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Broadly, inference on the Semantic Web means discovering new relationships. On the
Semantic Web, data is modelled as a set of relationships between resources. Inference
means that automatic procedures can generate new relationships based on the data
and some additional information. Whether the new relationships are explicitly added
to the data, or are returned at query time, is an implementation issue.
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OWL 2: automated reasoning
with description logic ALC

for a list of OWL reasoners see
http://www.w3.org/2001/sw/wiki/OWL/Implementations
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What are Description Logics?

• A family of logic-based Knowledge Representation formalisms

– descendants of semantic networks

– describe domain in terms of
concepts (classes), roles (properties, relationships) and individuals

Distinguished by:

• formal semantics (typically model-theoretic)

– decidable fragments of first-order logic

– closely related to propositional modal and dynamic logics

• provision of inference services

– sound and complete decision procedures for key problems

– highly optimised reasoning systems
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DL architecture

Knowledge Base (KB)

TBox (terminological box, schema)

Man ≡ Human uMale
Father ≡ Man u ∃hasChild.>

...

ABox (assertion box, data)

john : Man
(john,mary) : hasChild

...
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Description logic ALC

The language of ALC consists of:

• concept names A0, A1, ... (also use A, B, B0, B1, . . . )

concept names denote sets of objects classes in OWL

typical examples are ‘Person’ and ‘Female’

• role names R0, R1, ... (also use R, S, S0, S1, . . . )

role names denote sets of pairs of objects object properties in OWL

typical examples are ‘hasChild’ and ‘loves’

• individual names a0, a1, ... (also use a, b, c, . . . )

individual names denote objects individuals in OWL

typical examples are ‘john’ and ‘mary’
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The language of ALC (cont.)

• concept> owl:Thing (denotes the set of all objects in the domain)

• concept⊥ owl:Nothing (denotes the empty set ∅ )

• concept constructor u (often called intersection, conjunction or simply ‘and’)

owl:ObjectIntersectionOf

• concept constructor t (often called union, disjunction or simply ‘or’)

owl:ObjectUnionOf

• concept constructor ¬ (often called complement, negation or simply ‘not’)

owl:ObjectComplementOf

• concept constructor ∃ (often called existential restriction)

owl:ObjectSomeValuesFrom

• concept constructor ∀ (often called universal restriction)

owl:ObjectAllValuesFrom
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Definition of ALC concepts

ALC concepts are defined inductively as follows:

• all concept names are ALC concepts

• > and ⊥ are ALC concepts

• if C is an ALC concept, then ¬C is an ALC concept

• if C and D are ALC concepts and R is a role name, then

C uD, C tD, ∃R.C, ∀R.C

are ALC concepts

• nothing else is an ALC-concept
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Examples of ALC concepts

Suppose Human and Female are concept names,

hasChild, gender, hasParent are role names

Then we obtain the following ALC-concepts:

• ∃hasChild.> (everybody who has a child)

• Human u ∃hasChild.> (a human who has a child)

• Human u ∃hasChild.Human (a human who has a child that is human)

• Human u ∃gender.Female (a woman)

• Human u ∃hasChild.> u ∃hasParent.> (a human with a child and a parent)

• Human u ∃hasChild.∃gender.Female (a human who has a daughter)

• Human u ∃hasChild.∃hasChild.> (a human who has a grandchild)

– ‘u∃hasChild’ is not an ALC-concept. why?
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Examples of ALC concepts (cont.)

• Person u ∀hasChild.Male (a person all of whose children are males)

(in particular, a person without children!)

• Person u ∀hasChild.Male u ∃hasChild.>
(everybody who has a child and whose children are all males)

• LivingBeing u ¬HumanBeing (all living beings that are not human beings)

• Student u ¬∃interestedIn.Mathematics (all students not interested in mathematics)

• Student u ∀drinks.Tea (all students who only drink tea)

(in particular, the students who do not drink anything!)

