
Layered approach to the Semantic Web

Unicode URI

XML + namespaces + XML Schema

RDF + RDF Schema

Ontology vocabulary

Logic

Proof

Trust

D
ig

ita
lS

ig
n

a
tu

re

Self-
descr.
doc.

Data

Data

Rules

information exchange

relational data

semantics + reasoning

(by T. Berners-Lee)

In the context of Semantic Web, ontologies are expected to play an important role in
helping automated processes (‘intelligent agents’) to access information. In particular,
ontologies are expected to be used to provide structured vocabularies that explicate
the relationships between different terms, allowing intelligent agents (and humans) to

interpret their meaning flexibly yet unambiguously

Semantic Technologies 6 1

Requirements for ontology languages

• a well-defined syntax
it is a necessary condition for machine-processing of information
all the languages we have considered so far have a well-defined syntax

• a formal semantics (describe the meaning of knowledge precisely)

one use of a formal semantics is to allow people—and computers—to
reason about the knowledge:

– class membership: if x ∈ C︸ ︷︷ ︸
x is an instance of C

and C ⊆ D︸ ︷︷ ︸
C is a subclass of D

, then we can infer x ∈ D

– consistency: x ∈ A, A ⊆ B ∩ C, A ⊆ D and B ∩D = ∅︸ ︷︷ ︸
B and D are disjoint

,

then inconsistency! (since A is empty)

– classification: if certain property-values pairs are a sufficient condition
for membership in A and x satisfies them, we can conclude that x ∈ A

• efficient reasoning support (derivations can be made mechanically)
consistency, unintended relationships between classes, classification

• sufficient expressive power for applications

Semantic Technologies 6 2

Limitations of the expressive power of RDFS

RDF/S allow the representation of some ontological knowledge

(organisation of vocabularies in typed hierarchies:
subclass/subproperty, domain/range restrictions, instances of classes)

However, a number of other features are missing:

• local scope of properties
cows eat only plants, while other animals may eat meat, too

• disjointness of classes
male and female are disjoint

• Boolean combinations of classes (union, intersection and complement)
person is the disjoint union of male and female

• cardinality restrictions
a person has exactly two parents

• special characterisations of properties:
transitive, functional, or the inverse of another property
‘greater than’, ‘has mother’, ‘eats’ and ‘is eaten by’

Semantic Technologies 6 3

From RDF to OWL

• Two languages have been developed to satisfy the requirements:

– OIL (Ontology Inference Layer):
developed by a group of (largely) European researchers (several from
the EU OntoKnowledge project) http://www.ontoknowledge.org/oil/

– DAML-ONT (DARPA Agent Markup Language):
developed by a group of (largely) US researchers (in DARPA DAML programme)

http://www.daml.org/

• Efforts merged to produce DAML+OIL

– development was carried out by
‘Joint EU/US Committee on Agent Markup Languages’

– extends (‘DL subset’ of) RDF/S

• DAML+OIL was submitted to W3C as a basis for standardisation

– Web-Ontology (WebOnt) Working Group formed
– WebOnt group developed the OWL language based on DAML+OIL
– OWL 1.0 language is a W3C Recommendation (since February 2004)

http://www.w3.org/TR/owl-features/

• OWL 2 is a W3C Recommendation since 2009
http://www.w3.org/TR/owl2-overview/

Semantic Technologies 6 4

http://www.ontoknowledge.org/oil/
http://www.daml.org/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl2-overview/

What does the acronym ‘OWL’ stand for?

Actually, OWL is not a real acronym. The language started out as the
‘Web Ontology Language’ but the Working Group disliked the acronym ‘WOL’

Owl lived at The Chestnuts, an old-world res-
idence of great charm, which was grander than
anybody else’s, or seemed so to Bear, because it
had both a knocker and a bell-pull. Underneath
the knocker there was a notice which said:

PLES RING IF AN RNSER IS REQIRD.

Underneath the bell-pull there was a notice which said:

PLEZ CNOKE IF AN RNSR IS NOT REQID.

