
Reminder: RDF triples

• The RDF data model is similar to classical conceptual modelling approaches
such as entity–relationship or class diagrams

• it is based on the idea of making statements about resources (in particular
web resources) in the form of subject-predicate-object triples

• Resources are identified by IRIs

• A triple consists of subject, predicate, and object

• The subject can be a resource or a blank node

• The predicate must be a resource

• The object can be a resource, a blank node, or a literal

Semantic Technologies 4 1

Reminder: RDF literals

• Objects of triples can be literals
(subjects and predicates of triples cannot be literals)

• Literals can be

Plain, without a language tag:

geo:berlin geo:name ”Berlin” .

Plain, with a language tag:

geo:germany geo:name ”Deutschland”@de .

geo:germany geo:name ”Germany”@en .

Typed, with a IRI indicating the type:

geo:berlin geo:population ”3431700”ˆˆxsd:integer .

more details at https://www.w3.org/2007/02/turtle/primer/
https://www.w3.org/TR/turtle/

Semantic Technologies 4 2

https://www.w3.org/2007/02/turtle/primer/
https://www.w3.org/TR/turtle/

Reminder: RDF blank nodes

• Blank nodes are anonymous resources

• A blank node can only be used as the subject or object of an RDF triple

:x a geo:City .

:x geo:containedIn geo:germany .

:x geo:name ”Berlin” .

Semantic Technologies 4 3

SPARQL Protocol And RDF Query Language

(pronounced as sparkle)

• SPARQL is a W3C Recommendation since 15/01/2008; uses SQL-like syntax

SPARQL 1.1 is a W3C Recommendation since 21/03/2013

• SPARQL is a query language for RDF graphs (supported by many graph databases)

• Simple RDF graphs are used as query patterns

• These query graphs are represented using the Turtle syntax

• SPARQL additionally introduces query variables to specify parts of
a query pattern that should be returned as a result

• Does not support RDFS, only RDF (SPARQL 1.1 supports RDFS entailment regime)

more details: http://www.w3.org/TR/rdf-sparql-query/

Tutorials: http://www.ibm.com/developerworks/xml/library/j-sparql/

http://jena.apache.org/tutorials/sparql.html
Semantic Technologies 4 4

http://www.w3.org/TR/rdf-sparql-query/
http://www.ibm.com/developerworks/xml/library/j-sparql/
http://jena.apache.org/tutorials/sparql.html

Library data in RDF

@prefix lib: <http://www.lib.org/schema#> .
@prefix : <http://www.bremen-lib.org/> .

:library lib:location ”Bremen” .
:jlb lib:name ”Jorge Luis Borges” .
:b1 lib:author :jlb ;

lib:title ”Labyrinths” .
:b2 lib:author :jlb ;

lib:title ”Doctor Brodie’s Report” .
:b3 lib:author :jlb ;

lib:title ”The Garden of Forking Paths” .
:abc lib:name ”Adolfo Bioy Casares” .
:b4 lib:author :abc ;

lib:title ”The Invention of Morel” .
:jc lib:name ”Julio Cortázar” .
:b5 lib:author :jc ;

lib:title ”Bestiario” .
:b6 lib:author :jc ;

lib:title ”Un tal Lucas” .
:jc lib:bornin ”Brussels” .

Semantic Technologies 4 5

SPARQL: simple query

Query over the library RDF document: find the names of authors

PREFIX lib: <http://www.lib.org/schema#>
SELECT ?author
WHERE
{

?x lib:name ?author .
}

query variable

query pattern

variable identifier

There are three triples having the form of the query pattern:

:jlb lib:name ”Jorge Luis Borges” .
:abc lib:name ”Adolfo Bioy Casares” .
:jc lib:name ”Julio Cortázar” .

Answer (assignments to ?author)

author
”Jorge Luis Borges”

”Adolfo Bioy Casares”
”Julio Cortázar”

the choice of variable names is arbitrary: for example, you can use ?y in place of ?author

Semantic Technologies 4 6

SPARQL: basic graph pattern

Query over the library RDF document: find the names of authors and
the titles of their books

SELECT ?author, ?title
WHERE
{

?b lib:author ?a .
?a lib:name ?author .
?b lib:title ?title .
}

query variables

query pattern
aka basic graph pattern or BGP

variable identifiers
Answer (assignments to ?author and ?title)

author title
”Jorge Luis Borges” ”Labyrinths”
”Jorge Luis Borges” ”Doctor Brodie’s Report”
”Jorge Luis Borges” ”The Garden of Forking Paths”

”Adolfo Bioy Casares” ”The Invention of Morel”
”Julio Cortázar” ”Bestiario”
”Julio Cortázar” ”Un tal Lucas”

variables may appear as subjects, predicates and objects of RDF triples

Semantic Technologies 4 7

COUNT, LIMIT, DISTINCT

Find up to ten people whose daughter is a professor:

PREFIX eg: <http://example.org/>
SELECT ?parent
WHERE
{ ?parent eg:hasDaughter ?child .