• ∃hasChild.Male t ∀hasChild.⊥ (everybody who has a son or no child at all)
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OWL as DL: Class Constructors

A A
owl:Thing >
owl:Nothing ⊥

ObjectIntersectionOf(C1 C2 . . .Cn) C1 u C2 u · · · u Cn

ObjectUnionOf(C1 C2 . . .Cn) C1 t C2 t · · · t Cn

ObjectComplementOf(C) ¬C

ObjectOneOf(a1 a2 . . .an) {a1} t {a2} t · · · t {an}

ObjectAllValuesFrom(R C) ∀R.C

ObjectSomeValuesFrom(R C) ∃R.C

ObjectMinCardinality(R n C) ≥ n R.C

ObjectMaxCardinality(R n C) ≤ n R.C

ObjectHasValue(R a) ∃R.{a}
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ALC concept definitions and descriptions

Let A be a concept name and let C be an ALC concept. Then

• A ≡ C is a concept definition (reads ‘A is equivalent to C’)
C gives necessary and sufficient conditions for being an A

• A v C is a concept description (reads ‘A is subsumed by C’)
C describes only necessary conditions for being an A

cf. https://en.wikipedia.org/wiki/Necessity_and_sufficiency

Examples:

• Father ≡ Person u ∃gender.Male u ∃hasChild.>

• Student ≡ Person u ∃isRegisteredAt.University

• Father v Person (what about Father ≡ Person?)

• Father v ∃hasChild.> (what about Father ≡ ∃hasChild.>?)
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ALC concept inclusions and TBoxes

More generally, let C and D be any ALC concepts. Then

• C v D is called an ALC concept inclusion. It states that every C is-a D

(C is subsumed by D, or D subsumes C, or C is included in D)

• C ≡ D is called an ALC concept equation (C and D are equivalent)

can be regarded as an abbreviation for two inclusions C v D and D v C

Examples

• Disease u ∃hasLocation.Heart v NeedsTreatment

• ∃studentOf.Computer Science v HumanBeing u
∃knows.ProgrammingLanguage

AnALC TBox is a finite set T of ALC concept inclusions and equations
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OWL as DL: Classes

SubClassOf(C D) C v D

EquivalentClasses(C1 C2 . . .Cn) C1 ≡ C2, C2 ≡ C3, . . . ,

Cn−1 ≡ Cn

DisjointClasses(C1 C2 . . .Cn) C1 v ¬C2, C1 v ¬C3, . . . , C1 v ¬Cn

C2 v ¬C3, . . . , C2 v ¬Cn

. . .
Cn−1 v ¬Cn

.

.

C1 C2

¬C2

C1 v ¬C2

C1 C2

¬C1

C2 v ¬C1is the same as

Example: C1 and C2 are disjoint:
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Concept hierarchies

The concept hierarchy induced by an ALC TBox T is defined as

{A v B | A,B are concept names in T s.t. T implies A v B}

More generally, we are interested in the following subsumption problem:

– Given an ALC TBox T and ALC concepts C and D, how can we decide

whether T implies that C v D

Problem: we do not yet have a precise definition of what it means that

T implies C v D

so we do not have a precise definition of the concept hierarchy induced by a TBox
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Subsumption example: 1

Let T be the following ALC TBox:

Parent ≡ Person u ∃hasChild.Person
Woman ≡ Person u Female
Mother ≡ Parent u Female

Question 1: Does T imply that Mother v Woman

Answer: Suppose x is any Mother.
By the third equation, x is both a Parent and a Female.
By the first equation, x is a Person.
Thus, x is both a Person and a Female.
Now, the second equation states that x must be a Woman.

What are the ‘inference rules’ for checking subsumption?
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Subsumption example: 2

Let T be the following ALC TBox:

Parent ≡ Person u ∃hasChild.Person
Woman ≡ Person u Female
Mother ≡ Parent u Female

Question 2: Does T imply that Woman v Mother

Answer: Imagine a ‘situation’ or a ‘world’ with two individuals:
mary, who is a Female, a Person and hasChild zoe, and
zoe, who is a Female and a Person, but does not have a child
Then mary must also be a Parent, Woman and Mother
Also, zoe must be a Woman
However, in this world, zoe is neither a Parent nor a Mother
This counterexample shows that T does not imply Woman v Mother

(the counterexample is illustrated by the picture above. BTW, can you simplify it?)

