∧
∧

©n¬A(a)∈A

©n¬A(a) ∧
∧

©nR(a,b)∈A

©n(≥ qR,nA(a)R)∗(a) ∧
∧

©n¬S(a,b)∈A
S(a,b)∈AS

n

⊥,

where qR,nA(a) is the number of distinct R-successors of a in A at moment n:

qR,nA(a) = max
{
q ∈ QT | R(a, b1), . . . , R(a, bq) ∈ ARn , for distinct b1, . . . , bq

}
.

We note that A† can be effectively computed for any given K because we need temporal slices ARn
only for those n that are explicitly mentioned in A, i.e., those n with ©nR(a, b) ∈ A.

Finally, we define the QT L1-translation K† of K = (T ,A) as the conjunction of T †, A† and
formulas (5)–(7). The size of T † andA† does not exceed the size of T andA, respectively. The size

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:18 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

of (6) and (7) is linear in the size of T , while the size of (5) is cubic in the size of T (though it can
be made linear by taking account of only those q that occur in ≥ q R, for a fixed R, and replacing
q′ > q in the conjunction index with a more restrictive condition ‘q′ > q and there is no q′′ ∈ QT
with q′ > q′′ > q’; for details, see [Artale et al. 2009a]).

The main technical result of this section is that K and K† are equisatisfiable; the proof (based on
the unravelling construction) is given in Appendix A.

THEOREM 4.1. A TUSDL-LiteNbool KB K is satisfiable iff the QT L1-sentence K† is satisfiable.

Meanwhile, we proceed to the second step of our reduction.

4.3. Reduction to PT L
Our next aim is to construct a PT L-formula that is equisatisfiable with K†. First, we observe that
K† can be represented in the form K†0 ∧

∧
R∈roleK ϑR, where

K†0 = 2∗ ∀xϕ(x) ∧ ψ and ϑR = 2∗ ∀x
(
(∃R)∗(x)→ ∃x (∃inv(R))∗(x)

)
,

for a quantifier-free first-order temporal formula ϕ(x) with a single variable x and unary predicates
only and a variable-free formula ψ. We show now that one can replace ϑR by a formula without
existential quantifiers. To this end we require the following lemma:

LEMMA 4.2. For every TUSDL-LiteNbool KB K, if there is a model M satisfying K†0 such that
M, n0 |= (∃R)∗[d], for some n0 ∈ Z and d ∈ ∆M, then there is a model M′ extending M with new
elements and satisfyingK†0 such that, for each n ∈ Z, there is dn ∈ ∆M′ with M′, n |= (∃R)∗[dn].

PROOF. Consider a new model M′ with domain ∆M ∪
(
{d} × Z

)
by setting

BM′,n = BM,n ∪
{

(d, k) | d ∈ BM,n−k, k ∈ Z
}
, for each B of K†0 and n ∈ Z.

In other words, M′ is the disjoint union of M and copies of d ‘shifted’ along the timeline by k
steps, for each k ∈ Z. It follows that, at each moment n ∈ Z, the element (d, n − n0) belongs to
(∃R)∗, thus making (∃R)∗ non-empty at all moments of time. Moreover, M′, 0 |= K†0 because
ϕ(x) expresses a property of a single domain element and holds at each moment of time, ψ depends
only on the part of the model that corresponds to constants (and which are interpreted as in M).

Next, for each R ∈ roleK, we take a fresh constant dR and a fresh propositional variable pR
(recall that inv(R) is also in roleK), and consider the following QT L1-formula:

K‡ = K†0 ∧
∧
R∈roleK ϑ

′
R, where ϑ′R = 2∗ ∀x

(
(∃R)∗(x)→ 2∗ pR

)
∧
(
pinv(R) → (∃R)∗(dR)

)
(pinv(R) and pR indicate that inv(R) and R are non-empty whereas dR and dinv(R) witness that at 0).

LEMMA 4.3. A TUSDL-LiteNbool KB K is satisfiable iff the QT L1-sentence K‡ is satisfiable.

PROOF. (⇒) If K is satisfiable then, by Theorem 4.1 and repeated application of Lemma 4.2,
K†0 is satisfied in a model M such that, for each R ∈ roleK, the predicates (∃R)∗ and (∃inv(R))∗

are either both empty at all moments of time or both non-empty at all moments of time. To satisfy
the ϑ′R, for R ∈ roleK, we extend M to M′ as follows: if (∃R)∗ and (∃inv(R))∗ are non-empty, we
set pM

′,n
R to be true at all n ∈ Z, and take dR to be an element in ((∃R)∗)M,0; otherwise, we set

pM
′,0

R to be false and take some domain element as dR. It follows that M′, 0 |= K‡.
(⇐) Conversely, suppose M, 0 |= K‡. By repeated application of Lemma 4.2, K†0 is satisfied

in a model M′ such that, for each R ∈ roleK, the predicates (∃R)∗ and (∃inv(R))∗ are either both
empty at all moments of time or both non-empty at all moments of time. It follows that M′, 0 |= ϑR
for all R ∈ roleK, and so M′, 0 |= K†.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:19

Finally, as K‡ contains no existential quantifiers, it can be regarded as a propositional temporal
formula because all the universally quantified variables can be instantiated by all the constants in
the formula (which only results in a polynomial blow-up). Observe also that the translation ·‡ can be
done in logarithmic space in the size of K. This is almost trivial for all conjuncts of K‡ apart from
(≥ qR,nA(a)R)∗ inA†, where the numbers can be computed using a LOGSPACE-transducer as follows:
initially set q = 0; then enumerate all object names bi in A incrementing q for each R(a, bi) ∈ AnR
and stop if q = maxQT or the end of the object names list is reached; let qR,nA(a) be the maximum
number in QT not exceeding q. Note that in the case of TUSDL-Lite(HN)

bool , the translation is feasible
only in NLOGSPACE (rather than LOGSPACE) because we have to take account of role inclusions
(and graph reachability is NLOGSPACE-complete).

4.4. Complexity of TUSDL-LiteNbool and its Fragments
We now use the translation ·‡ to obtain the complexity results announced in Section 3.3.

THEOREM 4.4. The satisfiability problem for TUSDL-LiteNbool and TFPXDL-LiteNbool KBs is
PSPACE-complete.

PROOF. The upper bound follows from the reduction ·‡ above and the fact that PT L is PSPACE-
complete over (Z, <) [Rabinovich 2010; Reynolds 2010; Sistla and Clarke 1982]. The lower bound
is an immediate consequence of the observation that TFPXDL-LiteNbool can encode formulas of the
form θ ∧ 2∗

∧
i(ϕi → ©

Fψi), where θ, the ϕi and ψi are conjunctions of propositional variables:
satisfiability of such formulas is known to be PSPACE-hard (see e.g., [Gabbay et al. 1994]).

In fact, using the U-operator, we can establish the following:

THEOREM 4.5. The satisfiability problem for the core fragment of TUSDL-LiteNbool KBs is
PSPACE-hard.

PROOF. The proof is by reduction of the non-halting problem for deterministic Turing machines
with a polynomial tape. Let s(n) be a polynomial and M a deterministic Turing machine that re-
quires s(n) cells of the tape given an input of length n. Without loss of generality, we assume
that M never runs outside the first s(n) cells. Let M = 〈Q,Γ,#,Σ, δ, q0, qf 〉, where Q is a fi-
nite set of states, Γ a tape alphabet, # ∈ Γ the blank symbol, Σ ⊆ Γ a set of input symbols,
δ : (Q\{qf})×Γ→ Q×Γ×{L,R} a transition function, and q0, qf ∈ Q the initial and accepting
states, respectively. Let ~a = a1 . . . an be an input for M . We construct a KB that is unsatisfiable
iff M accepts ~a. This will prove PSPACE-hardness. The KB uses a single object name d and the
following concepts, for a ∈ Γ, q ∈ Q and 1 ≤ i ≤ s(n), representing configurations of M :
– Hiq , which contains d if the head points to cell i and the current state is q;
– Sia, which contains d if tape cell i contains symbol a in the current configuration;
– Di, which contains d if the head pointed to cell i in the previous configuration.

Let TM contain the following concept inclusions, for a, a′ ∈ Γ, q, q′ ∈ Q, and 1 ≤ i, j ≤ s(n):

Hiq v ⊥ U H(i+1)q′ , Hiq v ⊥ U Sia′ , if δ(q, a) = (q′, a′, R) and i < s(n), (8)

Hiq v ⊥ U H(i−1)q′ , Hiq v ⊥ U Sia′ , if δ(q, a) = (q′, a′, L) and i > 1, (9)

Hiq v ⊥ U Di, (10)
Di uDj v ⊥, if i 6= j, (11)

Sia v Sia U Di, (12)
Hiqf v ⊥, (13)

and let A~a consist of the following ABox assertions:

H1q0(d), Siai(d), for 1 ≤ i ≤ n, Si#(d), for n < i ≤ s(n).

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:20 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

Note that the concept inclusions in TM are of the form B1 u B2 v ⊥ or B1 v B2 U B3, where
each Bi is either a concept name or⊥, and that U , in essence, encodes the ‘next-time’ operator. The
proof that (TM ,A~a) is unsatisfiable iff M accepts ~a is given in Appendix B.

On the other hand, if we do not have the U/S or ©F/©P operators in our languages, then the
complexity drops to NP, which matches the complexity of the 2F/2P -fragment of propositional
temporal logic [Ono and Nakamura 1980]:

THEOREM 4.6. Satisfiability of TFPDL-LiteNbool and TUDL-LiteNbool KBs is NP-complete.

PROOF. The lower bound is immediate from the complexity of DL-LiteNbool. The upper bound for
TFPDL-LiteNbool can be shown using a slight modification of the reduction ·‡ and the result of Ono
and Nakamura [1980] mentioned above. We need to modify ·‡ in such a way that the target language
does not contain the ©n operators of the ABox. We take a fresh predicate Hn

C(x) for each ground
atom ©nC(a) occurring in A† and use the following formulas instead of ©nC(a) in A†:(

3n
F H

n
C(a) ∧ ¬3n+1

F Hn
C(a)

)
∧2∗

(
Hn
C(a)→ C(a)

)
, if n ≥ 0,(

3−nP Hn
C(a) ∧ ¬3−n+1

P Hn
C(a)

)
∧2∗

(
Hn
C(a)→ C(a)

)
, if n < 0,

where 3n
F and 3n

P denote n applications of 3F and 3P , respectively. Note that Hn
C(a) holds at m

iff m = n. Thus, we use these predicates to ‘mark’ a small number of moments of time in models.
The NP upper bound trivially holds for TUDL-LiteNbool, a sublanguage of TFPDL-LiteNbool.

Our next theorem also uses the reduction ·‡ and follows from the complexity results for the
fragments PT Lkrom(2∗ ,©F/©P ,2F/2P) and PT Lcore(2∗ ,©F/©P) of PT L, obtained by restricting
the form of clauses in the Separated Normal Form (SNF) [Fisher 1991] and proved in Section 5.

THEOREM 4.7. Satisfiability of TFPXDL-LiteNkrom, TFPDL-LiteNkrom and TFPXDL-LiteNcore KBs
KBs is NP-complete.

PROOF. The NP upper bound follows from the fact that the ·‡ translation of a KB in any of the
three languages is a PT Lkrom(2∗ ,©F/©P ,2F/2P)-formula. By Theorem 5.4, satisfiability of such
formulas is in NP. The matching lower bound for TFPDL-LiteNkrom (and TFPXDL-LiteNkrom) follows
from the proof of NP-hardness of PT Lkrom(2∗ ,2P/2F), which will be presented in Theorem 5.8:
one can take concept names instead of propositional variables and encode, in an obvious way, the
formulas of the proof of Theorem 5.8 in a KB; similarly, the lower bound for TFPXDL-LiteNcore
follows from NP-hardness of PT Lcore(2∗ ,©F/©P); see Theorem 5.4.

THEOREM 4.8. Satisfiability of TFPDL-LiteNcore KBs is in PTIME.

PROOF. The result follows from the observation that the ·‡ translation of a TFPDL-LiteNcore KB is
of the form ϕ′ ∧ ϕ′′, where ϕ′ is a PT Lcore(2∗ ,2F/2P)-formula representing the TBox and ϕ′′ is a
conjunction of formulas of the form ©np, for propositional variables p. A modification of the proof
of Theorem 5.5 (explained in Remark 5.6) shows that satisfiability of such formulas is in PTIME.

We note in passing that the matching lower bound for PT Lcore(2∗ ,2F/2P), to be proved in The-
orem 5.7, does not imply PTIME-hardness of TFPDL-LiteNcore as the formulas in the proof require
an implication to hold at the initial moment of time, which is not expressible in TFPDL-LiteNcore.

Finally, we show that the Krom and core fragments of TUDL-LiteNbool can be simulated by 2CNFs
(see, e.g., [Börger et al. 1997]), whose satisfiability is NLOGSPACE-complete.

THEOREM 4.9. The satisfiability problem for TUDL-LiteNcore and TUDL-LiteNkrom KBs is
NLOGSPACE-complete.

PROOF. The lower bound is trivial from NLOGSPACE-hardness of DL-LiteNcore. We show the
matching upper bound. Given a TUDL-LiteNkrom KB K = (T ,A), we consider the QT L1-formula
K‡, which, by Lemma 4.3, is satisfiable iff K is satisfiable. Now, we transform K‡ into a two-sorted

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:21

first-order formulaK‡2 by representing the time dimension explicitly as a predicate argument. Recall
that K‡ is built from the propositional variables pR, for R ∈ roleK, and unary predicates B∗, for
concepts B of the form A and ≥ q R. Without loss of generality, we assume that there is at most
one 2∗ in front of each B∗ in K‡. We replace each B∗(x) in K‡ that is not prefixed by 2∗ with the
binary predicate B∗(x, t), and each 2∗ B∗(x) with a fresh unary predicate UB(x); the outermost 2∗
is replaced by ∀t. To preserve the semantics of the 2∗ B∗, we also append to the resulting formula
the conjuncts ∀x

(
UB(x)↔ ∀tB∗(x, t)

)
, which are equivalent to

∀t∀x
(
UB(x)→ B∗(x, t)

)
∧ ∀x ∃t

(
B∗(x, t)→ UB(x)

)
.

The propositional variables pR ofK‡ remain propositional variables inK‡2 , and the second conjunct
of K‡ is replaced by the following formula:(

pR → (∃inv(R))∗(dinv(R), 0)
)
∧ ∀t∀x

(
(∃R)∗(x, t)→ pR

)
with constant 0. Finally, the ground atoms ©nB∗(a) in A† are replaced by B∗(a, n) with constants
n. Thus, K‡2 is a conjunction of (at most) binary clauses without quantifiers or with prefixes of the
form ∀t∀x and ∀x ∃t. Since the first argument of the predicates, x, is always universally quantified,
K‡2 is equisatisfiable with the conjunction K‡3 of the formulas obtained by replacing x in K‡2 with
the constants in the set obA ∪ {dR | R ∈ roleK}. But then K‡3 is equivalent to a first-order Krom
formula in prenex form with the quantifier prefix ∃∗∀, satisfiability of which can be checked in
NLOGSPACE (see e.g., [Börger et al. 1997, Theorem 8.3.6]).

5. CLAUSAL FRAGMENTS OF PROPOSITIONAL TEMPORAL LOGIC
Our aim in this section is to introduce and investigate a number of new fragments of the propositional
temporal logic PT L. One reason for this is to obtain the complexity results required for the proof
of Theorems 4.7 and 4.8. We believe, however, that these fragments are of sufficient interest on their
own, independently of temporal conceptual modelling and reasoning.

Sistla and Clarke [1982] showed that full PT L is PSPACE-complete; see also [Halpern and
Reif 1981; Lichtenstein et al. 1985; Rabinovich 2010; Reynolds 2010]. Ono and Nakamura [1980]
proved that for formulas with only 2F and 3F the satisfiability problem becomes NP-complete.
Since then a number of fragments of PT L with lower computational complexity have been iden-
tified and studied. Chen and Lin [1993] observed that the complexity of PT L does not change
even if we restrict attention to temporal Horn formulas. Demri and Schnoebelen [2002] determined
the complexity of fragments that depend on three parameters: the available temporal operators,
the number of nested temporal operators, and the number of propositional variables in formulas.
Markey [2004] analysed fragments defined by the allowed set of temporal operators, their nesting
and the use of negation. Dixon et al. [2007] introduced a XOR fragment of PT L and showed its
tractability. Bauland et al. [2009] systematically investigated the complexity of fragments given by
both temporal operators and Boolean connectives (using Post’s lattice of sets of Boolean functions).