?child eg:occupation eg:Professor .
}
LIMIT 10

Count all triples in the database: (COUNT(*) counts all results)

SELECT (COUNT(*) AS ?count)
WHERE { ?subject ?predicate ?object . }

Count all predicates in the database:

SELECT (COUNT(DISTINCT ?predicate) AS ?count)
WHERE { ?subject ?predicate ?object . }

Semantic Technologies 4 8

The shape of a SPARQL query

SELECT queries consist of the following major blocks:

• Prologue: for PREFIX and BASE declarations (work as in Turtle)

• Select clause: SELECT (and possibly other keywords) followed either by a list
of variables (e.g., ?person) and variable assignments

(e.g., (COUNT(*) as ?count)), or by * (selecting all variables)

• Where clause: WHERE followed by a pattern (many possibilities)

• Solution set modifiers: such as LIMIT or ORDER BY

SPARQL supports further types of queries, which primarily exchange
the SELECT clause for something else:

• ASK query: to check whether there are results at all (without returning any)

• CONSTRUCT query: to build an RDF graph from query results

• DESCRIBE query: to get an RDF graph with additional information on each
query result (application dependent)

Semantic Technologies 4 9

Basic SPARQL syntax

RDF terms are written like in Turtle:

• IRIs may be abbreviated using qualified:names (requires
PREFIX declaration) or <relativeIRIs> (requires BASE declaration)

• Literals are written as usual, possibly also with abbreviated datatype IRIs

• Blank nodes are written as usual

In addition, SPARQL supports variables:

A variable is a string that begins with ? or $, where the string can consist of
letters (including many non-Latin letters), numbers, and the symbol

The variable name is the string after ? or $, without this leading symbol.

The variables ?var1 and $var1 have the same variable name
(and same meaning across SPARQL).

Convention: Using ? is widely preferred these days!

Semantic Technologies 4 10

Basic Graph Patterns

We can now define the simplest kinds of patterns:

A triple pattern is a triple s p o . where s and o are arbitrary RDF
terms or variables, and p is an IRI or a variable.

A basic graph pattern (BGP) is a set of triple patterns.

NB. These are semantic notions, which are not directly defining query syntax.
Triple patterns describe query conditions where we are looking for matching
triples. BGPs are interpreted conjunctively, i.e.,

we are looking for a match that fits all triples at once.

Syntactically, SPARQL supports an extension of Turtle (that allows variables ev-
erywhere and literals in subject positions). All Turtle shortcuts are supported.

Convention: We will also use triple pattern and basic graph pattern to refer
to any (syntactic) Turtle snippet that specifies such (semantic) patterns.

Semantic Technologies 4 11

Blank nodes in SPARQL

Remember: blank node (bnode) IDs are syntactic aids to allow us serialising
graphs with such nodes. They are not part of the RDF graph.

What is the meaning of blank nodes in query patterns?

• They denote an unspecified resource (in particular: they do not ask for a
bnode of a specific node id in the queried graph!)

• In other words: they are like variables but cannot be used in SELECT
• Turtle bnode syntax can be used ([] or :nodeId), but any node id can only

appear in one part of the query (we will see complex queries with many
parts later)

What is the meaning of blank nodes in query results?

• Such bnodes indicate that a variable was matched to a bnode in the data

• The same node id may occur in multiple rows of the result table, meaning
that the same bnode was matched

• However, the node id used in the result is an auxiliary id that might be differ-
ent from what was used in the data (if an id was used there at all!)

Semantic Technologies 4 12

Blank nodes in SPARQL (cont.)

– There is no reason to use blank nodes in a query:
you can get the same functionality using variables

SELECT ?a ?b
WHERE
{

?a :predicate :blanknode .
:blanknode :otherPredicate ?b .

}

=

SELECT ?a ?b
WHERE
{

?a :predicate ?variable .
?variable :otherPredicate ?b .
}

Semantic Technologies 4 13

Blank node example

Data

:a foaf:name ”Alice” .
:b foaf:name ”Bob” .