Is there a systematic way of constructing such counterexamples?
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ALC semantics

Every interpretation I consists of

a domain of interpretation, denoted ∆I , which is just a non-empty set, and

an interpretation function that

– interprets any concept name A by a subset AI of ∆I

the interpretation of A in I

– interprets any role name R by a binary relation RI over ∆I

the interpretation of R in I(thus, RI is some set of pairs from ∆I)

– interprets every individual name a by an element aI of ∆I

the interpretation of a in I
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ALC semantics (cont.)

interpretation of complex concepts in I:
(C, D are concepts and R a role name)

– (>)I is the whole domain ∆I and (⊥)I is empty (= ∅)

– (¬C)I is the complement of CI in ∆I (those elements of ∆I that are not in CI)

notation: (¬C)I = ∆I \ CI

– (C uD)I is the intersection of CI and DI notation (C uD)I = CI ∩DI

– (C tD)I is the union of CI and DI notation (C tD)I = CI ∪DI

– (∃R.C)I is the set of all objects x in the domain ∆I such that

x y
R

for some object y that belongs to CI

– (∀R.C)I is the set of all objects x in the domain ∆I such that

– either x does not have R-successors

x y
R– or whenever then y belongs to CI (for all objects y)
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Example 1

Let I = (∆I, ·I), where

– ∆I = {a, b, c, d, Y, Z}

– PersonI = {a, b, c, d}

– FemaleI = {Y }

– hasChildI = {(a, b), (b, c)}

– genderI = {(a, Y ), (b, Z), (c, Y )}

Exercise: compute the following

• (Person u ∃gender.>)I

• (Person u ∃gender.Female)I

• (Person u ∃hasChild.Person)I

• (Person u ∃hasChild.∃gender.Female)I

• (Person u ∃hasChild.∃hasChild.>)I

= {a, b, c} as PersonI = {a, b, c, d}, (∃gender.>)I = {a, b, c}

= {a, c} as (∃gender.Female)I = {a, c}

= {a, b} as (∃hasChild.Person)I = {a, b}

= {b}

= {a}
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Example 2

Consider the interpretation I = (∆I, ·I), where

• ∆I = {a, b, c, d}

• AI = {b, d}, BI = {c}

• RI = {(a, b), (a, c)}, SI = {(a, b), (a, d)}

Then we have:

• (∀R.A)I = {b, c, d}, (∀S.A)I = {a, b, c, d}

(∀R.A)I is the set of objects x in ∆I such that (i) either x has no outgoing R-arrow at all,
or (ii) there are such arrows and their ends all belong to AI

• (∃R.A u ∀R.A)I = ∅, (∃S.A u ∀S.A)I = {a}

• (∃R.B u ∃R.A)I = {a}, (∃R.(A uB))I = ∅

• (∀R.¬A)I = {b, c, d}, (∀S.¬A)I = {b, c, d}
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Examples of equivalent concepts (classes)

For all interpretations I, all concepts C,D and roles R the following holds:

• (¬¬C)I = CI

• (∀R.C)I = (¬∃R.¬C)I

• (¬(C uD))I = (¬C t ¬D)I

• (¬(C tD))I = (¬C u ¬D)I

• (¬∃R.C)I = (∀R.¬C)I

• (¬∀R.C)I = (∃R.¬C)I

• (C u ¬C)I = ⊥I = ∅

• (C t ¬C)I = >I = ∆I
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Semantics: when is a concept inclusion true in an interpretation?

Let I be an interpretation, C v D a concept inclusion, and T a TBox

• We write I |= C v D if CI ⊆ DI If this is the case, we say that

• I satisfies C v D or, equivalently,

• C v D is true in I or, equivalently,

• I is a model of C v D.

• We write I |= C ≡ D if CI = DI

• We write I |= T if I |= C v D for all C v D in T
If this is the case, then we say that

• I satisfies T or, equivalently,

• I is a model of T .
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Semantics: when does a concept inclusion follow from a TBox?