These notices had been written by Christopher Robin, who was the only one
in the forest who could spell; for Owl, wise though he was in many ways, able
to read and write and spell his own name WOL, yet somehow went all to
pieces over delicate words like MEASLES and BUTTEREDTOAST.

(A.A. Milne, ‘Winnie-the-Pooh’)
Semantic Technologies 6 5

Species of OWL

• OWL Full
– uses all of the OWL language primitives
– allows combinations of these primitives in arbitrary ways with RDF/S

(including changing the meaning of the predefined (RDF or OWL) primitives,
e.g., limiting the number of classes that can be described in any ontology)

– is fully upward-compatible with RDF (syntactically and semantically):
• any legal RDF document is also a legal OWL Full document
• any valid RDF/S conclusion is also a valid OWL Full conclusion

– is undecidable (no complete (or efficient) reasoning support)

• OWL DL (short for Description Logic)
– is a sublanguage of OWL Full

imposes restrictions on the use of OWL/RDF constructors:
essentially, application of OWL’s constructors to each other is disallowed

– permits reasonably efficient reasoning support

• OWL 2 Profiles
– sublanguages of OWL 2

that trade expressive power for efficiency of reasoning
– useful in different application scenarios

OWL 2 EL (large ontologies), OWL 2 RL (rules), OWL 2 QL (ontology-based data access)
Semantic Technologies 6 6

Species of OWL (cont.)

Upward compatibility between the three species of OWL and RDF/S:

OWL Full

RDF/S

OWL DL

OWL 2 Profiles

• OWL uses RDF/S to a large extent:

– all varieties of OWL use RDF for their syntax
– instances are declared as in RDF

(using RDF descriptions and typing information)
– OWL constructors like owl:Class, owl:DatatypeProperty and

owl:ObjectProperty are specialisations of their RDF/S counterparts

Semantic Technologies 6 7

The OWL language

There are different syntactic forms of OWL:

• RDF/XML syntax see http://www.w3.org/TR/owl2-mapping-to-rdf/

(used for interchange: can be written and read by all conformant OWL 2 software)

• OWL/XML syntax that does not follow the RDF conventions
(more easily read by human users) see http://www.w3.org/TR/owl2-xml-serialization/

• functional syntax (used in the language specification document)

(much more compact and readable) see http://www.w3.org/TR/owl2-syntax/

• graphic syntax based on the conventions of UML
(Unified Modelling Language)

(an easy way for people to become familiar with OWL)

• Manchester syntax
(used in the Protégé editor) see http://www.w3.org/TR/owl2-manchester-syntax/

• Description Logic for OWL DL and the profiles

Semantic Technologies 6 8

http://www.w3.org/TR/owl2-mapping-to-rdf/
http://www.w3.org/TR/owl2-xml-serialization/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/

OWL ontologies: header

<rdf:RDF xmlns:owl=′′http://www.w3.org/2002/07/owl#′′

xmlns:rdf=′′http://www.w3.org/1999/02/22-rdf-syntax-ns#′′

xmlns:rdfs=′′http://www.w3.org/2000/01/rdf-schema#′′

xmlns:xsd=′′http://www.w3.org/2001/XMLSchema#′′

xml:base=′′http://www.dcs.bbk.ac.uk/′′>

<owl:Ontology rdf:about=′′′′>
<rdfs:comment>An example OWL ontology</rdfs:comment>
<owl:priorVersion rdf:resource=′′http://www.dcs.bbk.ac.uk/uni-old-ns′′/>
<owl:imports rdf:resource=′′http://www.dcs.bbk.ac.uk/person′′/>
<rdfs:label>DCSIS Ontology</rdfs:label>

</owl:Ontology>

...

</rdf:RDF>

OWL namespace

‘Housekeeping’ assertions

lists other ontologies
whose content
is assumed
to be part of
the current ontology

NB: while namespaces are used for disambiguation,
imported ontologies provide definitions that can be used

Semantic Technologies 6 9

Depicting individuals, classes, and properties

• individuals such as vito, carmela, michael, mary, etc.