SPARQL query

SELECT ?x ?name
WHERE
{
?x foaf:name ?name .
}

Answer

x name
:c ”Alice”
:d ”Bob”

Semantic Technologies 4 14

Answers to BGPs

What is the result of a SPARQL query?

A solution mapping is a partial function µ from variable names to RDF terms.

A solution sequence is a list of solution mappings.

NB. When no specific order is required, the solutions computed for a SPARQL
query can be represented by a multiset

(= ‘a set with repeated elements’ = ‘an unordered list’).

Given an RDF graph G and a BGP P , a solution mapping µ is a solution to P
over G if it is defined exactly on the variable names in P and there is a

mapping σ from blank nodes to RDF terms such that µ(σ(P)) ⊆ G.

The cardinality of µ in the multiset of solutions is the number of distinct such
mappings σ. The multiset of these solutions is denoted by evalG(P),

where we omit G if clear from the context

NB. Here, we write µ(σ(P)) to denote the graph given by the triples in P after
first replacing bnodes according to σ, and then replacing variables

according to µ.
Semantic Technologies 4 15

Example 1

eg:Arrival eg:actorRole eg:aux1, eg:aux2 .
eg:aux1 eg:actor eg:Adams ; eg:character ”Louise Banks” .
eg:aux2 eg:actor eg:Renner ; eg:character ”Ian Donnelly” .
eg:Gravity eg:actorRole [eg:actor eg:Bullock;

eg:character ”Ryan Stone”] .

The BGP ?film eg:actorRole [] has the solution multiset:

film cardinality
eg:Arrival 2
eg:Gravity 1

The cardinality of the first solution mapping is 2 since the bnode can be mapped
to two resources, eg:aux1 and eg:aux2, to find a subgraph.

Semantic Technologies 4 16

Example 2

eg:Arrival eg:actorRole eg:aux1, eg:aux2 .
eg:aux1 eg:actor eg:Adams ; eg:character ”Louise Banks” .
eg:aux2 eg:actor eg:Renner ; eg:character ”Ian Donnelly” .
eg:Gravity eg:actorRole [eg:actor eg:Bullock;

eg:character ”Ryan Stone”] .

The BGP ?film eg:actorRole [eg:actor ?person]
has the solution multiset:

film person cardinality
eg:Arrival eg:Adams 1
eg:Arrival eg:Renner 1
eg:Gravity eg:Bullock 1

Semantic Technologies 4 17

GROUP, ORDER, FILTER

Find the person with most friends:

SELECT ?person (COUNT(*) AS ?friendCount)
WHERE
{ ?person <http://example.org/hasFriend> ?friend . }
GROUP BY ?person
ORDER BY DESC(?friendCount) LIMIT 1

The GROUP BY clause allows aggregation over one or more properties
(partition results into groups based on the expression(s) in the GROUP BY clause)

The ORDER BY clause establishes the order of a solution sequence

Find pairs of siblings:

SELECT ?child1 ?child2
WHERE
{ ?parent <http://example.org/hasChild> ?child1, ?child2 .
FILTER (?child1 != ?child2)
}

Semantic Technologies 4 18

SELECT clauses

SELECT clauses

• specify the bindings that get returned

• may define additional results computed by functions

• may define additional results computed by aggregates

Find cities and their population densities:

SELECT ?city (?population/?area AS ?populationDensity)
WHERE {

?city rdf:type eg:city ;
eg:population ?population ;
eg:areaInSqkm ?area .

}

The keyword DISTINCT can be used after SELECT to remove duplicate solutions

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT (CONCAT(?G, ” ”, ?S) AS ?name)
WHERE { ?P foaf:givenName ?G ; foaf:surname ?S }

what are the results?

Semantic Technologies 4 19

Solution set modifiers

SPARQL supports several expressions after the query’s WHERE clause:

• ORDER BY defines the desired order of results

– Can be followed by several expressions (separated by space)

– May use order modifiers ASC() (default) or DESC()

• LIMIT defines a maximal number of results

• OFFSET specifies the index of the first result within the list of all results

NB. Both LIMIT and OFFSET should only be used on explicitly ordered results

In Wikidata, find the largest German cities, rank 6 to 15: (see Wikidata identifiers)

