Automated Proof Search in Gddel-Lob Provability Logic
Rajeev Goré and Jack Kelly
The Australian National University, Canberra, Australia

The Godel-Léb logic G is a propositional normal modal logic where OA can be interpreted as “A is provable
in Peano arithmetic”. In addition to the axioms of K, logic G also has the axiom O(0DA — A) — 0OA. G is
characterised by transitive and well-founded frames. If =, O and V are treated as primitive, with implication and
<& defined in terms of these, the tableau rules shown below give a sound and complete tableau calculus for G:

A=A X -(AV B); X AV B; X -0A4;0X;Z
=7 M—px Vaxex @axoxoa

Proof search in this calculus terminates if the following procedure is applied repeatedly: the first three rules are
applied until they are no longer applicable, and the (G) rule is applied afterwards. Intuitively, a G—A (i.e. -OA)
creates a OA so that a subsequent application of the (G)-rule on ¢—A causes closure via A; 7A. We therefore tried
to create a theorem prover for G using the Tableau Work Bench, a framework for building automated theorem
provers available from http://twb.rsise.anu.edu.au.

As is traditional in automated theorem proving, we assumed that all formulae were first put into negation
normal form (nnf) where implications are translated away and all negations are distributed to atomic level. Thus
the (Id)-rule becomes p; —p; X. The TWB is designed to have its input closely resemble formally written tableau
rules so the nnf variant of tableau rule (G) as shown below left is represented in the TWB as shown below right:

RULE Gnnf
CA:0OX: Z {Dia A} ; Box X ; Z
b bl

e S —
A5 X5 0X; anf(0nA) A ; X ; Box X ; nnf(Box Neg A)

END

To our surprise, Version 1 as shown above, did not terminate due to a missing fairness constraint, with the culprit
being our nnf assumption. Version 2 used O—A instead of nn f(0-A), breaking the nnf-format in a deliberate way,
and also used A;—A as the closure condition in the (Id) rule. Version 3 kept the new (Id) rule, replaced O—A with
O0-<CA to try and close branches with fewer rule applications, and resulted in a small speed increase for some input
formulae but a severe increase in running time for many others. As a hybrid, Version 4 kept both 0—A and O0-CA
in the denominator, and improved on the execution times for some inputs over Version 3. For input formulae that
had similar execution times when evaluated by versions two and three, this hybrid prover took around twice as
long. The running times of the various provers for random input formulae are summarised by the graph below.

Funning times of Yersion 2, 3 and 4 of the G provers

120 T T
Version 2 +
" Yersion 3 =
100 Version 4 * i
o
2
] g0
[&]
b * -
[1F]
£ 60 4 p
2
§ 40 ] y
o
.
20 %
* *
* B3 * ¥
0 M T R TR R R

0 20 40 &80 80 100 120 140 160 180
Formula number

We analyse the cause of the divergence between the expected terminating behaviour of the theoretical calculus
and the actual implementations. We also report on the running times of the various provers we built. The main
logical contribution is the following theorem, which is not trivial:

Theorem 1 All nnf-versions of our calculus, except the first one, are sound, complete and terminating.


http://twb.rsise.anu.edu.au