• classes such as Man, Woman, Person, etc.

• properties such as isHusbandOf, isWifeOf, isFatherOf, etc.

Mathematical notation

vito ∈ Man

mary ∈ Woman

(vito,carmela) ∈ isHusbandOf

isHusbandOf = isWifeOf−

(vito,michael) ∈ isFatherOf

Man ⊆ Person

Man ∪Woman = Person

Man ∩Woman = ∅ (empty set)

Semantic Technologies 6 10

The OWL language: classes

Classes are defined using an owl:Class element
(owl:Class is a subclass of rdfs:Class)

<owl:Class rdf:ID=′′professor′′>
<rdfs:subClassOf rdf:resource=′′#academicStaff′′/>

</owl:Class>

.

.

academicStaff

professor

professor v academicStaff Description Logic syntax

<owl:Class rdf:about=′′#professor′′>
<owl:disjointWith rdf:resource=′′#lecturer′′/>

</owl:Class>

.

.

lecturer professor

professor u lecturer v ⊥

<owl:Class rdf:ID=′′faculty′′>
<owl:equivalentClass rdf:resource=′′#academicStaff′′/>

</owl:Class>
faculty ≡ academicStaff

Q: is there another way to say that two classes are equivalent?

NB: there are two predefined classes: owl:Thing and owl:Nothing
(contains everything) (the empty class)

Semantic Technologies 6 11

The OWL language: classes

For every class C,
owl:Nothing is a subclass of C, and C is a subclass of owl:Thing

.

.

owl:Thing

.

.

professor
.

.

lecturer

.

.

academicStaff
.

.

faculty

.

.

owl:Nothing

6

rd
fs

:s
ub

C
la

ss
O

f

66

66

6

rd
fs

:s
ub

C
la

ss
O

f

@
@

@
@

6

6

�
��

�
��

�
�*

�
�
�
�
�
�
�
�
�
��

���
���

���
���

���
��

PP
PP

PP
PP

PP
PP

PP
PP

PPi

@
@

@@I

PP
PP

PP
PP

PP
PP

Pi H
HH

H
HH

H
HH

H
HHY

�
�
���

@
@
@
@I

6

�
�
���

-
�

@
@

@@I

Semantic Technologies 6 12

The OWL language: Boolean combinations

(i) “modules and staff members are disjoint”

<owl:Class rdf:about=′′#module′′>
<owl:subClassOf>
<owl:Class>
<owl:complementOf rdf:resource=′′#staff′′/>

</owl:Class>
</owl:subClassOf>

</owl:Class>
.

.

staff module

Class: module SubClassOf: not staff
Manchester syntax

module v ¬staff

(ii) “academic staff are lecturers, senior lecturers, readers and professors”

<owl:Class rdf:ID=′′academicStaff′′>
<owl:unionOf rdf:parseType=′′Collection′′>
<owl:Class rdf:about=′′#lecturer′′/>
<owl:Class rdf:about=′′#seniorLecturer′′/>
<owl:Class rdf:about=′′#reader′′/>
<owl:Class rdf:about=′′#professor′′/>

</owl:unionOf>
</owl:Class> academicStaff ≡ lecturer t seniorLecturer t reader t professor

Class: academicStaff EquivalentTo: lecturer or seniorLecturer or reader or professor

NB: the new class is equal to the union (not a subclass as in (i))
Semantic Technologies 6 13

The OWL language: Boolean combinations (cont.)