SELECT ?city ?population
WHERE {
?city wdt:P31 wd:Q515 ; # instance of city

wdt:P17 wd:Q183 ; # country Germany
wdt:P1082 ?population . # get population

} ORDER BY DESC(?population) OFFSET 5 LIMIT 10

Semantic Technologies 4 20

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Identifiers

OPTIONAL

Get the names of authors (in the dataset on page 5) and also
the places where they were born, if this information is available

SELECT ?author, ?birthplace
WHERE
{

?x lib:name ?author .
OPTIONAL { ?x lib:bornin ?birthplace }
}

optional pattern

Answer

author birthplace
”Jorge Luis Borges”

”Adolfo Bioy Casares”
”Julio Cortázar” ”Brussels”

because the triple pattern for birthplace is optional, there is a pattern solution for
the authors who do not have information about their birthplace.

Without OPTIONAL, there would be only one solution: ”Julio Cortázar” ”Brussels”

Semantic Technologies 4 21

UNION

an RDF graph containing information about people’s names from FOAF and vCard

prefix foaf: <http://xmlns.com/foaf/0.1/> .
prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

:a foaf:name ”Matt Jones” .
:b foaf:name ”Sarah Jones” .
:c vcard:FN ”Becky Smith” .
:d vcard:FN ”John Smith” .

a SPARQL query that retrieves the names regardless of the format:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>
SELECT ?name
WHERE
{
{ [] foaf:name ?name . } UNION { [] vcard:FN ?name . }
}

Answer

name
”Matt Jones”
”Sarah Jones”
”Becky Smith”
”John Smith”

or { ?x foaf:name ?name . } UNION { ?y vcard:FN ?name . }

Semantic Technologies 4 22

MINUS

(A query part within { } is called a group graph pattern in SPARQL)

The MINUS operator allows us to remove the results of one group graph pattern
from the results of another

In Wikidata, find living people who are composers by occupation:

SELECT ?person
WHERE {
{ ?person wdt:P106 wd:Q36834 . } # ?person occupation: composer
MINUS
{ ?person wdt:P570 [] . } # ?person date of death: some value
}

Similar results can often be achieved with FILTER NOT EXISTS,
but the two are used differently:

MINUS and FILTER NOT EXISTS behave differently,
e.g., when applied to a group graph patterns that do not share any variables.

Semantic Technologies 4 23

Testing For the Absence/Presence of a Pattern

Data
@prefix : <http://example/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
:alice rdf:type foaf:Person .
:alice foaf:name “Alice” .
:bob rdf:type foaf:Person .

Query 1

SELECT ?person
WHERE
{ ?person rdf:type foaf:Person .
FILTER NOT EXISTS { ?person foaf:name ?name . }
}

Answer

person
<http://example/bob>

Query 2

SELECT ?person
WHERE
{ ?person rdf:type foaf:Person .
FILTER EXISTS { ?person foaf:name ?name . }
}

Answer

person
<http://example/alice>

Semantic Technologies 4 24

Filters

Data

:book1 dc:title ”SPARQL Tutorial” .
:book1 ns:price 42 .
:book2 dc:title ”The Semantic Web” .
:book2 ns:price 23 .

SPARQL query that retrieves the titles of books whose price is less than 30.5

SELECT ?title ?price
WHERE
{
?x ns:price ?price .
FILTER (?price < 30.5)
?x dc:title ?title .
}

Answer

title price
”The Semantic Web” 23

Available filters:
– logical: && || !
– maths: + − ∗ /

– SPARQL tests: isURI, isBlank, isLiteral, bound
– ...

Semantic Technologies 4 25

Optional and filters

What does the following query mean?

SELECT ?person ?spouse
WHERE {
?person wdt:P106 wd:Q36834 ; # ?person occupation: composer

wdt:P569 ?bd . # ?person date of birth: ?bd
OPTIONAL {
?person wdt:P26 ?spouse . # ?person spouse: ?spouse
?spouse wdt:P569 ?bd2 . # ?spouse date of birth: ?bd2
FILTER (year(?bd)=year(?bd2)) # born in same year
}
}

‘Composers, and, optionally, their spouses that were born in the same year.’

Semantic Technologies 4 26

Subqueries

Subqueries allow us to use results of queries within queries, typically to achieve
results that cannot be accomplished using other patterns.