In this section, we classify temporal formulas according to their clausal normal form. We remind
the reader that any PT L-formula can be transformed to an equisatisfiable formula in Separated
Normal Form (SNF) [Fisher 1991]. A formula in SNF is a conjunction of initial clauses (that define
‘initial conditions’ at moment 0), step clauses (that define ‘transitions’ between consecutive states),
and eventuality clauses (ensuring that certain states are eventually reached). More precisely, for the
time flow Z, a formula in SNF is a conjunction of clauses of the form

L1 ∨ · · · ∨ Lk,
2∗
(
(L1 ∧ · · · ∧ Lk)→ ©(L′1 ∨ · · · ∨ L′m)

)
,

2∗
(
(L1 ∧ · · · ∧ Lk)→ 3FL

)
,

2∗
(
(L1 ∧ · · · ∧ Lk)→ 3PL

)
,

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:22 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

Table III. Complexity of Clausal Fragments of PT L.

2∗ , 2F /2P ,©F /©P 2∗ ,©F /©P 2∗ , 2F /2P 2∗

Bool PSPACE PSPACE NP NP

Horn PSPACE PSPACE PTIME [≤ Th. 5.5] PTIME

Krom NP [≤ Th. 5.1] NP NP [≥ Th. 5.8] NLOGSPACE

core NP NP [≥ Th. 5.4] PTIME [≥Th. 5.7] NLOGSPACE

where L,L1, . . . , Lk, L
′
1, . . . , L

′
m are literals—i.e., propositional variables or their negations—and

© is a short-hand for ©F (we will use this abbreviation throughout this section). By definition, we
assume the empty disjunction to be ⊥ and the empty conjunction to be >. For example, the second
clause with m = 0 reads 2∗ (L1 ∧ · · · ∧ Lk → ⊥).

The transformation to SNF is achieved by fixed-point unfolding and renaming [Fisher et al. 2001;
Plaisted 1986]. Recall that an occurrence of a subformula is said to be positive if it is in the scope of
an even number of negations. Now, as p U q is equivalent to ©q ∨

(
©p ∧©(p U q)

)
, every positive

occurrence of p U q in a given formula ϕ can be replaced by a fresh propositional variable r, with
the following three clauses added as conjuncts to ϕ:

2∗
(
r → ©(q ∨ p)

)
, 2∗

(
r → ©(q ∨ r)

)
and 2∗

(
r → 3F q

)
.

The result is equisatisfiable with ϕ but does not contain positive occurrences of pU q. Similarly, we
can get rid of other temporal operators and transform the formula to SNF [Fisher et al. 2001].

We now define four types of fragments of PT L, which are called PT Lcore(X), PT Lkrom(X),
PT Lhorn(X) and PT Lbool(X), where X has one of the following four forms: 2∗ ,©F/©P ,2F/2P ,
or 2∗ ,©F/©P , or 2∗ ,2F/2P or 2∗ . PT Lcore(X)-formulas, ϕ, are constructed using the grammar:

ϕ ::= ψ | 2∗ ψ | ϕ1 ∧ ϕ2,

ψ ::= λ1 → λ2 | λ1 ∧ λ2 → ⊥, (core)
λ ::= ⊥ | p | Fλ, where F is one of the operators in X .

Definitions of the remaining three fragments differ only in the shape ofψ. InPT Lkrom(X)-formulas,
ψ is a binary clause:

ψ ::= λ1 → λ2 | λ1 ∧ λ2 → ⊥ | λ1 ∨ λ2. (krom)

In PT Lhorn(X)-formulas, ψ is a Horn clause:

ψ ::= λ1 ∧ · · · ∧ λn → λ, (horn)

while in PT Lbool(X)-formulas, ψ is an arbitrary clause:

ψ ::= λ1 ∧ · · · ∧ λn → λ′1 ∨ · · · ∨ λ′k. (bool)

Note that, if X contains 2-operators then the corresponding 3-operators can be defined in the
fragments PT Lkrom(X) and PT Lbool(X).

Table III shows how the complexity of the satisfiability problem for PT L-formulas depends on
the type of the underlying propositional clauses and the available temporal operators. The PSPACE
upper bound is well-known; the matching lower bound can be obtained by a standard encoding of
deterministic Turing machines with polynomial tape (cf. Theorem 4.4). The NP upper bound for
PT Lbool(2∗ ,2F/2P) follows from [Ono and Nakamura 1980]. The NLOGSPACE lower bound is
trivial and the matching upper bound follows from the complexity of the Krom formulas with the
quantifier prefix of the form ∃∗∀ [Börger et al. 1997] (a similar argument is used in Theorem 4.9).
In the remainder of this section, we prove all other results in this table. It is worth noting how the
addition of © or ¬ increases the complexity of PT Lhorn(2∗ ,2F/2P) and PT Lcore(2∗ ,2F/2P).

THEOREM 5.1. The satisfiability problem for PT Lkrom(2∗ ,©F/©P ,2F/2P)-formulas is in NP.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:23

PROOF. We proceed as follows. First, in Lemma 5.2, we give a satisfiability criterion for PT L-
formulas in terms of types—sets of propositions that occur in the given formula—and distances
between them in temporal models. The number of types required is polynomial in the size of the
given formula; the distances, however, are exponential, and although they can be represented in
binary (in polynomial space), in general there is no polynomial algorithm that checks whether two
adjacent types can be placed at a given distance (unless PTIME = PSPACE). In the remainder of the
proof, we show that, for formulas with binary clauses, this condition can be verified by constructing
a polynomial number of polynomial arithmetic progressions (using unary automata). This results in
a non-deterministic polynomial-time algorithm: guess types and distances between them, and then
verify (in polynomial time) whether the types can be placed at the required distances.

Let ϕ′ be a PT Lkrom(2∗ ,©F/©P ,2F/2P)-formula. By introducing fresh propositional variables
if required, we can transform ϕ′ (in polynomial time) to a formula

ϕ = Ψ ∧ 2∗ Φ, (14)

where Ψ contains no temporal operators and Φ contains no nested occurrences of temporal oper-
ators. Indeed, if ϕ′ contains a conjunct ψ with a temporal λ, then we take a fresh propositional
variable λ, replace λ in ψ with λ, and add to ϕ′ a new conjunct 2∗ (λ↔ λ). In a similar way we get
rid of nested occurrences of temporal operators in Φ.

We will not distinguish between a set of formulas and the conjunction of its elements, and write
2∗ Φ for

∧
χ∈Φ 2∗ χ. As 2∗ (λ ∨ ©Pλ

′) is equivalent to 2∗ (©Fλ ∨ λ′), we can assume that Φ does not
contain ©P (remember that we agreed to denote ©F by ©). We regard 2∗ inside Φ as defined by
2∗ λ = 2F2Pλ. Thus, we assume that Φ contains only ©, 2P and 2F (which are not nested).

We first characterise the structure of models for formulas of the form (14) (with Ψ and Φ sat-
isfying those conditions). It should be noted that this structure only depends on ϕ being of that
form (cf. [Gabbay et al. 1994; Gabbay et al. 2003] and references therein) and does not depend on
whether or not Ψ and Φ are sets of binary clauses. To this end, for each 2FL in ϕ, we take a fresh
propositional variable, denoted 2FL and called the surrogate of 2FL; likewise, for each 2PL we
take its surrogate 2PL. Let Φ be the result of replacing 2-subformulas in Φ by their surrogates. It
should be clear that ϕ is equisatisfiable with

ϕ = Ψ ∧2∗ Φ ∧
∧

2FL occurs in Φ

2∗ (2FL↔ 2FL) ∧
∧

2PL occurs in Φ

2∗ (2PL↔ 2PL).

By a type for ϕ we mean any set of literals that contains either p or ¬p, for each variable p in ϕ
(including the surrogates 2FL and 2PL).

LEMMA 5.2. The formula ϕ is satisfiable iff there exist k + 5 integers

m0 < m1 < · · · < mk+4

(where k does not exceed the number of 2FL and 2PL) and a sequence Ψ0,Ψ1, . . . ,Ψk+4 of types
for ϕ satisfying the following conditions (see Fig. 3):

(B0) mi+1 −mi < 2|ϕ|, for 0 ≤ i < k + 4;

(B1) there exists `0 such that 0 ≤ `0 ≤ k + 4 and Ψ ∧Ψ`0 is consistent;

(B2) for each i, 0 ≤ i < k + 4, and each 2FL in Φ,

if 2FL ∈ Ψi then L,2FL ∈ Ψi+1, and if 2FL ∈ Ψi+1 \Ψi then L /∈ Ψi+1;

(B3) there exists `F < k + 4 such that Ψ`F = Ψk+4 and, for each 2FL in Φ,

if 2FL /∈ Ψ`F then L /∈ Ψj , for some j ≥ `F ;

(B4) for each i, 0 < i ≤ k + 4, and each 2PL in Φ,

if 2PL ∈ Ψi then L,2PL ∈ Ψi−1, and if 2PL ∈ Ψi−1 \Ψi then L /∈ Ψi−1;

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:24 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

¬2FL ¬2FL . . . ¬2FL 2FL

¬L

2FL

L

. . . 2FL

L

2FL

L

Ψi−1 Ψi Θi Ψi+1

2PL

L

2PL

L

. . . 2PL

L

2PL

¬L

¬2PL . . . ¬2PL ¬2PL

Ψi Θi Ψi+1 Ψi+2

Fig. 3. Conditions (B2), (B4) and (B6) in Lemma 5.2.

(B5) there exists `P > 0 such that Ψ`P = Ψ0 and, for each 2PL in Φ,

if 2PL /∈ Ψ`P then L /∈ Ψj , for some j ≤ `P ;

(B6) for all i, 0 ≤ i < k + 4, the following formula is consistent:

Ψi ∧
mi+1−mi−1∧

j=1

©jΘi ∧ ©mi+1−miΨi+1 ∧ 2∗ Φ, (15)

where ©jΨ is the result of attaching j operators © to each literal in Ψ and

Θi = {L,2FL | 2FL ∈ Ψi} ∪ {¬2FL | 2FL /∈ Ψi} ∪
{L,2PL | 2PL ∈ Ψi+1} ∪ {¬2PL | 2PL /∈ Ψi+1}.

PROOF. (⇒) Let M, 0 |= ϕ. Denote by Ψ(m) the type for ϕ containing all literals that hold
at m in M. As the number of types is finite, there is mF > 0 such that each type in the sequence
Ψ(mF),Ψ(mF + 1), . . . appears infinitely often; similarly, there is mP < 0 such that each type in
the sequence Ψ(mP),Ψ(mP − 1), . . . appears infinitely often. Then, for each subformula 2FL of
Φ, we have one of the three options: (1) L is always true in M, in which case we set m2FL = 0;
(2) there ism2FL such that M,m2FL |= ¬L∧2FL, in which casemP < m2FL < mF ; or (3) 2FL
is always false in M, in which case L is false infinitely often after mF , and so there is m2FL ≥ mF

such that M,m2FL |= ¬L. Symmetrically, for each subformula 2PL of Φ, (1) L is always true in
M, in which case we set m2PL = 0; or (2) there is an m2PL such that mP < m2PL < mF and
M,m2PL |= ¬L∧2PL; or (3) 2PL is always false in M, in which case there is m2PL ≤ mP such
that M,m2PL |= ¬L. Let m1 < m2 < · · · < mk+3 be an enumeration of the set

{0,mP ,mF} ∪ {m2FL | 2FL occurs in Φ} ∪ {m2PL | 2PL occurs in Φ}.
Let mk+4 > mk+3 be such that Ψ(mk+4) = Ψ(mF) and let m0 < m1 be such that Ψ(m0) =
Ψ(mP). We then set Ψi = Ψ(mi), for 0 ≤ i ≤ k + 4. Let `0, `P and `F be such that m`0 = 0,
m`P = mP and m`F = mF . It should be clear that (B1)–(B6) hold. Finally, given a model of ϕ
with two moments m and n such that the types at m and n coincide, we can construct a new model
for ϕ by ‘removing’ the states i with m ≤ i < n. Since the number of distinct types is bounded by
2|ϕ|, by repeated applications of this construction we can further ensure (B0).

(⇐) We construct a model M of ϕ by taking finite cuts of the models Mi of the formulas in (B6):
between the moments m0 and mk+4, the model M coincides with the models M0, . . . ,Mk+3 so
that at the moment mi in M we align the moment 0 of Mi, and at the moment mi+1 we align the
moment mi+1 −mi of Mi, which coincides with the moment 0 of Mi+1 because both are defined
by Ψi+1; before the moment m0, the model M repeats infinitely often its own fragment between
m0 and m`P , and after mk+4 it repeats infinitely often its fragment between m`F and mk+4 (both
fragments contain more than one state). It is readily seen that M,m`0 |= ϕ.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:25

By Lemma 5.2, if we provide a polynomial-time algorithm for verifying (B6), we can check
satisfiability of ϕ in NP. Indeed, it suffices to guess k + 5 types for ϕ and k + 4 natural numbers
ni = mi+1 −mi, for 0 ≤ i < k + 4, whose binary representation, by (B0), is polynomial in |ϕ|. It
is easy to see that (B1)–(B5) can be checked in polynomial time. We show now that (B6) can also
be verified in polynomial time for PT Lkrom(2∗ ,©F/©P ,2F/2P)-formulas.

Our problem is as follows: given a number n ≥ 0 (in binary), types Ψ and Ψ′, a set Θ of literals
and a set Φ of binary clauses of the form D1 ∨D2, where the Di are temporal literals p, ¬p, ©p or
¬©p, decide whether there is a model satisfying

Ψ ∧
n−1∧
k=1

©kΘ ∧ ©nΨ′ ∧2∗ Φ. (16)

In what follows, we write ψ1 |= ψ2 as a shorthand for ‘in every M, if M, 0 |= ψ1 then M, 0 |= ψ2.’
For 0 ≤ k ≤ n, we set:

F kΦ(Ψ) =
{
L′ | L ∧2∗ Φ |= ©kL′, for L ∈ Ψ

}
,

P kΦ(Ψ′) =
{
L | ©kL′ ∧2∗ Φ |= L, for L′ ∈ Ψ′

}
.

LEMMA 5.3. Formula (16) is satisfiable iff the following conditions hold:

(L1) F 0
Φ(Ψ) ⊆ Ψ, FnΦ(Ψ) ⊆ Ψ′ and P 0

Φ(Ψ′) ⊆ Ψ′, PnΦ(Ψ′) ⊆ Ψ;
(L2) ¬L /∈ F kΦ(Ψ) and ¬L /∈ Pn−kΦ (Ψ′), for all L ∈ Θ and 0 < k < n.

PROOF. It should be clear that if (16) is satisfiable then the above conditions hold. For the
converse direction, observe that if L′ ∈ F kΦ(Ψ) then, since Φ is a set of binary clauses, there
is a sequence of ©-prefixed literals ©k0L0 ; ©k1L1 ; · · · ; ©kmLm such that k0 = 0,
L0 ∈ Ψ, km = k, Lm = L′, each ki is between 0 and n and the ; relation is defined by taking
©kiLi ; ©ki+1Li+1 just in one of the three cases: ki+1 = ki and Li → Li+1 ∈ Φ or ki+1 = ki+1
and Li → ©Li+1 ∈ Φ or ki+1 = ki − 1 and ©Li → Li+1 ∈ Φ (we assume that, for example,
¬q → ¬p ∈ Φ whenever Φ contains p→ q). So, suppose conditions (L1)–(L2) hold. We construct
an interpretation satisfying (16). By (L1), both Ψ ∧ 2∗ Φ and ©nΨ′ ∧ 2∗ Φ are consistent. So, let
MΨ and MΨ′ be such that MΨ, 0 |= Ψ ∧ 2∗ Ψ and MΨ, n |= Ψ′ ∧ 2∗ Ψ, respectively. Let M be
an interpretation that coincides with MΨ for all moments k ≤ 0 and with MΨ′ for all k ≥ n; for
the remaining k, 0 < k < n, it is defined as follows. First, for each p ∈ Θ , we make p true at k
and, for each ¬p ∈ Θ, we make p false at k; such an assignment exists due to (L2). Second, we
extend the assignment by making L true at k if L ∈ F kΦ(Ψ) ∪ Pn−kΦ (Ψ′). Observe that we have
{p,¬p} * F kΦ(Ψ)∪Pn−kΦ (Ψ′): for otherwise L∧2∗ Φ |= ©kp and©n−kL′ ∧2∗ Φ |= ¬p, for some
L ∈ Ψ and L′ ∈ Ψ′, whence L ∧ 2∗ Φ |= ©n¬L′, contrary to (L1). Also, by (L2), any assignment
extension at this stage does not contradict the choices made due to Θ. Finally, all propositional vari-
ables not covered in the previous two cases get their values from MΨ (or MΨ′). We note that the
last choice does not depend on the assignment that is fixed by taking account of the consequences
of 2∗ Φ with Ψ, Ψ′ and Θ (because if the value of a variable depended on those sets of literals, the
respective literal would be among the logical consequences and would have been fixed before).