(iii) “administrative staff are those staff members
that are neither academic nor technical support staff ”

<owl:Class rdf:ID=′′adminStaff′′>
<owl:intersectionOf rdf:parseType=′′Collection′′>

<owl:Class rdf:about=′′#staffMember′′/>
<owl:Class>

<owl:complementOf>
<owl:Class>

<owl:unionOf rdf:parseType=′′Collection′′>
<owl:Class rdf:about=′′#academicStaff′′/>
<owl:Class rdf:about=′′#techSupportStaff′′/>

</owl:unionOf>
</owl:Class>

</owl:complementOf>
</owl:Class>

</owl:intersectionOf>
</owl:Class>

adminStaff ≡ staffMember u ¬(academicStaff t techSupportStaff)

Class: adminStaff EquivalentTo: staffMember and not (academicStaff or techSupportStaff)

NB: owl:complementOf, owl:unionOf and owl:intersectionOf
are properties with domain owl:Class and range rdf:List

Semantic Technologies 6 14

The OWL language: enumerations

<owl:Class rdf:about=′′#weekdays′′>
<owl:oneOf rdf:parseType=′′Collection′′>

<owl:Thing rdf:about=′′#Sunday′′/>
<owl:Thing rdf:about=′′#Monday′′/>
...
<owl:Thing rdf:about=′′#Saturday′′/>

</owl:oneOf>
</owl:Class>

weekdays ≡ {Sunday,Monday, . . . , Saturday}

Class: weekdays EquivalentTo: { Sunday, Monday, . . . , Saturday }

The class extension of a class described with owl:oneOf
contains exactly the enumerated individuals, no more, no less

NB: <owl:Thing rdf:about=′′...′′/> refers to some individual
(remember: all individuals are by definition instances of owl:Thing)

Semantic Technologies 6 15

The OWL language: instances

• Instances of classes are declared as in RDF:
<rdf:Description rdf:ID=′′MZ′′>

<rdf:type rdf:resource=′′#academicStaff′′/>
</rdf:Description>

or
<academicStaff rdf:ID=′′MZ′′/> MZ : academicStaff

• OWL does not adopt the Unique Name Assumption
(one individual may have different IDs)

So it must be explicitly asserted if certain IDs name different individuals:
<owl:AllDifferent>

<owl:distinctMembers rdf:parseType=′′Collection′′>
<lecturer rdf:about=′′#PTW′′/>
<lecturer rdf:about=′′#MZ′′/>
<lecturer rdf:about=′′#SM′′/>

</owl:distinctMembers>
</owl:AllDifferent>

• but: <rdf:Description rdf:about=′′#William Jefferson Clinton′′>
<rdf:sameAs rdf:resource=′′#BillClinton′′/>

</rdf:Description>
Exercise: represent these statements in the DL syntax

Semantic Technologies 6 16

The OWL language: properties

There are two kinds of properties:

• object properties, which relate objects to other objects
(e.g., isTaughtBy and supervises)

• data type properties, which relate objects to datatype values
(e.g., phone and age)

<owl:DatatypeProperty rdf:ID=′′age′′>
<rdfs:range rdf:resource=′′&xsd;nonNegativeInteger′′/>

</owl:DatatypeProperty>

NB: OWL does not have any predefined data types
Instead, it allows one to use XML Schema data types

NB: ′′&xsd;nonNegativeInteger′′ is an abbreviation for
′′http://www.w3.org/2001/XMLSchema#nonNegativeInteger′′

Such abbreviations can be defined using an ENTITY definition:
<!DOCTYPE rdf:RDF [<!ENTITY xsd ′′http://www.w3.org/2001/XMLSchema#′′>]>

Semantic Technologies 6 17

The OWL language: properties (cont.)

Object properties relate objects to other objects:

<owl:ObjectProperty rdf:about=′′#isTaughtBy′′>
<rdfs:domain rdf:resource=′′#module′′/>
<rdfs:range rdf:resource=′′#academicStaff′′/>
<rdfs:subPropertyOf rdf:resource=′′#involves′′/>

</owl:ObjectProperty>

.

.

b

b
b

b

b+
academicStaffm

odule

<owl:ObjectProperty rdf:about=′′#teaches′′>
<rdfs:domain rdf:resource=′′#academicStaff′′/>
<rdfs:range rdf:resource=′′#module′′/>
<owl:inverseOf rdf:resource=′′#isTaughtBy′′/>

</owl:ObjectProperty>

.