Let T be a TBox and C v D a concept inclusion.

C v D follows from T if every model of T is also a model of C v D

Instead of saying that C v D follows from T we often write

• T |= C v D or C vT D

Example: let MED be the ALC TBox with the following inclusions (SNOMED CT)

Pericardium v Tissue u ∃contIn.Heart

Pericarditis v Inflammation u ∃hasLoc.Pericardium

Inflammation v Disease u ∃actsOn.Tissue

Disease u ∃hasLoc.∃contIn.Heart v Heartdisease u NeedsTreatment

Pericarditis needs treatment if and only if Pericarditis vMED NeedsTreatment
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Examples

Let T = {A v ∃R.B} Then T 6|= A v B

To see this, construct an interpretation I such that

• I |= T
• I 6|= A v B

Namely, define I by taking

• ∆I = {a, b}
• AI = {a}
• RI = {(a, b)}
• BI = {b}

Then AI = {a} ⊆ {a} = (∃R.B)I , and so I |= T

But {a} = AI 6⊆ BI = {b}, and so I 6|= A v B
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Examples

Let again T = {A v ∃R.B} Then T 6|= ∃R.B v A

To see this, construct an interpretation I such that

• I |= T
• I 6|= ∃R.B v A

Define I by taking

• ∆I = {a}
• AI = ∅ (empty set)

• RI = {(a, a)}
• BI = {a}

Then AI = ∅ ⊆ {a} = (∃R.B)I , and so I |= T

But (∃R.B)I = {a} 6⊆ ∅ = AI , and so I 6|= ∃R.B v A
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Example

Let T = {A v ∃R.B}. Then

T 6|= A v ∀R.B

To see this, construct an interpretation I such that

• I |= T
• I 6|= A v ∀R.B

Define I by taking

• ∆I = {a, b, c}
• AI = {a}
• RI = {(a, b), (a, c)}
• BI = {b}

Then AI = {a} ⊆ {a} = (∃R.B)I , and so I |= T .
But AI 6⊆ (∀R.B)I = {b, c}, and so I 6|= A v ∀R.B
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Example

Let T = {A v ∀R.B}. Then

T 6|= A v ∃R.B

To see this, construct an interpretation I such that

• I |= T
• I 6|= A v ∃R.B

Define I by taking

• ∆I = {a}
• AI = {a}
• RI = ∅
• BI = ∅

Then AI = {a} ⊆ {a} = (∀R.B)I , and so I |= T
But AI 6⊆ ∅ = (∃R.B)I , and so I 6|= A v ∃R.B
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Reasoning with ALC (without TBox)

We first consider reasoning without TBoxes:

• Subsumption. We say that a concept inclusion C v D follows from the
empty TBox (or that C is subsumed by D) if CI ⊆ DI for all interpretations I

In this case, we write ∅ |= C v D

• Concept satisfiability. A concept C is called satisfiable if there exists
an interpretation I such that CI 6= ∅

We have:
∅ |= C v D if and only if C u ¬D is not satisfiable

Thus, in ALC, subsumption is reducible to concept satisfiability

We give an algorithm deciding whether an ALC-concept C is satisfiable.
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Concept satisfiability: example 1

Q: Is (∀hasChild.Male) u (∃hasChild.¬Male) satisfiable?

Let us try to construct an interpretation satisfying this concept

(1) x : (∀hasChild.Male) u (∃hasChild.¬Male)

(2) from (1) x : ∀hasChild.Male

(3) from (1) x : ∃hasChild.¬Male

(4) from (3) (x, y) : hasChild and y : ¬Male, for fresh y

(5) from (2) & (4) y : Male

(6) from (4) & (5) contradiction: y : Male and y : ¬Male

A: the concept is not satisfiable!
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Concept satisfiability: example 2

Q: Is (∀hasChild.Male) u (∃hasChild.Male) satisfiable?