Thus, it suffices to show that conditions (L1)–(L2) can be checked in polynomial time. First, we
claim that there is a polynomial-time algorithm which, given a set Φ of binary clauses of the form
D1 ∨D2, constructs a set Φ∗ of binary clauses that is ‘sound and complete’ in the following sense:

(S1) 2∗ Φ∗ |= 2∗ Φ;
(S2) if 2∗ Φ |= 2∗ (L → ©kLk) then either k = 0 and L → L0 ∈ Φ∗, or k ≥ 1 and there are

L0, L1, . . . , Lk−1 with L = L0 and Li → ©Li+1 ∈ Φ∗, for 0 ≤ i < k.

Intuitively, the set Φ∗ makes explicit the consequences of 2∗ Φ and can be constructed in time (2|Φ|)2

(the number of temporal literals in Φ∗ is bounded by the doubled length |Φ| of Φ as each of its

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:26 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

literals can only be prefixed by ©). Indeed, we start from Φ and, at each step, add D1 ∨D2 to Φ if
it contains both D1 ∨D and ¬D ∨D2; we also add L1 ∨ L2 if Φ contains ©L1 ∨ ©L2 (and vice
versa). This procedure is sound since we only add consequences of 2∗ Φ; completeness follows from
the completeness proof for temporal resolution [Fisher et al. 2001, Section 6.3].

Our next step is to encode Φ∗ by means of unary automata. For literals L and L′, consider a
nondeterministic finite automaton AL,L′ over {0}, whose states are the literals of Φ∗, L is the initial
and L′ is the only accepting state, and the transition relation is {(L1, L2) | L1 → ©L2 ∈ Φ∗}.
By (S1) and (S2), for all k > 0, we have

AL,L′ accepts 0k iff 2∗ Φ |= 2∗ (L→ ©kL′).

Then both F kΦ(Ψ) and P kΦ(Ψ′), for k > 0, can be defined in terms of the language of AL,L′ :

F kΦ(Ψ) =
{
L′ | AL,L′ accepts 0k, for L ∈ Ψ

}
,

P kΦ(Ψ′) =
{
L | A¬L,¬L′ accepts 0k, for L′ ∈ Ψ′

}
(recall that ©kL′ → L is equivalent to ¬L → ©k¬L′). Note that the numbers n and k in condi-
tions (L1) and (L2) are in general exponential in the length of Φ and, therefore, the automata AL,L′
do not immediately provide a polynomial-time procedure for checking these conditions: although it
can be shown that if (L2) does not hold then it fails for a polynomial number k, this is not the case
for (L1), which requires the accepting state to be reached in a fixed (exponential) number of tran-
sitions. Instead, we use the Chrobak normal form [Chrobak 1986] to decompose the automata into
a polynomial number of polynomial-sized arithmetic progressions (which can have an exponential
common period; cf. the proof of Theorem 5.4).

It is known that every N -state unary automaton A can be converted (in polynomial time) into
an equivalent automaton in Chrobak normal form (e.g., by using Martinez’s algorithm [To 2009]),
which has O(N2) states and gives rise to M arithmetic progressions a1 + b1N, . . . , aM + bMN,
where ai + biN = {ai + bim | m ∈ N}, such that

– M ≤ O(N2) and 0 ≤ ai, bi ≤ N , for 1 ≤ i ≤M ;
– A accepts 0k iff k ∈ ai + biN, for some 1 ≤ i ≤M .

By construction, the number of arithmetic progressions is quadratic in the length of Φ.
We are now in a position to give a polynomial-time algorithm for checking (L1) and (L2), which

requires solving Diophantine equations. In (L2), for example, to verify that, for each p ∈ Θ, we have
¬p /∈ F kΦ(Ψ), for all 0 < k < n, we take the automata AL,¬p, for L ∈ Ψ, and transform them into
the Chrobak normal form to obtain arithmetic progressions ai + biN, for 1 ≤ i ≤M . Then there is
k, 0 < k < n, with ¬p ∈ F kΦ(Ψ) iff one of the equations ai + bim = k has an integer solution with
0 < k < n. The latter can be verified by taking the integer m = b−ai/bic and checking whether
either ai + bim or ai + bi(m+ 1) belongs to the open interval (0, n), which can clearly be done in
polynomial time. This completes the proof of Theorem 5.1.

We can establish the matching lower bound for PT Lcore(2∗ ,©F/©P)-formulas by using a result
on the complexity of deciding inequality of regular languages over singleton alphabets [Stockmeyer
and Meyer 1973]. In the following theorem, we give a more direct reduction of the NP-complete
problem 3SAT and repeat the argument of Stockmeyer and Meyer [1973, Theorem 6.1] to construct
a small number of arithmetic progressions (each with a small initial term and common difference)
that give rise to models of exponential size:

THEOREM 5.4. The satisfiability problem for PT Lcore(2∗ ,©F/©P)-formulas is NP-hard.

PROOF. The proof is by reduction of 3SAT [Papadimitriou 1994]. Let f =
∧n
i=1 Ci be a 3CNF

with m variables p1, . . . , pm and n clauses C1, . . . , Cn. By a propositional assignment for f we
understand a function σ : {p1, . . . , pm} → {0, 1}. We will represent such assignments by sets of
positive natural numbers. More precisely, let P1, . . . , Pm be the first m prime numbers; it is known
that Pm does not exceed O(m2) [Apostol 1976]. We say that a natural number k represents an

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
5 1 0 1 0 1 0 1 0 1 0 1 0

Fig. 4. Natural numbers encoding assignments for 3 variables p1, p2, p3 (shown in bold face).

assignment σ if k is equivalent to σ(pi) modulo Pi, for all i, 1 ≤ i ≤ m. Not every natural number
represents an assignment. Consider the following arithmetic progressions:

j + Pi · N, for 1 ≤ i ≤ m and 2 ≤ j < Pi. (17)

Every element of j + Pi · N is equivalent to j modulo Pi, and so, since j ≥ 2, cannot represent an
assignment. Moreover, every natural number that cannot represent an assignment belongs to one of
these arithmetic progressions (see Fig. 4).

Let Ci be a clause in f , for example, Ci = pi1 ∨¬pi2 ∨ pi3 . Consider the following progression:

P 1
i1P

0
i2P

1
i3 + Pi1Pi2Pi3 · N. (18)

Then a natural number represents an assignment making Ci true iff it does not belong to the pro-
gressions (17) and (18). Thus, a natural number represents a satisfying assignment for f iff does not
belong to any of the progressions of the form (17) and (18), for clauses in f .

To complete the proof, we show that the defined arithmetic progressions can be encoded in
PT Lcore(2∗ ,©F/©P). We take a propositional variable d, which will be shared among many for-
mulas below. Given an arithmetic progression a+ bN (with a ≥ 0 and b > 0), consider the formula

θa,b = u0∧
a∧
j=1

2∗ (uj−1 → ©uj)∧ 2∗ (ua → v0)∧
b∧
j=1

2∗ (vj−1 → ©vj)∧2∗ (vb → v0)∧2∗ (v0 → d),

where u0, . . . , ua and v0, . . . , vb are fresh propositional variables. It is not hard to see that, in every
model satisfying θa,b at moment 0, d is true at moment k ≥ 0 whenever k belongs to a+ bN.

So, we take θa,b for each of the arithmetic progressions (17) and (18) and add two formulas,
p∧2∗ (©p→ p)∧2∗ (p→ d) and 2∗ d→ ⊥, which ensure that d and a fresh variable p are true at all
k ≤ 0 but d is not true at all moments. The size of the resulting conjunction of PT Lcore(2∗ ,©F/©P)-
formulas is O(n ·m6). One can check that it is satisfiable iff f is satisfiable.

THEOREM 5.5. The satisfiability problem for PT Lhorn(2∗ ,2F/2P)-formulas is in PTIME.

PROOF. Without loss of generality, we can assume that 2∗ does not occur in the formulas of
the form λ and that 2F , 2P are applied only to variables. Now, observe that every satisfiable
PT Lhorn(2∗ ,2F/2P)-formula ϕ is satisfied in a model with a short prefix (of length linear in |ϕ|)
followed by a loop of length 1 (cf. Lemma 5.2). More precisely, let M, 0 |= ϕ. Similarly to the proof
of Lemma 5.2, for each subformula 2Fpi ofϕ, we have only three possible choices: if 2Fpi is always
true or always false, we set m2F pi = 0; otherwise, there is m2F pi with M,m2F pi |= ¬pi ∧ 2Fpi.
Symmetrically, we take all moments m2P pi for all 2Ppi in ϕ. Consider the following set

{0} ∪ {m2P pi | 2Ppi occurs in ϕ} ∪ {m2F pi | 2Fpi occurs in ϕ}
and suppose it consists of the numbers m−l < · · · < m−1 < m0 < m1 < · · · < mk with m0 = 0.
Let N be the number of 2Ppi and 2Fpi occurring in ϕ plus 1. We extend the sequence by taking
mi = mk + 1, for k < i ≤ N , and m−i = m−l − 1, for l < i ≤ N . Therefore, M,mN |= 2Fpi iff
M,mN |= pi (and symmetrically for 2Ppi at m−N). Let M′ be defined as follows:

M′, n |= pi iff


M,m−N |= pi, if n < −N,
M,mn |= pi, if −N ≤ n ≤ N,
M,mN |= pi, if n > N.

It can be seen that M′, 0 |= ϕ.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:28 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

It remains to encode the existence of such a model by means of propositional Horn formulas, as
Horn-SAT is known to be PTIME-complete. To this end, for each propositional variable pi, we take
2N+1 variables pmi , for−N ≤ m ≤ N . Also, for each formula 2Fpi, we take 2N+1 propositional
variables, denoted (2Fpi)

m, for −N ≤ m ≤ N , and similarly, for each 2Ppi, we take variables
(2Ppi)

m. Then each clause λ1 ∧ · · · ∧ λn → λ in ϕ gives rise to the propositional clause

λ0
1 ∧ · · · ∧ λ0

n → λ0

and each 2∗ (λ1 ∧ · · · ∧ λn → λ) in ϕ gives rise to 2N + 1 clauses

λm1 ∧ · · · ∧ λmn → λm, for −N ≤ m ≤ N.
Additionally, we need clauses that describe the semantics of 2Fpi in M′ at m, −N ≤ m < N :

(2Fpi)
m → (2Fpi)

m+1, (2Fpi)
m → pm+1

i , (2Fpi)
m+1 ∧ pm+1

i → (2Fpi)
m,

and clauses that describe the semantics of 2Fpi in M′ at moment N :

(2Fpi)
N → pNi , pNi → (2Fpi)

N ,

and symmetric clauses for each 2Ppi in ϕ. It is not hard to show that every satisfying assignment
for the set of the clauses above gives rise to a model M′ of ϕ and, conversely, every model M′ of ϕ
with the structure as described above gives rise to a satisfying assignment for this set of clauses.

Remark 5.6. In order to obtain Theorem 4.8, one can extend the proof above to formulas of
the form ϕ′ ∧ ϕ′′, where ϕ′ is a PT Lhorn(2∗ ,2F/2P)-formula and ϕ′′ a conjunction of ©np, for
propositional variables p. To this end, in the definition of the set M , one has to take 0 together with
all n for which ©np occurs in ϕ′′; the number N is then equal to the number of those moments n
plus the number of all 2Fp and 2Pp occurring in ϕ′. The rest of the construction remains the same.

THEOREM 5.7. The satisfiability problem for PT Lcore(2∗ ,2F/2P)-formulas is PTIME-hard.

PROOF. The proof is by reduction of satisfiability of propositional Horn formulas with at most
ternary clauses, which is known to be PTIME-complete [Papadimitriou 1994]. Let f =

∧n
i=1 Ci be

such a formula. We define ϕf to be the conjunction of the following formulas:

p, for all clauses Ci of the form p,

p→ ⊥, for all clauses Ci of the form ¬p,
p→ q, for all clauses Ci of the form p→ q,

ci ∧ (p→ 2F ci) ∧ (q → 2P ci) ∧ (2∗ ci → r), for all clauses Ci of the form p ∧ q → r,

where ci is a fresh variable for each Ci. It is easy to see that f is satisfiable iff ϕf is satisfiable.

THEOREM 5.8. The satisfiability problem for PT Lkrom(2∗ ,2F/2P)-formulas is NP-hard.

PROOF. We proceed by reduction of the 3-colourability problem. Given a graphG = (V,E), we
use variables p0, . . . , p4 and vi, for vi ∈ V , to define the following PT Lkrom(2∗ ,2F/2P)-formula:

ϕG = p0 ∧
∧

0≤i≤3

2∗ (pi → 2Fpi+1) ∧

∧
vi∈V

2∗ (p0 ∧2F¬vi → ⊥) ∧
∧
vi∈V

2∗ (p4 ∧ vi → ⊥) ∧
∧

(vi,vj)∈E

2∗ (vi ∧ vj → ⊥).

Intuitively, the first 4 conjuncts choose, for each vertex vi of the graph, a moment 1 ≤ ni ≤ 3; the
last one makes sure that ni 6= nj in case vi and vj are connected by an edge in G. We show that ϕG
is satisfiable iff G is 3-colourable. Suppose c : V → {1, 2, 3} is a colouring function for G. Define
M by setting M, n |= vi just in case c(vi) = n, for vi ∈ V , and M, n |= pi iff n ≥ i, for 0 ≤ i ≤ 4.
Clearly, M, 0 |= ϕG. Conversely, if M, 0 |= ϕG then, for each vi ∈ V , there is ni ∈ {1, 2, 3} with
M, ni |= vi and M, ni 6|= vj whenever (vi, vj) ∈ E. Thus, c : vi 7→ ni is a colouring function.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:29

6. DL-LITE WITH TEMPORALISED ROLES
Now we investigate the complexity of extensions of DL-Litebool with temporalised roles of the form

R ::= S | S− | 3∗ R | 2∗ R,

where, as before, S is a flexible or rigid role name. Recall that the interpretation of 3∗ R and 2∗ R is
defined by taking (3∗ R)I(n) =

⋃
k∈ZR

I(k) and (2∗ R)I(n) =
⋂
k∈ZR

I(k).

6.1. Directed Temporal Operators and Functionality: Undecidability
Our first result is negative. It shows, in fact, that any extension of DL-Litebool with temporalised
roles, functionality constraints on roles and either the next-time operator ©F or both 2F and 2P on
concepts is undecidable.

THEOREM 6.1. Satisfiability of T ∗XDL-LiteNbool and T ∗FPDL-LiteNbool KBs is undecidable.

PROOF. The proof is by reduction of the N × N-tiling problem (see, e.g., [Börger et al. 1997]):
given a finite set T of tile types T = (up(T), down(T), left(T), right(T)), decide whether T can tile
the N×N-grid, i.e., whether there is a map τ : N×N→ T such that up(τ(i, j)) = down(τ(i, j+1))
and right(τ(i, j)) = left(τ(i + 1, j)), for all (i, j) ∈ N × N. We assume that the colours of tiles in
T are natural numbers from 1 to k, for a suitable k > 1.

Consider first T ∗XDL-LiteNbool and, given T, construct a KB KT = (TT,A) such that KT is satis-
fiable iff T tiles the N×N-grid. The temporal dimension will provide us with the horizontal axis of
the grid. The vertical axis will be constructed using domain elements. Let R be a role such that

≥ 23∗ R v ⊥ and ≥ 23∗ R− v ⊥. (19)

In other words, if xRy at some moment then there is no other y′ with xRy′ at any moment of
time (and similarly for R−). We generate a sequence of domain elements: first, we ensure that the
concept ∃R u©F∃R is non-empty, which can be done by taking A = {A(a)} and adding

A v ∃R u©F∃R, (20)

to the TBox TT, and second, we add the following concept inclusion to TT to produce a sequence:

∃R− u©FR
− v ∃R u©F∃R. (21)

(The reason for generating the R-arrows at two consecutive moments of time will become clear
below.) It is to be noted that the produced sequence may in fact be either a finite loop or an infinite
chain of distinct elements. Now, let T be a fresh concept name for each T ∈ T and let the concepts
representing the tile types be disjoint:

T u T ′ v ⊥, for T 6= T ′. (22)

Right after the double R-arrows we place the first column of tiles:

∃R− u©FR
− v

⊔
T∈T

©
F
©

FT. (23)

The second column of tiles, whose colours match the colours of the first one, is placed k+1 moments
later; the third column is located k + 1 moments after the second one, etc. (see Fig. 5):

T v
⊔

T ′∈T with right(T)=left(T ′)

©k+1
F T ′, for each T ∈ T. (24)

This gives an N × N-grid of tiles with matching left–right colours. To ensure that the up–down
colours in this grid also match, we use the double R-arrows at the beginning and place the columns

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:30 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

| | | |

...