.

b

b
b

b

b
b

b
b

b

b

b

bacademicStaffm
odule

<owl:ObjectProperty rdf:about=′′#lecturesIn′′>
<owl:equivalentProperty rdf:resource=′′#teaches′′/>

</owl:ObjectProperty>

Semantic Technologies 6 18

The OWL language: property restrictions

• “every professor must teach at least one undergraduate module”

<owl:Class rdf:about=′′#professor′′>
<owl:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=′′#teaches′′/>
<owl:someValuesFrom rdf:resource=′′#undergraduateModule′′/>

</owl:Restriction>
</owl:subClassOf>

</owl:Class>

existential quantification

professor v ∃teaches.undergraduateModule

Class: professor SubClassOf: teaches some undergraduateModule

this owl:Restriction defines a class
that consists of all objects for which

there exists (at least one) undergraduateModule
among values of teaches

.

.

b

b

b

bb

b

module

UG

NB: owl:Restriction defines an anonymous class which has no ID and has only
local scope: it can only be used in the place where the restriction appears
Semantic Technologies 6 19

The OWL language: property restrictions (cont.)

• “teaching assistants teach postgraduate modules only”

<owl:Class rdf:about=′′#teachingAssistant′′>
<owl:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=′′#teaches′′/>
<owl:allValuesFrom rdf:resource=′′#postgraduateModule′′/>

</owl:Restriction>
</owl:subClassOf>

</owl:Class>

universal quantification

teachingAssistant v ∀teaches.postgraduateModule

Class: teachingAssistant SubClassOf: teaches only postgraduateModule

this owl:Restriction defines a class
that consists of all objects for which

all values of teaches, if any,
are from postgraduateModule

.

.

b

b

b

bb

b

m
odule

PG

“if a teaching assistant teaches a module, then this module is a postgraduate module”

“a teaching assistant cannot teach a module that is not a postgraduate module”

teachingAssistant v ¬∃teaches.¬postgraduateModule

http://en.wikipedia.org/wiki/Universal_quantification

Semantic Technologies 6 20

http://en.wikipedia.org/wiki/Universal_quantification

The OWL language: property restrictions (cont.)

• “a department must have at least 10 and at most 30
academic staff members”

<owl:Class rdf:about=′′#department′′>
<owl:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource=′′#hasMember′′/>
<owl:minQualifiedCardinality rdf:datatype=′′&xsd;nonNegativeInteger′′>

10</owl:minQualifiedCardinality>
<owl:onClass rdf:resource=′′#academicStaff′′/>

</owl:Restriction>
</owl:subClassOf>
<owl:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource=′′#hasMember′′/>
<owl:maxQualifiedCardinality rdf:datatype=′′&xsd;nonNegativeInteger′′>

30</owl:maxQualifiedCardinality>
<owl:onClass rdf:resource=′′#academicStaff′′/>

</owl:Restriction>
</owl:subClassOf>

</owl:Class>

Class: department SubClassOf: hasMember min 10 academicStaff

department v ≥10 hasMember.academicStaff

Class: department SubClassOf: hasMember max 30 academicStaff

NB: owl:qualifiedCardinality may be used when both owl:minQualifiedCardinality
and owl:maxQualifiedCardinality have the same number

Class: department SubClassOf: hasMember exactly 21 academicStaff
Semantic Technologies 6 21

The OWL language: property restrictions (cont.)

• “mathematics modules are taught by Michael Zakharyaschev”

<owl:Class rdf:about=′′#mathModule′′>
<owl:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=′′#isTaughtBy′′/>
<owl:hasValue rdf:resource=′′#MZ′′/>

</owl:Restriction>
</owl:subClassOf>

</owl:Class>

at least one value of
isTaughtBy

is equal to
MZ (individual)

Class: mathModule SubClassOf: isTaughtBy value MZ

mathModule v ∃isTaughtBy.{MZ}

Semantic Technologies 6 22

Important binary relations

A binary relation R on a set A is called

• reflexive if xRx, for all x ∈ A

• irreflexive if not xRx, for all x ∈ A

• symmetric if xRy implies yRx, for all x, y ∈ A

• asymmetric if xRy imply not yRx, for all x, y ∈ A

• transitive if xRy and yRz imply xRz, for all x, y, z ∈ A.