Let us try to construct a interpretation satisfying this concept

(1) x : (∀hasChild.Male) u (∃hasChild.Male)

(2) from (1) x : ∀hasChild.Male

(3) from (1) x : ∃hasChild.Male

(4) from (3) (x, y) : hasChild and y : Male, for fresh y

A: the concept is satisfiable and a satisfying model I = (∆I, ·I) is

∆I = {x, y}, MaleI = {y}, hasChildI = {(x, y)}

Then x ∈
(
(∀hasChild.Male) u (∃hasChild.Male)

)I
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Concept satisfiability: example 3

Q: Is ∀R.(¬C tD) u ∃R.(C uD) satisfiable?

(1) x : ∀R.(¬C tD) u ∃R.(C uD)

(2) from (1) x : ∀R.(¬C tD)

(3) from (1) x : ∃R.(C uD)

(4) from (3) (x, y) : R and y : C uD, for fresh y

(5) from (4) y : C

(6) from (4) y : D

(7) from (2) y : ¬C tD

Two ways of continue (branching!):

(8.1) from (7) y : ¬C
(8.2) from (7) y : D

A: (8.1) is a contradiction, while (8.2) is not and yields a satisfying model
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Tableau Method

How can we show satisfiability of a concept?

Achieved by applying the tableau method
(a set of completion rules operating on constraint systems or tableaux)

Proof procedure:

• transform a given concept into Negation Normal Form (NNF)
(all occurrences of negations are in front of concept names)

• apply completion rules in arbitrary order as long as possible

• a clash occurs when the rules produce both A and ¬A,
for come concept name A

• the concept is satisfiable if, and only if, a clash-free tableau can be derived
to which no completion rule is applicable
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Negation Normal Form (NNF)

A concept is in Negation Normal Form (NNF)
if all occurrences of negations in it are in front of concept names

Every ALC-concept can be transformed into an equivalent one in NNF
using the following rules:

¬> ≡ ⊥
¬⊥ ≡ >
¬¬C ≡ C

¬(C uD) ≡ ¬C t ¬D (De Morgan’s law)

¬(C tD) ≡ ¬C u ¬D (De Morgan’s law)

¬∀R.C ≡ ∃R.¬C
¬∃R.C ≡ ∀R.¬C
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Negation Normal Form: example

Transform the concept

¬∃R.(A u ¬B) t ¬∀R.(¬A t ¬B)

to an equivalent concept in negation normal form.

¬∃R.(A u ¬B) t ¬∀R.(¬A t ¬B) ≡ (use ¬∃R.D ≡ ∀R.¬D)

∀R. ¬(A u ¬B) t ¬∀R.(¬A t ¬B) ≡ (use ¬(A uD) ≡ ¬A t ¬D)

∀R.(¬A t ¬¬B ) t ¬∀R.(¬A t ¬B) ≡ (use ¬¬B ≡ B)

∀R.(¬A tB) t ¬∀R.(¬A t ¬B) ≡ (use ¬∀R.D ≡ ∃R.¬D)

∀R.(¬A tB) t ∃R. ¬(¬A t ¬B) ≡ (use ¬(C tD) ≡ ¬C u ¬D)

∀R.(¬A tB) t ∃R.( ¬¬A u ¬¬B ) ≡ (use ¬¬C ≡ C)

∀R.(¬A tB) t ∃R.(A uB)
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Tableau Calculus for ALC concept satisfiability

To determine whether a given concept C in NNF is satisfiable,

Step 1 take the constraint x : C (saying that object x is an element of C)

Step 2 apply to the constructed constraints the completion rules given below,
generating one or more constraint systems

Clash a constraint system has a clash if it contains both constrains of the form
x : A and x : ¬A , for some x and some concept name A

Step 3 if every constraint system contains a clash, then C is not satisfiable

Step 4 if we have managed to construct a clash-free constraint system
to which no completion rule is applicable then we can extract from it

a model satisfying C
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Completion Rules for ALC concept satisfiability (1)