...

...

...

T ′

T

R

R

R

aI

0 1 2 k + 3

time

up(T)

up(T ′) = down(T)

Fig. 5. Proof of Theorem 6.1: the structure of the N× N grid.

of tiles k+1 moments apart from each other. Consider the following concept inclusions, for T ∈ T:

T v ¬∃R−, (25)

T v ¬©iF∃R−, for 1 ≤ i ≤ k with i 6= down(T), (26)

T v ©up(T)
F ∃R. (27)

Inclusions (25), (22) and (26) ensure that between any two tiles k + 1 moments apart there may
be only one incoming R-arrow. This means that after the initial double R-arrows no other two
consecutiveR-arrows can occur. The exact position of the incomingR-arrow is uniquely determined
by the down-colour of the tile, which together with (27) guarantees that this colour matches the up-
colour of the tile below. Fig. 5 illustrates the construction (the solid vertical arrows represent R).

Let TT contain all the concept inclusions defined above. It is not hard to check that (TT,A) is
satisfiable iff T tiles the N× N-grid.

The proof for T ∗FPDL-LiteNbool is much more involved. To encode the vertical axis of the N × N-
grid, we again use the role R satisfying the concept inclusions

≥ 23∗ R v ⊥ and ≥ 23∗ R− v ⊥. (28)

However, as ©F is not available in T ∗FPDL-LiteNbool, we need a completely different construction
to ensure that the tiles match in the horizontal dimension. Indeed, in the proof above (cf. (24)) we
use ©nF and disjunction to place a suitable tile to the right of any tile in the grid. Without the ©F

operator, we use another role S (whose 3∗ S is also inverse-functional) and create special patterns
to represent colours (as natural number from 1 to k) similarly to the way we paired up and down
colours above. In order to create patterns and refer to the ‘next moment’, we use a trick similar to
the one we used in the proof of Theorem 4.6: given a concept C and n ≥ 0, let

3=n
F C = 3n

F C u ¬3n+1
F C and 3=n

P C = 3n
P C u ¬3n+1

P C.

Note, however, that these 3=n
F/PC-operators can mark a domain element with C only once. So,

every time we need a pattern, say of ∃S, of a certain length on a domain element, we create a new
S-successor, use concepts biti (with various superscripts in the proof) to mark certain positions on
that S-successor by means of the operators 3=i

F/P biti and then ‘transfer’ the markings back to our
domain element via inclusions of the form biti v ∃S− and biti v ¬∃S− with functional 3∗ S−.

The rest of the proof is organised as follows. In Step 1, we create the structure of the horizontal
axis on a fixed ABox element a. The structure consists of repeating blocks of length 4k + 4 (to
represent the four colours of the tile); each block has a certain pattern of complementary V0- and
V1-arrows (see Fig. 8), which are arranged using the same technique as we outlined for S so that a
has a ‘fan’ of V0-successors (y0, y1, . . .) and a ‘fan’ of V1-successors (x0, x1, . . .). Then, in Step 2,
we create a sequence z0, z1, . . . of R-successors to represent the vertical axis (see Fig. 10) so that
each of the zi repeats the structure of the horizontal axis (shifted by k + 1 with each new zi)

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:31

aI

x0

y0

0 k k+1 2k+1

2k+2

2k+3 4k+3

k + 1

k + 1 2k + 1

Fig. 6. The structure of the horizontal axis: x0 is a V1-successor of aI and y0 is a V0-successor of aI .

and places tiles on a ‘fan’ of its own S-successors. The particular patterns of S-arrows within the
repeating 4k + 4 blocks will then ensure that the right–left colours match (within the same ‘fan’)
and, similarly, the patterns of R-arrows between the zi will ensure that the up–down colours match.
Step 1. We encode the horizontal axis using the ABox A = {A(a)} and a number of concept
inclusions with roles V0, V1 and concepts bitV1

i , for 1 ≤ i ≤ 2k+ 2, and bitV0
i , for 1 ≤ i ≤ 3k+ 2.

Consider first the following concept inclusions:

A v ∃V1 u2P¬∃V1, (29)

≥ 23∗ V −1 v ⊥, (30)

∃V −1 u2P¬∃V −1 v
l

1≤i≤2k+2

3=i
F bitV1

i u 22k+3
F ¬∃V −1 , (31)

bitV1
i v ∃V

−
1 , for 1 ≤ i ≤ k, (32)

bitV1

k+i v ¬∃V
−
1 , for 1 ≤ i ≤ k + 1, (33)

bitV1

2k+2 v ∃V
−
1 . (34)

Suppose all of them hold in an interpretation I. Then, by (29), aI has a V1-successor, say x0, at mo-
ment 0 and no V1-successor at any preceding moment. By (30), x0 does not have a V1-predecessor
before 0, and so, by (31)–(34), x0 has a V1-predecessor at every moment i with 0 ≤ i ≤ k and
i = 2k + 2, and no V1-predecessor at any other times. By (30), all these V1-predecessors must
coincide with aI (Fig. 6). We also need similar concept inclusions for the role V0:

A v 2P¬∃V0, (35)

≥ 23∗ V −0 v ⊥, (36)

∃V −0 u2P¬∃V −0 v
l

1≤i≤3k+2

3=i
F bitV0

i u 23k+3
F ¬∃V −0 , (37)

bitV0
i v ∃V

−
0 , for 1 ≤ i ≤ k, (38)

bitV0

k+1 v ¬∃V
−
0 , (39)

bitV0

k+1+i v ∃V
−
0 , for 1 ≤ i ≤ 2k + 1, (40)

together with

A v 2F (∃V1 t ∃V0), (41)
∃V0 u ∃V1 v ⊥. (42)

Suppose all of them hold in I. By (41), (42), at each moment after 0, aI has either a V0- or a V1-
successor. By (29), (42) and the observations above, aI cannot have a V0-successor in the interval
between 0 and k. Suppose y0 is a V0-successor of aI at k + 1 (that this is the case will be ensured
by (43)). By (35), (36), y0 has no V0-predecessors before 0; so, by (37)–(40), y0 has V0-predecessors

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:32 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

aI

x0

z

0 k k+1 2k+1

2k+2

3k+3

k + 1

k + 1 k

Fig. 7. A gap of k moments on the horizontal axis: both x0 and z are V1-successors of aI .

at the moments i with k+ 1 ≤ i ≤ 2k+ 1 and 2k+ 3 ≤ i ≤ 4k+ 3 and no V0-predecessors at other
moments. By (36), all these V0-predecessors coincide with aI (see Fig. 6). We show now that if

≥ 2V1 v ⊥ (43)

also holds in I then aI has a V0-successor at k+1. Indeed, suppose aI has a V1-successor z at k+1.
Then, by (29), the choice of x0 and (43), z cannot be a V1-successor of aI at any moment before
that. So, z must belong to the left-hand side concept of (31), which triggers the following pattern of
V1-successors of aI : x0 at moments i with 0 ≤ i ≤ k, z at i with k + 1 ≤ i ≤ 2k + 1, x0 at 2k + 2
and z at 3k+3 (see Fig. 7). This leaves only the moments i, for 2k+3 ≤ i ≤ 3k+2, without any V0-
or V1-successors. But in this case aI cannot have any V0- or V1-successor at 2k + 3. Indeed, such a
V0-successor z′ would have no V0-predecessor at any moment before 2k + 3, and so, by (36)–(40),
would remain a V0-successor of aI for k+1 consecutive moments, which is impossible with only k
available slots; by a similar argument and (43), aI has no V1-successor at 2k+3. Next, if in addition

≥ 2V0 v ⊥ (44)

holds in I, then aI has a V1-successor, x1, at 4k + 4. Indeed, using (44) and an argument similar
to the one above, one can show that if aI has a V0-successor z at 4k + 4 then z is different from
y1 and z cannot have V0-predecessors before 4k+ 4. But then the pattern of V0-successors required
by (37)–(40) would make it impossible for aI to have any V0- or V1-successor at 6k + 6, where z
has no V0-predecessor.

Thus, we find ourselves in the same situation as at the very beginning of the construction, but
with x1 in place of x0. By repeating the same argument again and again, we obtain domain elements
x0, x1, . . . and y0, y1, . . . of the interpretation I which are, respectively, V1- and V0-successors of
aI at the moments of time indicated in Fig. 8 by black points and intervals.
Step 2. We are now in a position to encode the N× N-tiling problem. Let us regard each T ∈ T as
a fresh concept name satisfying the disjointness concept inclusions

T u T ′ v ⊥, for T 6= T ′. (45)

Consider the following concept inclusions:

A v ∃R u2P¬∃R, (46)

∃R− u2P¬∃R− v 3=2k+1
P row -start , (47)

row -start v ∃S u2P¬∃S, (48)

∃S− u2P¬∃S− v
⊔
T∈T

T. (49)

Intuitively, (46) says that a has anR-successor, say z0, at the moment 0, and noR-successors before
0. Then, by (28), z0 has no R-predecessors before 0. Axioms (47)–(49) make sure that z0 has an
S-successor,w, which is an instance of T at−(2k+1), for some tile T . In this case, we say that T is
placed on z0 (rather than on w). Tiles will also be placed on domain elements having S-successors

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:33

0 k+1 4k+4 8k+8

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

V1-successors

V0-successors

x0
x1
x2

y0
y1
y2

Fig. 8. V0- and V1-successors of a in a model of KT.

with a specific pattern of concepts ∃S− given by the following concept inclusions:

≥ 23∗ S− v ⊥, (50)
≥ 2S v ⊥, (51)

T v
l

1≤i≤6k+4

3=i
F bitTi u 26k+5

F ¬∃S−, (52)

bitTi v ∃S−, for 1 ≤ i < k, (53)

bitTk v ¬∃S−, bitTk+i v
{
¬∃S−, if i = left(T),

∃S−, otherwise,
for 1 ≤ i ≤ k, (54)

bitT2k+1 v ¬∃S−, bitT2k+1+i v
{
¬∃S−, if i = down(T),

∃S−, otherwise,
for 1 ≤ i ≤ k, (55)

bitT3k+2 v ¬∃S−, bitT3k+2+i v
{
¬∃S−, if i = up(T),

∃S−, otherwise,
for 1 ≤ i ≤ k, (56)

bitT4k+3 v ∃S−, bitT4k+3+i v ¬∃S−, for 1 ≤ i ≤ k, (57)

bitT5k+4 v ∃S−, bitT5k+4+i v
{
∃S−, if i = right(T),

¬∃S−, otherwise,
for 1 ≤ i ≤ k. (58)

Suppose a domain element w is an instance of T at some moment t, for some T ∈ T. Then w will
be an instance of ∃S− at the moments t, . . . , t + k − 1. We think of this time interval on w (and,
as before, on z0) as the plug, or the P-section. After the plug we have a one-instant gap (where w
is an instance of ¬∃S−). The gap is followed by a sequence of k moments of time that represent
left(T) in the sense that only at the ith moment of the sequence, where i = left(T), w does not have
an S-predecessor. Then we again have a one-instant gap, followed by a sequence of k-moments
representing down(T) (in the same sense), another one-instant gap and a sequence representing
up(T) (see Fig. 9). At the next moment, t + 4k + 3, w will be an instance of ∃S−; then we have
k gaps (i.e., ¬∃S−), called the socket, or the S-section. After the socket, at t + 5k + 4, w is again
an instance of ∃S−, and then we have a sequence of k moments representing ‘inverted’ right(T):
the ith moment of this sequence has an S-predecessor iff i = right(T). We note that, by (50), the
pattern of ∃S− on w in Fig. 9 is reflected by the pattern of ∃S on the S-predecessor z0 of w at t,
which (partly) justifies our terminology when we say that tile T is placed on z0 (rather than on w).

z0

w

t t+k t+2k+1 t+3k+2 t+4k+3 t+5k+4 t+6k+5

plug
k

left(T)
k

down(T)
k

up(T)
k

socket
k

inverted right(T)
k

Fig. 9. Representing a tile using an S-successor.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:34 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

−(2k+1) 0 k+1 4k+4

a

z0

z1

z2

P L D

U S R

P L D

U S R

P L D

U S R

P L D

U S R

P L D

U S R

P L D

U S R

P L D

U S R

P L D

U S R

P L D

U S R

V1

V0

Fig. 10. The structure of a model of KT.

Thus, if the concept inclusions above hold, a tile—denote it by T00—is placed on z0 at the mo-
ment −(2k + 1), or, equivalently, T00 is placed on an S-successor w of z0. The following concept
inclusions will ensure then that the tiling is extended properly along both axes:

∃R− u2P¬∃R− v 2F (∃S t ∃R t ∃R−), (59)

∃R− u2P¬∃R− v 2P¬∃R, (60)
∃V0 u ∃R v ⊥, (61)

∃V0 u ∃R− v ⊥, (62)
∃S u ∃R v ⊥, (63)

∃S u ∃R− v ⊥, (64)

∃R u ∃R− v ⊥. (65)

Indeed, consider the elements z0 and w with the tile T00 placed on z0 at −(2k + 1). Then w has
gaps (i.e., no incoming S-arrows) at moments 0, down(T00), k + 1, k + 1 + up(T00), k gaps from
2k + 3 to 3k + 2 and k − 1 gaps from 3k + 4 to 4k + 3 (one of the positions is not a gap because
of the inverted representation of right(T00)). By (59), each of those positions on z0 must be filled
either by an outgoing S-arrow, or by an incoming R-arrow, or by an outgoing R-arrow. Consider
now what happens in these positions (see Fig. 10).

(1) We know that there is an incoming R-arrow at 0 (i.e., z0 is an instance of ∃R−), and so, by (64)
and (65), z0 cannot be an instance of ∃S and ∃R at 0.

(2) The position at down(T00) is filled by an incoming R-arrow using the following concept inclu-
sions (by (64), the incoming R-arrow can only appear at down(T00)):

A v
⊔

1≤i≤k

3=i
F init-bot , (66)

init-bot v ∃R. (67)
(3) The position at k+ 1 cannot be filled by an outgoing S-arrow because that would trigger a new

tile sequence, which would require k S-arrows of the P-section, which is impossible due to (51).
Next, as we observed above, aI belongs to ∃V0 at all moments i with k + 1 ≤ i ≤ 2k + 1, and
so, by (28) and (61), z0 cannot have an incoming R-arrow at moment k + 1. Thus, the position
at k + 1 must be filled by an outgoing R-arrow. Thus, there is an R-successor z1 of z0, which,
by (28), implies that z1 has no incoming R-arrows before k + 1. Then, by (47)–(58), there will
be a tile placed on z1 at −k = (k + 1)− (2k + 1).

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:35

(4) Similarly, the position at k + 1 + up(T) must be filled by an outgoing R-arrow, which ensures
that the down-colour of the tile placed on z1 matches the up-colour of the tile on z0.

(5) The k positions of the S-section from 2k + 3 to 3k + 2 cannot be filled by an incoming R-
arrow. On the other hand, the tile placed on z1 has its up-colour encoded in this range, and so
an outgoing R-arrow cannot fill all these gaps either (as k > 1). So, z0 has another S-successor
x1 in at least one of the moments of the S-section. By (48), (50), x1 does not belong to ∃S−
before−(2k+1). By (49), a tile is placed on x1 between−(2k+1) and 3k+2, but, by (51) and
because the tile requires x1 to be the S-successor for k consecutive moments of the P-section,
it is only possible at 2k + 2. Moreover, since the left- and right-sections of these tile sequences
overlap on z0, by (51), the adjacent colours of these two tiles match. This ensures that the k− 1
gaps of the inverted representation of the right-colour of the first tile are also filled.

Let KT be the KB containing all the concept inclusions above and A. If I is a model of KT then
the process described above generates a sequence z0, z1, . . . of domain elements such that each zi
has a tile placed on it at every 4k + 4 moments of time; moreover, the R-arrows form a proper
N×N-grid and the adjacent colours of the tiles match. We only note that the gaps at positions in the
down-section do not need a special treatment after the very first tile T00 at (0, 0) because, for each
zi, the sequence of tiles on zi+1 will have their left- and right-sections, with no gap to be filled by
an incoming R-arrow; thus, the only available choice for tiles on zi is ∃R.

We have proved that if KT is satisfiable then T tiles N × N. The converse implication is shown
using the satisfying interpretation illustrated in Fig. 10.

6.2. Undirected Temporal Operators: Decidability and NP-completeness
If we disallow the ‘previous time,’ ‘next time,’ ‘always in the past’ and ‘always in the future’ opera-
tors in the language of concept inclusions and replace them with ‘always’ (2∗) then reasoning in the
resulting logic T ∗UDL-LiteNbool becomes decidable and NP-complete.