Which of the following relations on the set N of natural numbers are reflexive,
symmetric, etc.:

<, =, ≤, 6=, ‘x divides y’ ?

The inverse of R is the relation R− such that xR−y iff yRx, for all x, y

What is the relation between the ‘important properties’ of R and R−?

Semantic Technologies 6 23

OWL 1.0: special properties

• owl:TransitiveProperty (e.g., isTallerThan, isAncestorOf)

for all x, y, z, if R(x, y) and R(y, z) then R(x, z)

• owl:SymmetricProperty (e.g., isSiblingOf)

for all x, y, if R(x, y) then R(y, x)

• owl:FunctionalProperty
(at most one value for each object: e.g., directSupervisor)

for every x there is at most one y with R(x, y)

.

.

b

b b b

++ +

R is functional

• owl:InverseFunctionalProperty
(two different objects cannot have the same number: e.g., isTheSocialSecurtyNumberFor)

for every y there is at most one x with R(x, y)

.

.

b b b

b

+

R is inverse functional

<owl:ObjectProperty rdf:ID=′′hasSameGradeAs′′>
<rdfs:domain rdf:resource=′′#student′′/>
<rdfs:range rdf:resource=′′#student′′/>
<rdf:type rdf:resource=′′&owl;TransitiveProperty′′/>
<rdf:type rdf:resource=′′&owl;SymmetricProperty′′/>

</owl:ObjectProperty>

What’s missing here?

Semantic Technologies 6 24

OWL 2: more special properties

• owl:ReflexiveProperty
(e.g., hasSameGrade)

for all x, R(x, x)

.

.

R is reflexive

• owl:IrreflexiveProperty
(e.g., isMotherOf)

for all x, not R(x, x)

.

.

+ +
+

R is irreflexive

• owl:AsymmetricProperty
(e.g., isTallerThan)

for every x, y, if R(x, y) then not R(y, x)

.

.

b

+

R is asymmetric

Semantic Technologies 6 25

OWL 2: more about properties

• Property chains
if somebody owns an object, then they also own all parts of the object:

for all x, y, z, if owns(x, y) and hasPart(y, z) then owns(x, z)

<owl:ObjectProperty rdf:ID=′′owns′′>
<owl:propertyChainAxiom rdf:parseType=′′Collection′′>

<owl:ObjectProperty rdf:about=′′#owns′′/>
<owl:ObjectProperty rdf:about=′′#hasPart′′/>

</owl:propertyChainAxiom>
</owl:ObjectProperty>

ObjectProperty: owns SubPropertyChain: owns o hasPart

• Disjoint properties
for every x, y, either not isMotherOf(x, y) or not isSisterOf(x, y)

<owl:ObjectProperty rdf:about=′′#isMotherOf′′>
<owl:propertyDisjointWith rdf:about=′′#isSisterOf′′/>

</owl:ObjectProperty>

Semantic Technologies 6 26

OWL (in functional syntax) as DL: Class Constructors

A A
owl:Thing > (top)

owl:Nothing ⊥ (bottom)

ObjectIntersectionOf(C1 C2 . . .Cn) C1 u C2 u · · · u Cn (and)

ObjectUnionOf(C1 C2 . . .Cn) C1 t C2 t · · · t Cn (or)

ObjectComplementOf(C) ¬C (not)

ObjectOneOf(a1 a2 . . .an) {a1} t {a2} t · · · t {an}

ObjectAllValuesFrom(R C) ∀R.C (all R-successors are in C)

ObjectSomeValuesFrom(R C) ∃R.C (an R-successor exists in C)

ObjectMinCardinality(R n C) ≥ n R.C

(there are at least n R-successors are in C)

ObjectMaxCardinality(R n C) ≤ n R.C

(there are at most n R-successors are in C)