Rule→u If (i) the current constraint system S contains x : C uD and
(ii) does not contain at least one of x : C and x : D,

then add x : C and x : D to S

if S contains both x : C and x : D, the rule is not applicable

Rule→t If (i) the current constraint system S contains x : C tD and
(ii) does not contain both x : C and x : D,

then construct two alternative constraint systems S1 and S2

S1 extends S with x : C and S2 extends S with x : D

if S contains at least one of x : C and x : D, the rule is not applicable
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Completion Rules for ALC concept satisfiability (2)

Rule→∀ If (i) the current constraint system S contains x : ∀R.C and
(ii) also contains (x, y) : R and
(iii) does not contain y : C, then add y : C to S

if conditions (i)–(iii) are not satisfied, the rule is not applicable

Rule→∃ If (i) the current constraint system S contains x : ∃R.C and
(ii) does not contain both (x, z) : R and z : C, for any z

then take a fresh object y and add (x, y) : R and y : C to S

if conditions (i) and (ii) are not satisfied, the rule is not applicable

NB: →∃ is the only rule that creates new individuals in a constraint system
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Tableau Example 1

We check whether (A u ¬A) tB is satisfiable.

It is in NNF, so we can apply the tableau algorithm to the constraint system

S = {x : (A u ¬A) tB}

The only rule applicable is→t. We have two possibilities. First, we can try

S1 = S ∪ {x : A u ¬A}

Then we can apply→u and add to S1 the constraints

x : A and x : ¬A

We have obtained a clash, thus this choice was unsuccessful. Second, we try

S2 = S ∪ {x : B}

No rule is applicable to S2, it does not contain a clash, and so
(A u ¬A) tB is satisfiable

A model I satisfying it is given by ∆I = {x}, BI = {x}, AI = ∅.
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Tableau Example 2

Q: is C = A u ∃R.∃Q.B u ∀R.¬B is satisfiable? It is in NNF, so we start with

S = {x : A u ∃R.∃Q.B u ∀R.¬B}

An application of→u gives add to S the constraints

x : A and x : ∃R.∃Q.B u ∀R.¬B

An application of→u further adds

x : ∃R.∃Q.B and x : ∀R.¬B

An application of→∃ adds

(x, y) : R and y : ∃Q.B

An application of→∃ adds

(y, z) : Q and z : B

An application of→∀ now adds
y : ¬B

No rule is applicable and there is no clash. So C is satisfiable. A model I of C:

∆I = {x, y, z}, AI = {x}, BI = {z}, RI = {(x, y)}, QI = {(y, z)}
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Tableau Example 3

Q: is C = ∃R.A u ∃R.¬A satisfiable? C is in NNF, so we start with

S0 = {x : ∃R.A u ∃R.¬A}

An application of→u adds

x : ∃R.A and x : ∃R.¬A

An application of→∃ adds

(x, y) : R and y : A

Another application of→∃ adds

(x, z) : R and z : ¬A

No rule is applicable now and there is no clash. Thus, C is satisfiable.

A model I of C is given by

∆I = {x, y, z}, AI = {y}, RI = {(x, y), (x, z)}
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Analysing the Tableau Calculus

To show that the tableau construction always returns a correct result,
one has to show

• Soundness: if the concept is satisfiable, then there is a branch without clash
such that no rule is applicable

• Termination: the tableau terminates after finitely many steps for any
input concept in NNF

• Completeness: if there is a branch without clash such that no rule
is applicable to it, then the concept is satisfiable

One also has to identify the computational complexity of the tableau algorithm
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Tableau Calculus: Soundness

• Suppose that a constraint system S is satisfiable and

S →u S′, S →∀ S′ or S →∃ S′.
Then S′ is also satisfiable.

• If

S →t S′ and S →t S′′

then one of S′ and S′′ is satisfiable (or perhaps both).