Obviously, the problem is NP-hard (because of the underlying DL). However, rather surprisingly,
the interaction of temporalised roles and number restrictions is yet another source of nondetermin-
ism, which is exhibited already by very simple TBoxes with concept inclusions in the core fragment.
The following example illustrates this point and gives a glimpse of the difficulties we shall face in
the proof of the NP upper bound by means of the quasimodel technique: unlike other quasimodel
proofs [Gabbay et al. 2003], where only types of domain elements need to be guessed, here we also
have to guess relations between ABox individuals at all relevant moments of time.

Example 6.2. Let T = {A v ≥ 5R, ≥ 73∗ R v ⊥} and

A = {©FA(a), R(a, b1), R(a, b2), R(a, b3), ©FR(a, b1) }.

The second concept inclusion of the TBox implies that, in any every model I of (T ,A), a cannot
have more than 6 (3∗ R)I-successors in total; thus, it can only have b1, b2, b3 and up to 3 RI-
successors from outside the ABox. At moment 1, however, a must have at least 5 RI-successors,
including b1. Thus, one of the (3∗ R)I-successors in the ABox has to be re-used: we have either
I |= ©FR(a, b2) or I |= ©FR(a, b3).

Consider now T = {≥ 63∗ R v ⊥, > v ≥ 42∗ R } and A = {R(a, b1), R(a, b2) }. Then, in
every model I of (T ,A), either I |= 2∗ R(a, b1) or I |= 2∗ R(a, b2).

THEOREM 6.3. The satisfiability problem for T ∗UDL-LiteNbool KBs is NP-complete.

PROOF. Let K = (T ,A) be a T ∗UDL-LiteNbool KB. In what follows, given an interpretation I, we
write (≥ q2∗ R)I and (≥ q3∗ R)I instead of (≥ q2∗ R)I(n) and (≥ q3∗ R)I(n), for n ∈ Z, because
temporalised roles are time-invariant. As before, obA denotes the set of all object names occurring
in A (we assume |obA| ≥ 1) and roleK the set of role names in K and their inverses. Let QT ⊆ N
be the set (cf. p. 17) comprised of 1 and all q such that one of ≥ q2∗ R, ≥ q R or ≥ q3∗ R occurs in
T and letQA be the set of all natural numbers from 0 to |obA|. Let qK = max(QT ∪QA)+1. First,

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:36 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

we show that it is enough to consider interpretations with the number of 2∗ R-successors bounded
by qK − 1 (see Appendix C for a proof):

LEMMA 6.4. Every satisfiable T ∗UDL-LiteNbool KBK can be satisfied in an interpretation I with
(≥ qK2∗ R)I = ∅, for each R ∈ roleK.

Next, we define the notion of quasimodel. Let Q ⊇ QT ∪ QA be a set of natural numbers with
maxQ = qK − 1. We assume that the usual order on the natural numbers in Q̂ = Q ∪ {ω} is
extended to ω, which is the greatest element: 0 < 1 < · · · < qK − 1 < ω. Let Σ consist of the
following concepts and their negations: subconcepts of concepts occurring inK and≥ q2∗ R,≥ q R
and ≥ q3∗ R, for all R ∈ roleK and q ∈ Q̂. A Σ-type t is a maximal consistent subset of Σ:

(t1) C ∈ t iff ¬C /∈ t, for each C ∈ Σ,
(t2) C1 u C2 ∈ t iff C1, C2 ∈ t, for each C1 u C2 ∈ Σ,
(t3) if 2∗ C ∈ t then C ∈ t, for each 2∗ C ∈ Σ,
(t4) if ≥ q R ∈ t then ≥ q′R ∈ t, for each ≥ q′R ∈ Σ with q > q′ (similarly for 2∗ R and 3∗ R),
(t5) ≥ 02∗ R ∈ t but ≥ ω2∗ R /∈ t, for each role R,
(t6) if ≥ q2∗ R ∈ t then ≥ q R ∈ t and if ≥ q R ∈ t then ≥ q3∗ R ∈ t, for each role R,
(t7) if ≥ q3∗ R ∈ t then ≥ q2∗ R ∈ t, for each rigid role R.

Denote by ZA the set of all integers k such that at least one of ©kA(a), ©k¬A(a), ©kS(a, b) or
©k¬S(a, b) occurs in A, and let Z ⊇ ZA be a finite set of integers.

By a (Z,Σ)-run (or simply run, if Z and Σ are clear from the context) we mean a function r from
Z to the set of Σ-types. Concepts of the form 2∗ C, ≥ q2∗ R, ≥ q3∗ R and their negations are called
rigid. A run r is said to be coherent if the following holds for each rigid concept D in Σ:

(r1) if D ∈ r(k0), for some k0 ∈ Z, then D ∈ r(k) for all k ∈ Z.

In the following, the runs are assumed to be coherent and so, for rigid concepts D, we can write
D ∈ r in place of D ∈ r(k), for some (all) k ∈ Z. The required R-rank of r at k ∈ Z and the
required 2∗ R- and 3∗ R-ranks of r are defined by taking

%R,kr = max
{
q ∈ Q̂ | ≥ q R ∈ r(k)

}
,

%2Rr = max
{
q ∈ Q̂ | ≥ q2∗ R ∈ r

}
,

%3Rr = max
{
q ∈ Q̂ | ≥ q3∗ R ∈ r

}
.

By the definition of Σ-types, %2Rr ≤ %R,kr ≤ %3Rr . Moreover, if R is rigid then %2Rr = %3Rr < ω. For
flexible roles, however, the inequalities may be strict. A run r is saturated if the following hold:

(r2) for every flexible role R ∈ roleK, if %2Rr < %3Rr then
– there is k0 ∈ Z with %2Rr < %R,k0r , and
– if additionally %3Rr < ω, then there is k1 ∈ Z with %R,k1r < %3Rr ;

(r3) for every 2∗ C /∈ r, there is k0 ∈ Z with C /∈ r(k0).

Finally, we call E a consistent Z-extension of A if E extends A with assertions of the form
©kS(a, b), for k ∈ Z and a, b ∈ obA, such that ©kS(a, b) /∈ E for all ©k¬S(a, b) ∈ A. Ex-
ample 6.2 shows that, given an ABox, we have first to guess such an extension to describe a quasi-
model. More precisely, we have to count the number of R-successors among the ABox individuals
in E . To this end, define the following sets, for a ∈ obA, R ∈ roleK and k ∈ Z:

ER,ka = {b | ©kR(a, b) ∈ E}, E2Ra = {b | ©nR(a, b) ∈ E , for all n ∈ Z},
E3Ra = {b | ©nR(a, b) ∈ E , for some n ∈ Z},

where, as on p. 17, we assume that E contains©nS−(b, a) whenever it contains ©nS(a, b). We say
that a (Z,Σ)-run r is a-faithful for E if

(r4) A ∈ r(k), for all ©kA(a) ∈ E , and ¬A ∈ r(k), for all ©k¬A(a) ∈ E ;

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:37

(r5) 0 ≤ %2Rr − |E2Ra | ≤ %R,kr − |ER,ka | ≤ %3Rr − |E3Ra |, for all R ∈ roleK and k ∈ Z;7

(r6) for all R ∈ roleK, if %2Rr − |E2Ra | < %3Rr − |E3Ra | then
– there is k0 ∈ Z with %2Rr − |E2Ra | < %R,k0r − |ER,k0a |, and
– if additionally %3Rr < ω, then there is k1 ∈ Z with %R,k1r − |ER,k1a | < %3Rr − |E3Ra |.

Condition (r5) says that the number of R-successors in the ABox extension E does not exceed
the number of required R-successors: in view of |ER,ka | ∈ QA ⊆ Q, we have ≥ q R ∈ r(k) for
q = |ER,ka | (and similarly for 2∗ R and 3∗ R). Condition (r5) also guarantees that the number of
required R-successors that are not ABox individuals is consistent for 2∗ R, R and 3∗ R. In particular,
since |E2Ra | ≤ |E3Ra |, it follows that %2Rr = %3Rr implies |E2Ra | = |E3Ra |, and so ©nR(a, b) ∈ E ,
for all n ∈ Z, whenever ©kR(a, b) ∈ E for some k ∈ Z. Finally, (r6) is an adaptation of the notion
of saturated runs for the case of ABox individuals.

A quasimodel Q for K is a quadruple (Q,Z,R, E), where Q and Z are finite sets of integers
extending QT ∪ QA and ZA, respectively, R is a set of coherent and saturated (Z,Σ)-runs (for Σ
defined on the basis of Q̂) and E is a consistentZ-extension ofA satisfying the following conditions:

(Q1) for all r ∈ R, k ∈ Z and C1 v C2 ∈ T , if C1 ∈ r(k) then C2 ∈ r(k);
(Q2) for all a ∈ obA, there is a run ra ∈ R that is a-faithful for E ;

(Q3) for all R ∈ roleK, if there is r ∈ R with %2Rr ≥ 1 then there is r′ ∈ R with %2inv(R)
r′ ≥ 1;

(Q4) for all R ∈ roleK, if there is r ∈ R with %2Rr < %3Rr then there exists r′ ∈ R with
%
2inv(R)
r′ < %

3inv(R)
r′ .

Condition (Q1) ensures that all runs are consistent with the concept inclusions in T and (Q2) that
there are runs for all ABox individuals; (Q3) guarantees that a 2∗ R-successor can be found whenever
required and (Q4) provides R- (and thus 3∗ R-) successors whenever required. The following lemma
states that the notion of quasimodel is adequate for checking satisfiability of T ∗UDL-LiteNbool KBs:

LEMMA 6.5. A T ∗UDL-LiteNbool KB K is satisfiable if and only if there is a quasimodel Q for K
such that the size of Q is polynomial in the size of K.

PROOF. (⇒) Let I be a model of K. By Lemma 6.4, we may assume that, for each R ∈ roleK,
the number of 2∗ R-successors of any element in I does not exceed qK − 1. We construct a
polynomial-size quasimodel Q = (Q,Z,R, E) for K. First, we select a set D of elements of ∆I

that serve as prototypes for runs in R: each u ∈ D will give rise to a run ru in R (after the set Z of
time instants has been fixed). Set D0 = {aI | a ∈ obA} and then proceed by induction: if Dm has
already been defined then we construct Dm+1 by extending Dm as follows:
– if Dm ∩ (∃2∗ R)I 6= ∅ but Dm ∩ (∃2∗ inv(R))I = ∅ then we add some u ∈ (∃2∗ inv(R))I ;
– if there is q with Dm ∩

(
(≥ q3∗ R)I \ (≥ q2∗ R)I

)
6= ∅ but there is no q′ with Dm ∩(

(≥ q′3∗ inv(R))I \(≥ q′2∗ inv(R))I
)
6= ∅ then add u ∈ (≥ q′′3∗ inv(R))I \(≥ q′′2∗ inv(R))I ,

for some q′′ (recall that, by Lemma 6.4, we assume that q, q′ and q′′ do not exceed qK).
When neither rule is applicable to Dm, stop and set D = Dm. Clearly, |D| ≤ |obA|+ 2|roleK|.

For each u ∈ D, let

ρ2Ru = max
{
q < qK | u ∈ (≥ q2∗ R)I

}
,

ρ3Ru =

{
ω, if u ∈ (≥ qK3∗ R)I ,

max
{
q < qK | u ∈ (≥ q3∗ R)I

}
, otherwise.

We now choose time instants to be included in the runs R. Let Z extend ZA with the following:

(Z0) for any u ∈ D and 2∗ C ∈ Σ such that u /∈ (2∗ C)I , we add some n ∈ Z with u /∈ CI(n);

7We assume that ω − n = ω, for any natural number n.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:38 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

(Z1) for any u ∈ D and R ∈ roleK such that ρ2Ru < ρ3Ru , we add
– some n0 ∈ Z with u ∈ (≥ (ρ2Ru + 1)R)I(n0) and
– if additionally ρ3Ru < ω, some n1 ∈ Z with u /∈ (≥ ρ3Ru R)I(n1);

(Z2) for any a, b ∈ obA and R ∈ roleK such that (aI , bI) ∈ (3∗ R)I , we add
– some n0 ∈ Z with (aI , bI) ∈ RI(n0) and
– if (aI , bI) /∈ (2∗ R)I , some n1 ∈ Z with (aI , bI) /∈ RI(n1);

(Z3) for any a ∈ obA and R ∈ roleK such that ρ2RaI − |I
2R
a | < ρ3RaI − |I

3R
a |, we add

– some n0 ∈ Z with aI ∈ (≥ (q0 + 1)R)I(n0), for q0 = ρ2RaI + (|IR,n0
a | − |I2Ra |), and

– if ρ3RaI < ω, some n1 ∈ Z with aI /∈ (≥ q1R)I(n1), for q1 = ρ3RaI − (|I3Ra | − |IR,n1
a |),

where IR,ka = {b ∈ obA | (aI , bI) ∈ RI(k)} and I2Ra and I3Ra are defined similarly.

Clearly, |Z0| ≤ |D| · |K|, |Z1| ≤ 2|D| · |roleK|, |Z2| ≤ 2|obA|2 · |roleK| and |Z3| ≤ 2 · |obA| · |roleK|.
Thus, |Z| = O(|K|3). The time instants in Z0, Z1 and Z2 exist because I |= K. We now show
that n0 required in Z3 also exists. Suppose, on the contrary, that aI /∈ (≥ (q0 + 1)R)I(n), with
q0 as above, for all n ∈ Z. Then aI has at most (ρ2RaI + (|IR,na | − |I2Ra |))-many R-successors,
whence the number of non-ABox R-successors of aI does not exceed ρ2RaI − |I

2R
a |. So, at all

instants n ∈ Z, every R-successor of aI is either in obA or is in fact a 2∗ R-successor, contrary to
ρ2RaI −|I

2R
a | < ρ3RaI −|I

3R
a |. Using a similar argument, one can show that n1 required in Z3 exists

as well. Having fixed Z, we define a consistent Z-extension E of A by taking

E = A ∪ { ©kS(a, b) | (aI , bI) ∈ SI(k) and k ∈ Z }.

Let Q be the set comprising QT , QA and, for any u ∈ D and R ∈ roleK, the integers from

ρ2Ru , ρ3Ru and max
{
q < qK | u ∈ (≥ q R)I(k)

}
, for k ∈ Z.

By definition, maxQ = qK− 1 and |Q| ≤ |QT |+ |QA|+ |D| · |roleK| · (2 + |Z|). Let R be the set
of (Z,Σ)-runs ru, for u ∈ D, defined by taking, for each k ∈ Z,

– ≥ ωR ∈ ru(k) iff u ∈ (≥ qKR)I(k), and ≥ ω3∗ R ∈ ru(k) iff u ∈ (≥ qK3∗ R)I ,
– C ∈ ru(k) iff u ∈ CI(k), for all other concepts C ∈ Σ.

Since I |= K and I is as in Lemma 6.4, each ru(k) is a Σ-type. Each ru ∈ R is a coherent and
saturated (Z,Σ)-run: (r1) holds because I |= K; (r3) and (r2) are due to Z0 ⊆ Z and Z1 ⊆ Z,
respectively. Since I |= E , each run raI is a-faithful for E . Indeed, (r4) is due to ZA ⊆ Z. To
show (r5) and (r6), observe that, by definition, |ER,ka | = |IR,ka | and, since Z2 ⊆ Z, we also have
|E2Ra | = |I2Ra | and |E3Ra | = |I3Ra |; moreover, %2RraI , %

R,k
raI

, %3RraI ∈ Q̂ and, for each q < qK, we have
aI ∈ (≥ q R)I(k) iff %R,kraI

≥ q (and similarly for 2∗ R and 3∗ R). Then (r5) follows from the choice
of E and (r6) from Z3 ⊆ Z. We claim that Q = (Q,Z,R, E) is a quasimodel for K: (Q1) holds by
definition and (Q2)–(Q4) follow from the choice of D. Finally, as |E| ≤ |A|+ |Z| · |obA|2 · |roleK|
and |R| ≤ |obA|+ 2|roleK|, the quasimodel is of polynomial size.

(⇐) Let Q = (Q,Z,R, E) be a quasimodel for K. We construct an interpretation I satisfying K,
which is based on some domain ∆I that will be defined inductively as the union

∆I =
⋃

m≥0
∆m, where ∆m ⊆ ∆m+1, for all m ≥ 0.

Each set ∆m+1 (m ≥ 0) is constructed by adding to ∆m new domain elements that are copied from
the runs in R; similarly to the proof of Theorem 4.1 in Appendix A, the function cp : ∆I → R
keeps track of this process. In contrast to the proof of Theorem 4.1, however, the runs are defined
on a finite set, Z, and so we need to multiply (and rearrange) the time instants of Z when creating
elements of ∆I from runs in R. To this end, for each u ∈ ∆I , we define a function νu : Z → Z
that maps each time instant n ∈ Z of u ∈ ∆I to its ‘origin’ νu(n) ∈ Z on the run cp(u). Since the

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:39

constructed interpretation I may contain infinite sequences of domain elements related by roles, we
will need to ensure that each Σ-type of the run appears infinitely often along Z (note, however, that
the actual order of time instants is important only for ZA, the instants of the ABox).