ObjectHasValue(R a) ∃R.{a} (a is an R-successor)

Semantic Technologies 6 27

OWL as DL: Classes

SubClassOf(C D) C v D (all C are D)

EquivalentClasses(C1 C2 . . .Cn) C1 ≡ C2, C2 ≡ C3, . . . ,

Cn−1 ≡ Cn

DisjointClasses(C1 C2 . . .Cn) C1 v ¬C2, C1 v ¬C3, . . . , C1 v ¬Cn

C2 v ¬C3, . . . , C2 v ¬Cn

. . .
Cn−1 v ¬Cn

.

.

C1 C2

¬C2

C1 v ¬C2

C1 C2

¬C1

C2 v ¬C1is the same as

Example: C1 and C2 are disjoint:

Semantic Technologies 6 28

OWL as DL: Object Properties

SubObjectPropertyOf(R S) R v S

EquivalentObjectProperties(R S) R ≡ S

InverseObjectProperties(R S) R ≡ S−

.

.

b

b

b b

property R and its inverse R−

TransitiveObjectProperty(R) R ◦R v R

FunctionalObjectProperty(R) > v ≤1 R

InverseFunctionalObjectProperty(R) > v ≤1 R−.

.

b

b b b

++ +

R is functional

.

.

b b b

b

+

R is inverse functional
SymmetricObjectProperty(R) R− v R

ObjectPropertyRange(R C) > v ∀R.C

ObjectPropertyDomain(R D) ∃R.> v D

Semantic Technologies 6 29

OWL as DL: Domain and Range Constraints

ObjectPropertyRange(R C)

> v ∀R.C

.

.

b

b

b

b+
C

ObjectPropertyDomain(R D)

∃R.> v D

.

.

b

b
b

∃R.>D

NB: another way of representing
the range constraint:

∃R−.> v C

the domain constraint:

> v ∀R−.D

Semantic Technologies 6 30

OWL as DL: Individuals

DifferentIndividuals(a1 a2 . . .an) a1 : ¬{a2, a3, . . . , an}
a2 : ¬{a3, . . . , an}
. . .
an−1 : ¬{an}

SameIndividuals(a1 a2 . . .an) a1 : {a2}
a2 : {a3}
. . .

an−1 : {an}

The Unique Name Assumption (UNA) says that
any two individuals with different names are different individuals

• an individual a is an instance of a class C a : C

• an individual a is R-related to an individual b (a, b) : R
R a property

Semantic Technologies 6 31

OWL: summary

• OWL is the proposed standard for Web-ontologies. It allows us to describe
the semantics of knowledge in a machine-accessible way

• OWL builds upon RDF/S: (XML-based) RDF syntax is used;
instances are defined using RDF descriptions;

and most RDF modelling primitives are used

• Formal semantics and reasoning support is provided through the mapping
of OWL to logics.

Predicate logic and description logics have been used for this purpose

Useful link: OWL tutorial at

http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/

Semantic Technologies 6 32

http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/

Department ontology

(classes to be created)

1. “first-year modules are taught by professors”

2. “all academic staff members must teach at least
one undergraduate module”

3. “a department must have at least 10 and at most 30 members”

4. “mathematics modules are taught by MZ”

5. “modules and staff members are disjoint”

6. “personAtUni are staff members and students”

7. “administrative staff are those staff members
that are neither academic nor technical support staff ”

Semantic Technologies 6 33

Department ontology (cont.)

8. “PhD students are not allowed to teach first-year modules”

9. “MZ teaches SW and MfC”

10. “Each professor teaches exactly two modules”

11. “Academic staff members are PTW, MZ and SM”

12. “Professors can only teach MSc modules”

13. “Each academic staff member is either a lecturer, or a senior lecturer, or a
reader, or a professor”

14. “Each module is taught by one person”

15. “Neither AP nor PTW teaches a maths module”

16. “Professors are ML, MZ, AP and PTW”

Semantic Technologies 6 34