Thus, having started with a satisfiable constraint system
we cannot derive clashes in all branches
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Tableau Calculus: Termination

For every constraint system S0,
there is no infinite sequence of the form

S0, S1, S2, . . .

such that Si+1 is obtained form Si

by an application of one of the completion rules

Proof: All rules but →∀ are never applied twice to the same constraint

→∀ is never applied to an individual x more times than
the number of direct successors of x (i.e., y such that (x, y) : R),

which is bounded by the length of the concept

Each rule application to a constraint y : C

adds constraints z : D such that D is a subconcept of C
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Tableau Calculus: Completeness

If starting from S0 = {x : C} and applying the completion
rules we construct a clash-free constraint system Sn to which
no rule is applicable then C is satisfiable

Sn determines an interpretation I = (∆I, ·I):

• ∆I contains all individuals in Sn

• for x ∈ ∆I and a concept name A,
x ∈ AI iff x : A is in Sn

• for x, y ∈ ∆I and a role name R,
(x, y) ∈ RI iff (x, y) : R is in Sn

It is easy to check that C is satisfied in I, i.e., CI 6= ∅
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Complexity

Generating binary trees:

D1 ≡ ∃R.C1 u ∃R.C2

D2 ≡ (∃R.C1 u ∃R.C2) u ∀R.(∃R.C1 u ∃R.C2)

D3 ≡ (∃R.C1 u ∃R.C2) u ∀R.
(
(∃R.C1 u ∃R.C2) u ∀R.(∃R.C1 u ∃R.C2)

)
...

The tableau algorithm constructs a model satisfying Dn,
which is a binary tree of depth n (with 2n leaves)

In the worst case, the tableau algorithm requires exponential time
(i.e., is not tractable)

however, optimised reasoners work well for most real-world ontologies
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Reasoning Services for ALC with TBoxes

• Subsumption w.r.t. TBoxes We say that a concept inclusion C v D follows
from a TBox T if every a model of T is also a model of C v D.

In this case, we write T |= C v D

• Concept satisfiability w.r.t. TBoxes A concept C is satisfiable w.r.t. a TBox T if
there exists a model I of T such that CI 6= ∅

• TBox satisfiability A TBox T is satisfiable if there exists a model of T

We have the following reductions to concept satisfiability w.r.t. TBoxes:

• T |= C v D if, and only if, C u ¬D is not satisfiable w.r.t. T
• T is satisfiable if, and only if, A is satisfiable w.r.t. T ,

where A is a fresh concept name

Thus, it suffices to design an algorithm checking concept satisfiability w.r.t. TBoxes
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Reasoning with TBoxes

Given a TBox T and a concept C,
how to determine whether T ∪ { x : C } has a model

(concept satisfiability w.r.t. a TBox)

Note that, for any interpretation I and any two concepts C and D,

I |= C v D iff I |= > v ¬C tD

C v D is equivalent to > v ¬C tD

The initial constraint system S0 for T ∪ { x : C } is defined by

S0 = { x : C } ∪ {> v ¬C tD | C v D ∈ T }

So, now we have three different types of constraints:

y : D (x, y) : R > v D
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Reasoning with TBoxes (cont.)

Rule→U If (i) the current constraint system S contains > v D and
(ii) also an occurrence of x and
(iii) does not contain x : D, then add x : D to S

The tableau algorithm based on rules
→u, →t, →∀, →∃ and →U

does not terminate:
in general, even if T ∪ { x : C } has model,

the algorithm can produce an infinite model for it
(although finite models exist)

see the next slide for an example. . .
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Reasoning with TBoxes: example

S0 = { x0 : >, > v ∃R.A }

S0 →U S1 = S0 ∪ { x0 : ∃R.A }

S1 →∃ S2 = S1 ∪ { (x0, x1) : R, x1 : A }

S2 →U S3 = S2 ∪ { x1 : ∃R.A }

S3 →∃ S4 = S3 ∪ { (x1, x2) : R, x2 : A }

S4 →U S5 = S4 ∪ { x2 : ∃R.A }

... ...

This gives an infinite model which can easily be reconstructed into a finite one

Rule →∃ can be modified in such a way that
the resulting algorithm always terminates

(using so-called blocking technique)
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Reasoning with ABoxes



The structure of knowledge bases

Knowledge Base (KB)

TBox (terminological box, schema)

Man ≡ Human uMale
HappyFather ≡ Man u ∃hasChild

...