The interpretation of role names in I is constructed inductively along with the construction of the
domain: SI(n) =

⋃
m≥0 S

n,m, where Sn,m ⊆ ∆m ×∆m, for m ≥ 0. Given m ≥ 0 and u ∈ ∆m,
we define the actual S-rank at moment n ∈ Z and the actual 2∗ S- and 3∗ S-ranks on step m:

τS,nu,m =]{u′ ∈ ∆m | (u, u′) ∈ Sn,m},
τ2Su,m =]{u′ ∈ ∆m | (u, u′) ∈ Sk,m, for all k ∈ Z},
τ3Su,m =]{u′ ∈ ∆m | (u, u′) ∈ Sk,m, for some k ∈ Z}.

The actual S−-, 2∗ S−- and 3∗ S−-ranks are defined similarly, with (u, u′) replaced by (u′, u). Let

δ2Ru,m = %2Rcp(u) − τ
2R
u,m, δR,nu,m = %R,νu(n)

cp(u) − τR,nu,m and δ3Ru,m = %3Rcp(u) − τ
3R
u,m.

The inductive construction of the domain and sets Sn,m will ensure that, for each m ≥ 0, the
following holds for all u ∈ ∆m \∆m−1 (for convenience, we assume ∆−1 = ∅):

(fn) τ3Ru,m < ω, for all R ∈ roleK;
(rn) 0 ≤ δ2Ru,m ≤ δR,nu,m ≤ δ3Ru,m, for all R ∈ roleK and all n ∈ Z;
(df) for all R ∈ roleK, if δ2Ru,m < δ3Ru,m then

– δ2Ru,m < δR,nu,m, for infinitely many n ∈ Z, and
– if additionally δ3Ru,m < ω, then δR,nu,m < δ3Ru,m, for infinitely many n ∈ Z.

Note that, by (fn), δ3Ru,m and the δR,nu,m are well-defined and δ3Ru,m = ω is just in case %3Rcp(u) = ω.
For the basis of induction (m = 0), set ∆0 = obA and aI = a, for each a ∈ obA. By (Q2), for

each a ∈ ∆0, there is a run ra ∈ R that is a-faithful for E . So, set cp(a) = ra and take νa = ν,
for some fixed function ν : Z → Z such that ν(k) = k and ν−1(k) is infinite, for each k ∈ Z. For
every role name S, let

Sn,0 =
{

(a, b) ∈ ∆0 ×∆0 | ©ν(n)S(a, b) ∈ E
}
, for n ∈ Z. (68)

By definition, τ2Ra,0 = |E2Ra |, τ
R,n
a,0 = |ER,ν(n)

a |, for all n ∈ Z, and τ3Ra,0 = |E3Ra |. For each a ∈ ∆0,
(fn) is by construction, (rn) is immediate from (r5) and (df) follows from (r6) and the fact that
ν−1(k) is infinite, for each k ∈ Z.

Assuming that ∆m and the Sn,m have been defined and (fn), (rn) and (df) hold for some m ≥ 0,
we construct ∆m+1 and the Sn,m+1 and show that the properties also hold for m + 1. By (rn),
for all u ∈ ∆m and R ∈ roleK, we have δ2Ru,m ≥ 0, δR,nu,m ≥ 0, for all n ∈ Z, and δ3Ru,m ≥ 0. If
these inequalities are actually equalities then we are done. However, in general this is not the case
as there may be ‘defective’ elements whose actual rank is smaller than the required rank. Consider
the following four sets of defects in Sn,m, for R = S and R = S−:

Λm2R =
{
u ∈ ∆m \∆m−1 | 0 < δ2Ru,m

}
and Λm3R =

{
u ∈ ∆m \∆m−1 | δ2Ru,m < δ3Ru,m

}
.

The purpose of Λm2R is to identify elements u ∈ ∆m \∆m−1 that should have %2Rcp(u)-many distinct
2∗ R-arrows (according to Q), but some arrows are still missing (only τ2Ru,m arrows exist in ∆m).
The purpose of Λm3R is to identify elements u that should have %3Rcp(u)-many distinct 3∗ R-arrows
(according to Q), but some arrows are still missing—only τ3Ru,m arrows exist in ∆m and τ2Ru,m of
those are in fact 2∗ R-arrows. Although 2∗ R-arrows are also 3∗ R-arrows, their defects are repaired
using a separate rule; and defects of R-arrows are dealt with as part of repairing defects of 3∗ R-
arrows. The following rules extend ∆m to ∆m+1 and each Sn,m to Sn,m+1:

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:40 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

(Λm2S) If δ2Su,m > 0 then %2Scp(u) ≥ 1. By (Q3), there is r′ ∈ R such that %2S
−

r′ ≥ 1. We add
q = δ2Su,m copies v1, . . . , vq of the run r′ to ∆m+1 and set cp(vi) = r′, add (u, vi) to Sn,m+1,
for all n ∈ Z, and let νvi : Z→ Z be such that ν−1

vi (k) is infinite, for each k ∈ Z.

(Λm3S) Let K be
{
i | 0 < i ≤ δ3Su,m − δ2Su,m

}
if δ3Su,m < ω and

{
i | 0 < i ≤ qK + 1

}
otherwise.

By assumption, K 6= ∅. We attach |K| fresh 3∗ S-successors to u so that the required 2∗ S-, S-
and 3∗ S-ranks coincide with the respective actual ranks at step m+ 1. By (rn) and (df), there
exists a function γ : Z→ 2K such that, for each i ∈ K, there are infinitely many n0 ∈ Z with
i /∈ γ(n0) and infinitely many n1 ∈ Z with i ∈ γ(n1), and for all n ∈ Z,

|γ(n)| =
{
δS,nu,m − δ2Su,m, if δS,nu,m < ω,

qK, otherwise.

By assumption, we have %2Rcp(u) − τ2Ru,m < %3Rcp(u) − τ3Ru,m; by definition, τ2Ru,m ≤ τ3Ru,m and,
by (fn), τ3Ru,m < ω, whence %2Scp(u) < %3Scp(u). Therefore, by (Q4), there exists r′ ∈ R with

%2S
−

r′ < %3S
−

r′ . We add |K| fresh copies v1, . . . , v|K| of r′ to ∆m+1 and, for each i ∈ K, set
cp(vi) = r′ and, for every n ∈ Z, add (u, vi) to Sn,m+1 iff i ∈ γ(n). Let

Z2S−=
{
k ∈ Z | %2S

−

r′ = %S
−, k

r′
}
, Z3S−=

{{
k ∈ Z | %S−, kr′ = %3S

−

r′

}
, if %3S

−

r′ < ω,

∅, otherwise.

For each vi, we take a function νvi : Z→ Z such that each ν−1
vi (k) is infinite, for k ∈ Z, and

– if k ∈ Z2S− then i /∈ γ(n), for each n ∈ ν−1
vi (k);

– if k ∈ Z \ (Z2S− ∪ Z3S−) then i ∈ γ(n) for infinitely many n ∈ ν−1
vi (k) and i /∈ γ(n)

for infinitely many n ∈ ν−1
vi (k);

– if k ∈ Z3S− then i ∈ γ(n), for each n ∈ ν−1
vi (k)

(see Fig. 11). Intuitively, if k is such that not every S-predecessor is required to be a 2∗ S-
predecessor then there should be infinitely many copies of k with (u, vi) ∈ Sn,m+1; symmet-
rically, if k is such that not every 3∗ S-predecessor is required to be an S-predecessor, there
should be infinitely many copies of k with (u, vi) /∈ Sn,m+1.

(Λm
2S−) and (Λm

3S−) are the mirror images of (Λm2S) and (Λm3S), respectively.

By construction, the rules guarantee that, for any m ≥ 0 and u ∈ ∆m,

0 = δ2Ru,m+1 = δR,nu,m+1 = δ3Ru,m+1, for all R ∈ roleK and all n ∈ Z. (69)

We now show that (fn), (rn) and (df) hold for each v ∈ ∆m+1 \∆m. Indeed, (fn) holds because
τ3Rv,m+1 ≤ 1. In the case of (Λm2S), property (rn) follows from

1 = τ2S
−

v,m+1 = τS
−, n

v,m+1 = τ3S
−

v,m+1 ≤ %2S
−

cp(v) ≤ %
S−, νv(n)
cp(v) ≤ %3S

−

cp(v), (70)

0 = τ2Rv,m+1 = τR,nv,m+1 = τ3Rv,m+1 ≤ %2Rcp(v) ≤ %
R, νv(n)
cp(v) ≤ %3Rcp(v), for all R 6= S−. (71)

Then (df) is by the definition of νv . The case of (Λm
2S−) is similar. For the case of (Λm3S), we observe

that, for each R 6= S−, we have (71), and so (rn) and (df) follow as above. Let us consider S−.
By (r2), bothZ\Z3S− andZ\Z2S− are non-empty. It follows that τ2S

−

v,m+1 = 0 and τ3S
−

v,m+1 = 1. By
definition, we also have (rn). To show (df), suppose %2S

−

cp(v) < %3S
−

cp(v)−1. Clearly, Z2S−∩Z3S− = ∅.

If there is k ∈ Z3S− then %S
−, k

cp(v) = %3S
−

cp(v) and τS
−, n

v,m+1 = 1, for all (infinitely many) n ∈ ν−1
v (k),

whence the first item of (df) holds; otherwise, there is k ∈ Z \ (Z2S− ∪ Z3S−) and therefore,

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:41

k0 k1 k2 k3 k4 k5

2 2 3 2 3 2%2Scp(u)= 1, %3Scp(u)= 3

v2

v3

v1 1 1 1 1 1 1

0 011 1 2 2

0 11 1 12

%2S
−

r′′ = 0, %3S
−

r′′ = 2 210

Z2S− Z3S−

%2S
−

r′ = 1, %3S
−

r′ = 1 111

Fig. 11. Repairing defects of u: the required S-rank, %S,ncp(u), of u is specified inside the circular nodes. Rule (Λm2S) uses
run r′ to create v1; (Λm3S) uses copies of run r′′ to create v2 and v3. The required S−-rank, %S

−, n
cp(vi)

, of the created points
is specified inside the square nodes. Note that, at instant k3, the element v3 requires an S-predecessor different from u.

%2S
−

cp(v) < %S
−, k

cp(v) and τS
−, n

v,m+1 = 0, for infinitely many n ∈ ν−1
v (k), whence the first item of (df)

holds. The second item of (df) is obtained by a symmetric argument.
The definition of I is completed by taking AI(n) =

{
u ∈ ∆I | A ∈ r(νu(n)), r = cp(u)

}
, for

each concept name A. Observe that I |= E because each νa, a ∈ obA, coincides with the fixed ν.
Next, we show by induction on the construction of concepts C in K that

C ∈ r(νu(n)) with r = cp(u) iff u ∈ CI(n), for all n ∈ Z and u ∈ ∆I .

The basis of induction is by definition for C = ⊥ and C = Ai; for C = ≥ q R it follows from (69)
and the fact that arrows to u ∈ ∆m \ ∆m−1 can be added only at steps m and m + 1 as part of
the defect repair process. The induction step for C = ¬C1 and C = C1 u C2 follows from the
induction hypothesis by (t1) and (t2), respectively. The induction step for C = 2∗ C1 follows from
the induction hypothesis by (t1), (t3), (r1) and (r3). Thus, by (Q1), I |= T .

It remains to show I |= A. By the definition of E and I, if ©kA(a) ∈ A then I |= ©kA(a) and
if ©k¬A(a) ∈ A then I |= ©k¬A(a). If ©kS(a, b) ∈ A then, by (68), (aI , bI) ∈ Sk,0, whence
I |= ©kS(a, b). If ©k¬S(a, b) ∈ A then (aI , bI) /∈ E , whence (aI , bI) /∈ Sk,0 by (68), and so
I |= ©k¬S(a, b) as no new arrows can be added between ABox individuals.

We are now in a position to establish the NP membership of the satisfiability problem for
T ∗UDL-LiteNbool KBs. To check whether a KB K = (T ,A) is satisfiable, it is enough to guess a
structure Q = (Q,Z,R, E) consisting of a set R of runs and an extension E of the ABoxA, both of
which are of polynomial size in |K|, and check that Q is a quasimodel for K. NP-hardness follows
from the complexity of DL-Litebool. This completes the proof of Theorem 6.3.

7. CONCLUSIONS
Logics interpreted over two- (or more) dimensional Cartesian products are notorious for their bad
computational properties, which is well-documented in the modal logic literature (see [Gabbay et al.
2003; Kurucz 2007] and references therein). For example, satisfiability of bimodal formulas over
Cartesian products of transitive Kripke frames is undecidable [Gabelaia et al. 2005]; by dropping
the requirement of transitivity we gain decidability, but not elementary [Göller et al. 2012]; if one
dimension is a linear-time line then the complexity can only become worse [Gabbay et al. 2003].

The principal achievement of this article is the construction of temporal description logics that
(i) are interpreted over 2D Cartesian products, (ii) are capable of capturing standard temporal
conceptual modelling constraints, and (iii) in many cases are of reasonable computational com-
plexity. Although TDLs T ∗FPDL-LiteNbool and T ∗XDL-LiteNbool, capturing lifespan cardinalities to-

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:42 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

gether with qualitative or quantitative evolution, turned out to be undecidable (as well as TDLs
with unrestricted role inclusions), the complexity of the remaining ten logics ranges between
NLOGSPACE and PSPACE. We established these positive results by reductions to various clausal
fragments of propositional temporal logic (the complexity analysis of which could be of interest on
its own). We have conducted initial experiments, using two off-the-shelf temporal reasoning tools,
NuSmv [Cimatti et al. 2002] and TeMP [Hustadt et al. 2004], which showed feasibility of automated
reasoning over TCMs with both timestamping and evolution constraints but without sub-relations
(TFPXDL-LiteNbool). Many efficiency issues are yet to be resolved but the first results are encourag-
ing.

The most interesting TDLs not considered in this article are probably T ∗FPXDL-LiteNcore and
T ∗FPXDL-LiteNkrom. We conjecture that both of them are decidable. We also believe that the former
can be used as a variant of temporal RDFS (cf. [Gutiérrez et al. 2005]).

Although the results in this article establish tight complexity bounds for TDLs, they can only
be used to obtain upper complexity bounds for the corresponding fragments of TCMs; the lower
bounds are mostly left for future work [Artale et al. 2010].

The original DL-Lite family [Calvanese et al. 2007] was designed with the primary aim of
ontology-based data access (OBDA) by means of first-order query rewriting. In fact, OBDA has
already reached a mature stage and become a prominent direction in the development of the next
generation of information systems and the Semantic Web; see [Polleres et al. 2013; Kontchakov
et al. 2013] for recent surveys and references therein. In particular, W3C has introduced a special
profile, OWL 2 QL, of the Web Ontology Language OWL 2 that is suitable for OBDA and based on
the DL-Lite family. An interesting problem, both theoretically and practically, is to investigate how
far this approach can be developed in the temporal case and what temporal ontology languages can
support first-order query rewriting; see recent [Gutiérrez-Basulto and Klarman 2012; Motik 2012;
Artale et al. 2013; Baader et al. 2013; Borgwardt et al. 2013] for some initial results.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES
APOSTOL, T. 1976. Introduction to Analytic Number Theory. Springer.
ARTALE, A., CALVANESE, D., KONTCHAKOV, R., RYZHIKOV, V., AND ZAKHARYASCHEV, M. 2007a. Reasoning over

extended ER models. In Proc. of the 26th Int. Conf. on Conceptual Modeling (ER’07). Lecture Notes in Computer
Science Series, vol. 4801. Springer, 277–292.

ARTALE, A., CALVANESE, D., KONTCHAKOV, R., AND ZAKHARYASCHEV, M. 2007b. DL-Lite in the light of first-order
logic. In Proc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI 2007). AAAI Press, 361–366.

ARTALE, A., CALVANESE, D., KONTCHAKOV, R., AND ZAKHARYASCHEV, M. 2009a. The DL-Lite family and relations.
J. Artif. Intell. Res. 36, 1–69.

ARTALE, A. AND FRANCONI, E. 1998. A temporal description logic for reasoning about actions and plans. J. Artif. Intell.
Res. 9, 463–506.

ARTALE, A. AND FRANCONI, E. 1999. Temporal ER modeling with description logics. In Proc. of the 18th Int. Conf. on
Conceptual Modeling (ER’99). Lecture Notes in Computer Science Series, vol. 1728. Springer, 81–95.

ARTALE, A. AND FRANCONI, E. 2001. A survey of temporal extensions of description logics. Annals Math. and Artif.
Intell. 30, 1–4, 171–210.