ABox (assertion box, data)

john : Man
(john,mary) : hasChild

...
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ABoxes

To represent (incomplete) knowledge about concrete objects,
the language of description logic contains

• individual (or object) names a0, a1, ... (e.g., john, mary, ...)

An ABox, A, is a set of assertions

• a : C ‘a is an instance of C’

• (a, b) : R ‘a is R-related to b’

Every interpretation I = (∆I, ·I) specifies a value aI ∈ ∆I ,
for every individual name a

an interpretation I satisfies (models) an assertion

• I |= a : C iff aI ∈ CI

• I |= (a, b) : R iff (aI, bI) ∈ RI

An interpretation I is a model of a TBox T and an ABox A iff

I satisfies every axiom of T and A
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ABox Inference Services

• ABox consistency:
is the collection of assertions A satisfiable (w.r.t. a TBox T )?

A is consistent w.r.t. a TBox T iff there exists some model I of T andA

• instance checking:
is a an instance of a concept C?

a is an instance of C w.r.t. a TBox T and an Abox A iff
aI ∈ CI , for every model I of T and A

• ABox realisation:
for all individuals in A,

compute their most specific concept names w.r.t. T
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ABox and TBox Inference Services based on Consistency

All inference services can be reduced to ABox consistency:

• instance checking
a is an instance of C (w.r.t. a TBox T and an ABox A) iff

A ∪ {a : ¬C} is inconsistent (w.r.t. T )

• concept satisfiability
C is satisfiable w.r.t. a TBox T iff {a : C} is consistent w.r.t. T

(a does not occur in T )

• concept subsumption
C is subsumed by D w.r.t. a TBox T iff

{a : C u ¬D} is inconsistent w.r.t. T
(a does not occur in T )
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ABox Inference Services: Andrea example

Consider the ABox A:

1. (john, susan) : friend

2. (john,andrea) : friend

3. (susan,andrea) : loves

4. (andrea,bill) : loves

5. susan : Female

6. bill : ¬Female

Represent the following query (to A) as an inference service problem and
find an answer:

Does John have a female friend who is in love with a male (not female) person?

john : ∃friend.(Female u ∃loves.¬Female)
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Andrea Example

To this end we check whether

A ∪ {john : ¬∃friend.(Female u ∃loves.¬Female)}

has a model. If not, then the answer to the query

john : ∃friend.(Female u ∃loves.¬Female)

is YES.

Transformation into negation normal form gives:

john : ∀friend.(¬Female t ∀loves.Female)
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Andrea Example (cont.)

Thus, we apply the tableau to the constraint system

A ∪ {john : ∀friend.(¬Female t ∀loves.Female)}

given by

1. (john, susan) : friend

2. (john,andrea) : friend

3. (susan,andrea) : loves

4. (andrea,bill) : loves

5. susan : Female

6. bill : ¬Female

7. john : ∀friend.(¬Female t ∀loves.Female)
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Andrea Example (cont.)

Two applications of the rule→∀ give the additional constraints:

susan : (¬Female t ∀loves.Female)

and
andrea : (¬Female t ∀loves.Female)

We now apply the rule→t to the first constraint:

• Adding the constraint susan : ¬Female results in a clash since we have
already susan : Female ∈ A.

• Thus we add the constraint susan : ∀loves.Female to the constraint system.
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Andrea Example (cont.)

We now apply→∀ to

susan : ∀loves.Female, (susan,andrea) : loves

and add
andrea : Female

to the constraint system.

We apply→t to
andrea : (¬Female t ∀loves.Female)

• Adding andrea : ¬Female to the constraint systems results in a clash since
andrea : Female is in the constraint system.

• Thus we add the constraint andrea : ∀loves.Female to the constraint sys-
tem.
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Andrea Example (cont.)

Now we apply→∀ to

andrea : ∀loves.Female, (andrea,bill) : loves

and add
bill : Female

to the constraint system. But this results in a clash since bill : ¬Female is already
in the constraint system.

It follows that every sequence of completion rule application results in a clash.
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