ARTALE, A. AND FRANCONI, E. 2005. Temporal description logics. In Handbook of Temporal Reasoning in Artificial
Intelligence. Foundations of Artificial Intelligence. Elsevier, 375–388.

ARTALE, A. AND FRANCONI, E. 2009. Foundations of temporal conceptual data models. In Conceptual Modeling: Foun-
dations and Applications. Lecture Notes in Computer Science Series, vol. 5600. Springer, 10–35.

ARTALE, A., FRANCONI, E., AND MANDREOLI, F. 2003. Description logics for modelling dynamic information. In Logics
for Emerging Applications of Databases. Springer, 239–275.

ARTALE, A., FRANCONI, E., WOLTER, F., AND ZAKHARYASCHEV, M. 2002. A temporal description logic for reasoning
about conceptual schemas and queries. In Proc. of the 8th Joint European Conf. on Logics in Artificial Intelligence
(JELIA-02). Lecture Notes in Artificial Intelligence Series, vol. 2424. Springer, 98–110.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:43

ARTALE, A., KONTCHAKOV, R., LUTZ, C., WOLTER, F., AND ZAKHARYASCHEV, M. 2007c. Temporalising tractable
description logics. In Proc. of the 14th Int. Symposium on Temporal Representation and Reasoning (TIME07). IEEE
Computer Society, 11–22.

ARTALE, A., KONTCHAKOV, R., RYZHIKOV, V., AND ZAKHARYASCHEV, M. 2009b. DL-Lite with temporalised concepts,
rigid axioms and roles. In Proc. of the 7th Int. Symposium on Frontiers of Combining Systems (FroCoS-09). Lecture
Notes in Computer Science Series, vol. 5749. Springer, 133–148.

ARTALE, A., KONTCHAKOV, R., RYZHIKOV, V., AND ZAKHARYASCHEV, M. 2010. Complexity of reasoning over temporal
data models. In Proc. of the 29th Int. Conf. on Conceptual Modeling (ER’10). Lecture Notes in Computer Science Series,
vol. 4801. Springer, 277–292.

ARTALE, A., KONTCHAKOV, R., WOLTER, F., AND ZAKHARYASCHEV, M. 2013. Temporal description logic for ontology-
based data access. In Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI 2013). AAAI Press, 711–717.

ARTALE, A., LUTZ, C., AND TOMAN, D. 2007d. A description logic of change. In Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI-07). 218–223.

ARTALE, A., PARENT, C., AND SPACCAPIETRA, S. 2007e. Evolving objects in temporal information systems. Annals Math.
and Artif. Intell. 50, 1–2, 5–38.

BAADER, F., BORGWARDT, S., AND LIPPMANN, M. 2013. Temporalizing ontology-based data access. In Proc. of the
24th Int. Conf. on Automated Deduction (CADE-24). Lecture Notes in Computer Science Series, vol. 7898. Springer,
330–344.

BAADER, F., CALVANESE, D., MCGUINNESS, D., NARDI, D., AND PATEL-SCHNEIDER, P. F., Eds. 2003. The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press. (2nd edition, 2007).

BAADER, F., GHILARDI, S., AND LUTZ, C. 2008. LTL over description logic axioms. In Proc. of the 11th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR 2008). AAAI Press, 684–694.

BAADER, F., GHILARDI, S., AND LUTZ, C. 2012. LTL over description logic axioms. ACM Trans. Computational
Logic 13, 3.

BAULAND, M., SCHNEIDER, T., SCHNOOR, H., SCHNOOR, I., AND VOLLMER, H. 2009. The complexity of generalized
satisfiability for linear temporal logic. Logical Methods in Computer Science 5, 1.

BERARDI, D., CALVANESE, D., AND DE GIACOMO, G. 2005. Reasoning on UML class diagrams. Artif. Intell. 168, 1–2,
70–118.

BETTINI, C. 1997. Time dependent concepts: Representation and reasoning using temporal description logics. Data &
Knowledge Eng. 22, 1, 1–38.

BÖRGER, E., GRÄDEL, E., AND GUREVICH, Y. 1997. The Classical Decision Problem. Perspectives in Mathematical
Logic. Springer.

BORGIDA, A. AND BRACHMAN, R. J. 2003. Conceptual modeling with description logics. See Baader et al. [2003], Chap-
ter 10, 349–372. (2nd edition, 2007).

BORGWARDT, S., LIPPMANN, M., AND THOST, V. 2013. Temporal query answering in the description logic DL-Lite. In
Proc. of the 9th Int. Symposium on Frontiers of Combining Systems (FroCoS 2013). Lecture Notes in Computer Science
Series, vol. 8152. Springer, 165–180.

CALVANESE, D., DE GIACOMO, G., LEMBO, D., LENZERINI, M., AND ROSATI, R. 2005. DL-Lite: Tractable description
logics for ontologies. In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005). AAAI Press, 602–607.

CALVANESE, D., DE GIACOMO, G., LEMBO, D., LENZERINI, M., AND ROSATI, R. 2007. Tractable reasoning and efficient
query answering in description logics: The DL-Lite family. J. Aut. Reasoning 39, 3, 385–429.

CALVANESE, D., DE GIACOMO, G., LENZERINI, M., AND NARDI, D. 2001. Reasoning in expressive description logics.
In Handbook of Automated Reasoning. Vol. II. Elsevier Science Publishers, 1581–1634.

CALVANESE, D., LENZERINI, M., AND NARDI, D. 1999. Unifying class-based representation formalisms. J. Artif. Intell.
Res. 11, 199–240.

CHEN, C.-C. AND LIN, I.-P. 1993. The computational complexity of satisfiability of temporal Horn formulas in proposi-
tional linear-time temporal logic. Information Processing Letters 45, 3, 131–136.

CHEN, P. P.-S. 1976. The Entity-Relationship model—toward a unified view of data. ACM Trans. Database Syst. 1, 9–36.
CHOMICKI, J., TOMAN, D., AND BÖHLEN, M. H. 2001. Querying ATSQL databases with temporal logic. ACM Trans.

Database Syst. 26, 2, 145–178.
CHROBAK, M. 1986. Finite automata and unary languages. Theor. Comput. Sci. 47, 2, 149–158.
CIMATTI, A., CLARKE, E. M., GIUNCHIGLIA, E., GIUNCHIGLIA, F., PISTORE, M., ROVERI, M., SEBASTIANI, R., AND

TACCHELLA, A. 2002. NuSMV 2: An opensource tool for symbolic model checking. In Proc. of the 14th Int. Conf. on
Computer Aided Verification (CAV’02). Lecture Notes in Computer Science Series, vol. 2404. Springer, 359–364.

COMBI, C., DEGANI, S., AND JENSEN, C. S. 2008. Capturing temporal constraints in temporal ER models. In Proc. of
the 27th Int. Conf. on Conceptual Modeling (ER’08). Lecture Notes in Computer Science Series, vol. 5231. Springer,
397–411.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

25:44 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

DEGTYAREV, A., FISHER, M., AND KONEV, B. 2006. Monodic temporal resolution. ACM Trans. Computational Logic 7, 1,
108–150.

DEMRI, S. AND SCHNOEBELEN, P. 2002. The complexity of propositional linear temporal logics in simple cases. Informa-
tion and Compuation 174, 1, 84–103.

DIXON, C., FISHER, M., AND KONEV, B. 2007. Tractable temporal reasoning. In Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI 07). 318–323.

DOLBY, J., FOKOUE, A., KALYANPUR, A., MA, L., SCHONBERG, E., SRINIVAS, K., AND SUN, X. 2008. Scalable
grounded conjunctive query evaluation over large and expressive knowledge bases. In Proc. of the 7th Int. Semantic
Web Conf. (ISWC 2008). Lecture Notes in Computer Science Series, vol. 5318. Springer, 403–418.

ELMASRI, R. A. AND NAVATHE, S. B. 2007. Fundamentals of Database Systems 5th Ed. Addison Wesley Publ. Co.
FINGER, M. AND MCBRIEN, P. 2000. Temporal conceptual-level databases. In Temporal Logics – Mathematical Founda-

tions and Computational Aspects. Oxford University Press, 409–435.
FISHER, M. 1991. A resolution method for temporal logic. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence

(IJCAI 91). Morgan Kaufmann, 99–104.
FISHER, M., DIXON, C., AND PEIM, M. 2001. Clausal temporal resolution. ACM Trans. Computational Logic 2, 1, 12–56.
GABBAY, D., FINGER, M., AND REYNOLDS, M. 2000. Temporal Logic: Mathematical Foundations and Computational

Aspects. Vol. 2. Oxford University Press.
GABBAY, D., HODKINSON, I., AND REYNOLDS, M. 1994. Temporal Logic: Mathematical Foundations and Computational

Aspects. Vol. 1. Oxford University Press.
GABBAY, D., KURUCZ, A., WOLTER, F., AND ZAKHARYASCHEV, M. 2003. Many-dimensional modal logics: theory and

applications. Studies in Logic. Elsevier.
GABELAIA, D., KURUCZ, A., WOLTER, F., AND ZAKHARYASCHEV, M. 2005. Products of ’transitive’ modal logics. Jour-

nal of Symbolic Logic 70, 3, 993–1021.
GÖLLER, S., JUNG, J. C., AND LOHREY, M. 2012. The complexity of decomposing modal and first-order theories. In Proc.

of the 27th Annual IEEE Symposium on Logic in Computer Science (LICS 2012). IEEE, 325–334.
GREGERSEN, H. AND JENSEN, J. 1998. Conceptual modeling of time-varying information. Tech. Rep. TimeCenter TR-35,

Aalborg University, Denmark.
GREGERSEN, H. AND JENSEN, J. 1999. Temporal Entity-Relationship models—A survey. IEEE Trans. Knowledge and

Data Eng. 11, 3, 464–497.
GUENSEL, C. 2005. A tableaux-based reasoner for temporalised description logics. Ph.D. thesis, University of Liverpool.
GUTIÉRREZ, C., HURTADO, C. A., AND VAISMAN, A. A. 2005. Temporal RDF. In Proc. of the 2nd European Semantic

Web Conf. (ESWC 2005). Lecture Notes in Computer Science Series, vol. 3532. Springer, 93–107.
GUTIÉRREZ-BASULTO, V. AND KLARMAN, S. 2012. Towards a unifying approach to representing and querying temporal

data in description logics. In Proc. of the 6th Int. Conf. on Web Reasoning and Rule Systems (RR 2012). Lecture Notes
in Computer Science Series, vol. 7497. Springer, 90–105.

HALL, G. AND GUPTA, R. 1991. Modeling transition. In Proc. of the 7th Int. Conf. on Data Engineering (ICDE’91). IEEE
Computer Society, 540–549.

HALPERN, J. Y. AND REIF, J. H. 1981. The propositional dynamic logic of deterministic, well-structured programs (ex-
tended abstract). In Proc. of the 22nd Annual Symposium on Foundations of Computer Science (FOCS’81). IEEE Com-
puter Society, 322–334.

HALPERN, J. Y. AND SHOHAM, Y. 1991. A propositional modal logic of time intervals. J. ACM 38, 4, 935–962.
HEYMANS, S., MA, L., ANICIC, D., MA, Z., STEINMETZ, N., PAN, Y., MEI, J., FOKOUE, A., KALYANPUR, A., KER-

SHENBAUM, A., SCHONBERG, E., SRINIVAS, K., FEIER, C., HENCH, G., WETZSTEIN, B., AND KELLER, U. 2008.
Ontology reasoning with large data repositories. In Ontology Management, Semantic Web, Semantic Web Services, and
Business Applications. Vol. 7. Springer, 89–128.

HODKINSON, I., WOLTER, F., AND ZAKHARYASCHEV, M. 2000. Decidable fragments of first-order temporal logics. Annals
of Pure and Applied Logic 106, 85–134.

HUSTADT, U., KONEV, B., RIAZANOV, A., AND VORONKOV, A. 2004. TeMP: A temporal monodic prover. In Proc. of
the 2nd Int. Joint Conf. on Automated Reasoning (IJCAR 2004). Lecture Notes in Computer Science Series, vol. 3097.
Springer, 326–330.

JENSEN, C. S. AND SNODGRASS, R. T. 1999. Temporal data management. IEEE Trans. Knowledge and Data Eng. 111, 1,
36–44.

KONTCHAKOV, R., LUTZ, C., WOLTER, F., AND ZAKHARYASCHEV, M. 2004. Temporalising tableaux. Studia Log-
ica 76, 1, 91–134.

KONTCHAKOV, R., RODRIGUEZ-MURO, M., AND ZAKHARYASCHEV, M. 2013. Ontology-based data access with
databases: A short course. In Reasoning Web. The 9th Int. Summer School on Semantic Technologies for Intelligent
Data Access. Lecture Notes in Computer Science Series, vol. 8067. Springer, 194–229.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics 25:45

KURUCZ, A. 2007. Combining modal logics. In Handbook of Modal Logic, P. Blackburn, J. van Benthem, and F. Wolter,
Eds. Studies in Logic and Practical Reasoning Series, vol. 3. Elsevier, 869–924.

LICHTENSTEIN, O., PNUELI, A., AND ZUCK, L. D. 1985. The glory of the past. In Proc. of the Conf. on Logic of Programs.
Lecture Notes in Computer Science Series, vol. 193. Springer, 196–218.

LUDWIG, M. AND HUSTADT, U. 2010. Implementing a fair monodic temporal logic prover. AI Communications 23, 2–3,
69–96.

LUTZ, C., STURM, H., WOLTER, F., AND ZAKHARYASCHEV, M. 2002. A tableau decision algorithm for modalized ALC
with constant domains. Studia Logica 72, 2, 199–232.

LUTZ, C., WOLTER, F., AND ZAKHARYASCHEV, M. 2008. Temporal description logics: A survey. In Proc. of the 15th Int.
Symposium on Temporal Representation and Reasoning (TIME 08). IEEE Computer Society, 3–14.

MARKEY, N. 2004. Past is for free: on the complexity of verifying linear temporal properties with past. Acta Informat-
ica 40, 6–7, 431–458.

MCBRIEN, P., SELTVEIT, A., AND WANGLER, B. 1992. An Entity-Relationship model extended to describe historical
information. In Proc. of the Int. Conf. on Information Systems and Management of Data (CISMOD’92). Bangalore,
India, 244–260.

MENDELZON, A. O., MILO, T., AND WALLER, E. 1994. Object migration. In Proc. of the 13th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS 94). ACM, 232–242.

MOTIK, B. 2012. Representing and querying validity time in RDF and OWL: A logic-based approach. J. Web Semantics 12,
3–21.

ONO, H. AND NAKAMURA, A. 1980. On the size of refutation Kripke models for some linear modal and tense logics. Studia
Logica 39, 325–333.

PAPADIMITRIOU, C. M. 1994. Computational complexity. Addison-Wesley, Reading, Massachusetts.
PARENT, C., SPACCAPIETRA, S., AND ZIMANYI, E. 2006. Conceptual Modeling for Traditional and Spatio-Temporal

Applications—The MADS Approach. Springer.
PLAISTED, D. 1986. A decision procedure for combinations of propositional temporal logic and other specialized theories.

J. Aut. Reasoning 2, 171–190.
POGGI, A., LEMBO, D., CALVANESE, D., DE GIACOMO, G., LENZERINI, M., AND ROSATI, R. 2008. Linking data to

ontologies. J. Data Semantics X, 133–173.
POLLERES, A., HOGAN, A., DELBRU, R., AND UMBRICH, J. 2013. RDFS and OWL reasoning for Linked Data. In Reason-

ing Web. The 9th Int. Summer School on Semantic Technologies for Intelligent Data Access. Lecture Notes in Computer
Science Series, vol. 8067. Springer, 91–149.

RABINOVICH, A. 2010. Temporal logics over linear time domains are in PSPACE. In Proc. of the 4th Int. Workshop on
Reachability Problems. Lecture Notes in Computer Science Series, vol. 6227. Springer, 29–50.

REYNOLDS, M. 2010. The complexity of decision problems for linear temporal logics. Journal of Studies in Logic 3, 1,
19–50.

SCHILD, K. 1993. Combining terminological logics with tense logic. In Proc. of the 6th Portuguese Conf. on Artificial
Intelligence (EPIA’93). Springer, 105–120.

SCHMIEDEL, A. 1990. A temporal terminological logic. In Proc. of the 8th National Conf. on Artificial Intelligence
(AAAI’90). AAAI Press / The MIT Press, 640–645.

SISTLA, A. P. AND CLARKE, E. M. 1982. The complexity of propositional linear temporal logics. In Proc. of the 14th
Annual ACM Symposium on Theory of Computing (STOC’82). ACM, 159–168.

STOCKMEYER, L. J. AND MEYER, A. R. 1973. Word problems requiring exponential time: Preliminary report. In Proc. of
the 5th Annual ACM Symposium on Theory of Computing (STOC’73). ACM, 1–9.

SU, J. 1997. Dynamic constraints and object migration. Theor. Comput. Sci. 184, 1-2, 195–236.
TAUZOVICH, B. 1991. Towards temporal extensions to the entity-relationship model. In Proc. of the 10th Int. Conf. on

Conceptual Modeling (ER’91). ER Institute, 163–179.
THEODOULIDIS, C., LOUCOPOULOS, P., AND WANGLER, B. 1991. A conceptual modelling formalism for temporal

database applications. Inf. Syst. 16, 3, 401–416.
TO, A. W. 2009. Unary finite automata vs. arithmetic progressions. Inf. Process. Lett. 109, 17, 1010–1014.
WOLTER, F. AND ZAKHARYASCHEV, M. 1999. Modal description logics: Modalizing roles. Fundamenta Informaticæ 39,

411–438.

Received September 2012; revised October 2013; accepted February 2014

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

Online Appendix to:
A Cookbook for Temporal Conceptual Data Modelling with
Description Logics

ALESSANDRO ARTALE, Free University of Bozen-Bolzano, Italy
ROMAN KONTCHAKOV, Birkbeck, University of London, UK
VLADISLAV RYZHIKOV, Free University of Bozen-Bolzano, Italy
MICHAEL ZAKHARYASCHEV, Birkbeck, University of London, UK

A. PROOF OF THEOREM 4.1
THEOREM 4.1. A TUSDL-LiteNbool KB K = (T ,A) is satisfiable iff the QT L1 sentence K† is

satisfiable.

PROOF. (⇐) Let M be a first-order temporal model with a countable domainD and M, 0 |= K†.
Without loss of generality we may assume that the aM, for a ∈ obA, are all distinct. We are going
to construct a TUSDL-LiteNbool interpretation I satisfyingK and based on some domain ∆I that will
be inductively defined as the union

∆I =
⋃

m≥0
∆m, where ∆0 =

{
aM | a ∈ obA

}
⊆ D and ∆m ⊆ ∆m+1, for m ≥ 0.

The interpretations of object names in I are given by their interpretations in M: aI = aM ∈ ∆0.
Each set ∆m+1, form ≥ 0, is constructed by adding to ∆m some new elements that are fresh copies
of certain elements from D \∆0. If such a new element u is a copy of u′ ∈ D \∆0 then we write
cp(u) = u′, while for u ∈ ∆0 we let cp(u) = u.

The interpretation AI(n) of each concept name A in I is defined by taking

AI(n) =
{
u ∈ ∆I |M, n |= A∗[cp(u)]

}
. (72)

The interpretation SI(n) of each role name S in I is constructed inductively as the union

SI(n) =
⋃

m≥0
Sn,m, where Sn,m ⊆ ∆m ×∆m, for all m ≥ 0.

We require the following two definitions to guide our construction. The required R-rank %R,nd of
d ∈ D at moment n is

%R,nd = max
(
{0} ∪ {q ∈ QT |M, n |= EqR[d]}

)
.

By (5), %R,nd is a function and if %R,nd = q then M, n |= Eq′R[d] for every q′ ∈ QT with q′ ≤ q,
and (M, n) |= ¬Eq′R[d] for every q′ ∈ QT with q′ > q. We also define the actual R-rank τR,nu,m of
u ∈ ∆I at moment n and step m by taking

τR,nu,m = max
(
{0} ∪ {q ∈ QT | (u, u1), . . . , (u, uq) ∈ Rn,m for distinct u1, . . . , uq ∈ ∆I}

)
,

where Rn,m is Sn,m if R = S and {(u′, u) | (u, u′) ∈ Sn,m} if R = S−, for a role name S.
For the basis of induction, for each role name S, we set

Sn,0 =
{

(aI , bI) ∈ ∆0 ×∆0 | S(a, b) ∈ ASn
}
, for n ∈ Z (73)

(note that S(a, b) ∈ ASn for all n ∈ Z if ©kS(a, b) ∈ A, for a rigid role name S). It follows from
the definition of A† that, for all R ∈ roleK and u ∈ ∆0,

τR,nu,0 ≤ %R,ncp(u). (74)

DOI:http://dx.doi.org/10.1145/2629565

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

App–2 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

Suppose that ∆m and the Sn,m have been defined for some m ≥ 0. If, for all roles R and u ∈ ∆m,
we had τR,nu,m = %R,ncp(u) then the interpretation of roles would have been constructed. However, in
general this is not the case because there may be some ‘defects’ in the sense that the actual rank
of some elements is smaller than the required rank. Consider the following two sets of defects in
Sn,m:

Λn,mR =
{
u ∈ ∆m \∆m−1 | τR,nu,m < %R,ncp(u)

}
, for R ∈ {S, S−}

(for convenience, we assume ∆−1 = ∅). The purpose of, say, Λn,mS is to identify those ‘defective’
elements u ∈ ∆m \∆m−1 from which precisely %S,ncp(u) distinct S-arrows should start (according to
M), but some arrows are still missing (only τS,nu,m arrows exist). To ‘repair’ these defects, we extend
∆m to ∆m+1 and Sn,m to Sn,m+1 according to the following rules:

(Λn,mS) Let u ∈ Λn,mS . Denote d = cp(u) and q = %S,ncp(u) − τS,nu,m. Then M, n |= Eq′S[d] for
some q′ ≥ q > 0. By (5), we have M, n |= E1S[d] and, by (7), there is d′ ∈ D such that
M, n |= E1S

−[d′]. In this case we take q fresh copies u′1, . . . , u
′
q of d′ (so cp(u′i) = d′), add

them to ∆m+1 and add the pairs (u, u′1), . . . , (u, u′q) to Sn,m+1. If S is rigid we add these
pairs to all Sk,m+1, for k ∈ Z.

(Λn,mS−) Let u ∈ Λn,mS− . Denote d = cp(u) and q = %S
−,n

cp(u) − τ
S−,n
u,m . Then M, n |= Eq′S

−[d] for
q′ ≥ q > 0. By (5), M, n |= E1S

−[d] and, by (7), there is d′ ∈ D with M, n |= E1S[d′].
In this case we take q fresh copies u′1, . . . , u

′
q of d′, add them to ∆m+1 and add the pairs

(u′1, u), . . . , (u′q, u) to Sn,m+1. If S is rigid we add these pairs to all Sk,m+1, for k ∈ Z.

Now we observe the following property of the construction: for all m0 ≥ 0 and u ∈ ∆m0
\∆m0−1,

τR,nu,m =


0, if m < m0,

q, if m = m0, for some q ≤ %R,ncp(u),

%R,ncp(u), if m > m0.

(75)

To prove this property, consider all possible cases. If m < m0 then u /∈ ∆m, i.e., it has not been
added to ∆m yet, and so τR,nu,m = 0. If m = m0 = 0 then τR,nu,m ≤ %R,ncp(u) by (74). If m = m0 > 0

then u was added at step m0 to repair a defect of some u′ ∈ ∆m0−1. This means that either
(u′, u) ∈ Sn,m0 and u′ ∈ Λn,m0−1

S , or (u, u′) ∈ Sn,m0 and u′ ∈ Λn,m0−1
S− , for a role name S.

Consider the first case. Since fresh witnesses u are picked up every time the rule (Λn,m0−1
S) is

applied and those witnesses satisfy M, n |= E1S
−[cp(u)], we obtain τS,nu,m0

= 0, τS
−,n

u,m0
= 1 and

%S
−,n

cp(u) ≥ 1. The second case is similar. Ifm = m0+1 then all defects of u are repaired at stepm0+1

by applying the rules (Λn,m0

S) and (Λn,m0

S−). Therefore, τR,nu,m0
= %R,ncp(u). If m > m0 + 1 then (75)

follows from the observation that no new arrows involving u can be added after step m0 + 1.
It follows that, for all R ∈ roleK, q ∈ QT , n ∈ Z and u ∈ ∆I ,

M, n |= EqR[cp(u)] iff u ∈ (≥ q R)I(n). (76)

Indeed, if M, n |= EqR[cp(u)] then, by definition, %R,ncp(u) ≥ q. Let u ∈ ∆m0 \ ∆m0−1. Then,

by (75), τR,nu,m = %R,ncp(u) ≥ q, for all m > m0. It follows from the definition of τR,nu,m and RI(n)

that u ∈ (≥ q R)I(n). Conversely, let u ∈ (≥ q R)I(n) and u ∈ ∆m0
\ ∆m0−1. Then, by (75),

we have q ≤ τR,nu,m = %R,ncp(u), for all m > m0. So, by the definition of %R,ncp(u) and (5), we obtain
M, n |= EqR[cp(u)].

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

A Cookbook for Temporal Conceptual Data Modelling with Description Logics App–3

Now we show by induction on the construction of concepts C in K that

M, n |= C∗[cp(u)] iff u ∈ CI(n), for all n ∈ Z and u ∈ ∆I .

The basis of induction is trivial for C = ⊥ and follows from (72) if C = Ai and (76) if C = ≥ q R.
The induction step for the Booleans (C = ¬C1 and C = C1 u C2) and the temporal operators
(C = C1 U C2 and C = C1 S C2) follows from the induction hypothesis. Thus, I |= T .

It only remains to show that I |= A. If ©nA(a) ∈ A then, by the definition of A† and (72),
I |= ©nA(a). If ©n¬A(a) ∈ A then, analogously, I |= ©n¬A(a). If ©nS(a, b) ∈ A then,
by (73), (aI , bI) ∈ Sn,0, whence, by the definition of SI(n), I |= ©nS(a, b). If ©n¬S(a, b) ∈ A
then, by (73), (aI , bI) /∈ Sn,0, and so, as no new arrows can be added between ABox individuals,
I |= ©n¬S(a, b).

(⇒) is straightforward.

B. PROOF OF THEOREM 4.5
THEOREM 4.5. The satisfiability problem for the core fragment of TUSDL-LiteNbool KBs is

PSPACE-complete.

PROOF. The proof is by reduction of the halting problem for Turing machines with a polyno-
mial tape. We recall that, given a deterministic Turing machine M = 〈Q,Γ,#,Σ, δ, q0, qf 〉 and a
polynomial s(n), we construct a TBox TM containing concept inclusions (8)–(13), which we list
here for the reader’s convenience:

Hiq v ⊥ U H(i+1)q′ , Hiq v ⊥ U Sia′ , if δ(q, a) = (q′, a′, R) and i < s(n), (8)

Hiq v ⊥ U H(i−1)q′ , Hiq v ⊥ U Sia′ , if δ(q, a) = (q′, a′, L) and i > 1, (9)

Hiq v ⊥ U Di, (10)
Di uDj v ⊥, if i 6= j, (11)

Sia v Sia U Di, (12)
Hiqf v ⊥. (13)

For an input ~a = a1 . . . an of length n, we take the following ABox A~a:

H1q0(d), Siai(d), for 1 ≤ i ≤ n, Si#(d), for n < i ≤ s(n).

We show that (TM ,A~a) is unsatisfiable iffM accepts ~a. We represent configurations ofM as tuples
of the form c = 〈b1 . . . bs(n), i, q〉, where b1 . . . bs(n) is the contents of the first s(n) cells of the tape
with bj ∈ Γ, for all j, the head position is i, 1 ≤ i ≤ s(n), and q ∈ Q is the control state. Let I be
an interpretation for KM,~a. We say that I encodes configuration c = 〈b1 . . . bs(n), i, q〉 at moment k
if dI ∈ HI(k)

iq and dI ∈ SI(k)
jbj

, for all 1 ≤ j ≤ s(n). We note here that, in principle, many different
configurations can be encoded at moment k in I. Nevertheless, any prefix of a model of (TM ,A~a)
contains the computation of M on the given input ~a:

LEMMA B.1. Let c0, . . . , cm be a sequence of configurations representing a partial computa-
tion of M on ~a. Then every model I of (TM ,A~a) encodes ck at moment k, for 0 ≤ k ≤ m.

PROOF. The proof is by induction on k. For k = 0, the claim follows from I |= A~a. For
the induction step, let I encode ck = 〈b1 . . . bi . . . bs(n), i, q〉 at moment k, and let ck+1 be
〈b1 . . . b′i . . . bs(n), i

′, q′〉. Then we have q ∈ Q \ {qf}. Consider first δ(q, bi) = (q′, b′i, L), in which
case i > 1 and i′ = i − 1. Since dI ∈ H

I(k)
iq we have, by (10), dI ∈ D

I(k+1)
i and, by (9),

dI ∈ H
I(k+1)
(i−1)q′ and dI ∈ S

I(k+1)
ib′i

. Consider cell j, 1 ≤ j ≤ s(n), such that j 6= i. By (11),

dI /∈ DI(k+1)
j , and so, since dI ∈ SI(k)

jbj
, we obtain, by (12), dI ∈ SI(k+1)

jbj
. Hence, I encodes ck+1

at moment k + 1. The case of δ(q, bi) = (q′, b′i, R) is analogous.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

App–4 A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev

It follows that if M accepts ~a then (TM ,A~a) is unsatisfiable. Indeed, if M accepts ~a then the
computation is a sequence of configurations c0, . . . , cm such that cm = 〈b1 . . . bs(n), i, qf 〉. Suppose
(TM ,A~a) is satisfied in a model I. By Lemma B.1, dI ∈ HI(m)

iqf
, which contradicts (13).

Conversely, if M rejects ~a then (TM ,A~a) is satisfiable. Let c0, . . . , cm be a sequence of con-
figurations representing the rejecting computation of M on ~a, ck = 〈b1,k, . . . , bs(n),k, ik, qk〉, for
0 ≤ k ≤ m. We define an interpretation I with ∆I = {d}, dI = d and, for every a ∈ Γ, q ∈ Q,
1 ≤ i ≤ s(n) and k ≥ 0, we set (note that qm is a rejecting state and so, δ(qf , a) is undefined):

H
I(k)
iq =

{
∆I , if k ≤ m, i = ik and q = qk,

∅, otherwise,

S
I(k)
ia =


∆I , if k ≤ m and a = bi,k,

∆I , if k = m+ 1 and a = bi,m,

∅, otherwise,

D
I(k)
i =


∆I , if 0 < k ≤ m+ 1 and i = ik−1,

∆I , if k = m+ 2

∅, otherwise.

It can be easily verified that I |= (TM ,A~a).

C. PROOF OF THEOREM 6.3
LEMMA 6.4. Let K be a T ∗UDL-LiteNbool KB and qK = max(QT ∪ QA) + 1. If K is satisfiable

then it can be satisfied in an interpretation I such that (≥ qK2∗ R)I = ∅, for each R ∈ roleK.

PROOF. Let I |= K. Without loss of generality, we will assume that the domain ∆I is at most
countable. Construct a new interpretation I∗ as follows. We take ∆I × N as the domain of I∗ and
set aI

∗
= (aI , 0), for all a ∈ obA. For each n ∈ Z, we set

AI
∗(n) = {(u, i) | u ∈ AI(n), i ∈ N}, for every concept name A,

SI
∗(n) = {((u, i), (v, i)) | (u, v) ∈ SI(n), i ∈ N}, for every role name S.

It should be clear that I∗ |= K.
Suppose that u ∈ ∆I has at least qK-many 2∗ R-successors in I and assume that the pairs(

(u, i), (u1, i)
)
, . . . ,

(
(u, i), (uqK−1, i)

)
,
(
(u, i), (uqK , i)

)
, . . .

are all in (2∗ R)I
∗
. We can also assume that if (uj , 0) = aI

∗
, for some a ∈ obA, then j < qK. We

then rearrange some of the R-arrows of the form ((u, i), (uj , i
′)), simultaneously at all moments of

time, in the following manner. We remove ((u, i), (uj , i)) from (2∗ R)I
∗
, for all j and i such that

j ≥ qK or i > 0. Note that this operation does not affect the 2∗ R-arrows to the ABox individuals. To
preserve the extension of concepts of the form ≥ q2∗ R, we then add new 2∗ R-arrows of the form
((u, i), (uj , i

′)), for i > i′ ≥ 0, to (2∗ R)I
∗

in such a way that the following conditions are satisfied:

– for every (uj , i
′), there is precisely one 2∗ R-arrow of the form ((u, i), (uj , i

′)),
– for every (u, i), there are precisely (qK − 1)-many 2∗ R-arrows of the form ((u, i), (uj , i

′)).

Such a rearrangement is possible because I∗ contains countably infinitely many copies of I. We
leave it to the reader to check that the resulting interpretation is still a model of K.

The rearrangement process is then repeated for each other u ∈ ∆I with at least qK-many 2∗ R-
successors.

ACM Transactions on Computational Logic, Vol. 15, No. 3, Article 25, Publication date: June 2014.