In Wikidata, find universities located in one of the 15 largest German cities:

SELECT DISTINCT ?university ?city
WHERE {
{ SELECT DISTINCT ?city ?population

WHERE { ?city wdt:P31/wdt:P279* wd:Q515 ; # instance of: city
wdt:P17 wd:Q183 ; # country: Germany
wdt:P1082 ?population . # population: ?population

} ORDER BY DESC(?population) LIMIT 15 # get top 15 by ?population
}
?university wdt:P31/wdt:P279* wd:Q3918 ; # instance of: university

wdt:P131+ ?city . # located in+: ?city
}

(the meaning of ‘property paths’ * and + will be explained later)

Semantic Technologies 4 27

Bound variables

SPARQL query to return the URIs that identify cities of type ‘Cities in Texas’ and
their total population in descending order (i.e., bigger cities first)

Only those cities that do not have a metro population will be returned
At most 10 results will be returned

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbp: <http://dbpedia.org/ontology/>

SELECT *
WHERE
{

?city rdf:type <http://dbpedia.org/class/yago/CitiesInTexas> .
?city dbp:populationTotal ?popTotal .
OPTIONAL {?city dbp:populationMetro ?popMetro .}
FILTER(! bound(?popMetro))
}
ORDERED BY desc(?popTotal)
LIMIT 10

bound(var) evaluates to TRUE iff var is bound to some value

Semantic Technologies 4 28

Aggregate functions

Data

:org1 :affiliates :auth1 .
:org1 :affiliates :auth2 .
:auth1 :writesBook :book1 .
:auth1 :writesBook :book2 .
:book1 :price 9 .
:book2 :price 5 .
:auth2 :writesBook :book3 .
:book3 :price 7 .
:org2 :affiliates :auth3 .
:auth3 :writesBook :book4 .
:book4 :price 7 .

SPARQL query

SELECT ?org SUM(?lprice) AS ?totalPrice
WHERE
{
?org :affiliates ?auth .
?auth :writesBook ?book .
?book :price ?lprice .
}
GROUP BY ?org
HAVING (SUM(?lprice) > 10)

Find the total price of books written by authors

affiliated with some organisation:

output the organisation id and total price

only if the total price is > 10

Answer

org totalPrice
:org1 21

aggregate functions: COUNT, SUM, MIN, MAX, AVG

Semantic Technologies 4 29

Property paths

– Find the name of any person that Alice knows:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
?x foaf:mbox <mailto:alice@example> .
?x foaf:knows/foaf:name ?name .
}

– Find the names of people two “foaf:knows” links away

SELECT ?name
WHERE {
?x foaf:mbox <mailto:alice@example> .
?x foaf:knows/foaf:knows/foaf:name ?name .
}

Exercise: rewrite these queries without using /
Semantic Technologies 4 30

Property paths (cont.)

– Find all the people :x connects to via the foaf:knows relationship
(using a path of an arbitrary length)

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person
WHERE
{ :x foaf:knows+ ?person . }

+ means ‘one or more occurrences’

– Find all types, including supertypes, of each resource in the dataset

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?x ?type
WHERE
{ ?x rdf:type/rdfs:subClassOf∗ ?type . }

/ denotes sequence, ∗means ‘zero or more occurrences’

Semantic Technologies 4 31

CONSTRUCT

SELECT creates a table with the assignments to the selected variables
SELECT * selects all variables in the query

Keyword CONSTRUCT returns a set of triples (that is, an RDF graph)

1 PREFIX lib: <http://www.lib.org/schema>
2 CONSTRUCT {
3 ?b lib:author ?a .
4 ?a lib:name ?author .
5 ?b lib:title ?title .
6 }
7 WHERE {
8 ?b lib:author ?a .
9 ?a lib:name ?author .

10 ?b lib:title ?title .
11 FILTER regex(?author, "ˆJulio")
12 }

Keyword FILTER imposes additional restrictions on queries:
?author should begin with Julio

Answer

RDF triples
:jc lib:name ”Julio Cortázar” .
:b5 lib:author :jc .
:b5 lib:title ”Bestiario” .
:b6 lib:author :jc .
:b5 lib:title ”Un tal Lucas” .

Semantic Technologies 4 32

Exercise

What does the following query construct?

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>
3 CONSTRUCT { <http://example.org/person#Alice> vcard:FN ?name }
4 WHERE { ?x foaf:name ?name }

The answer to this query over the RDF graph

1 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
2 _:a foaf:name "Alice" .
3 _:a foaf:mbox <mailto:alice@example.org> .

is the RDF graph

1 @prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
2 <http://example.org/person#Alice> vcard:FN "Alice" .

Semantic Technologies 4 33

SPARQL endpoint

– A SPARQL endpoint enables users (human or other) to query a
knowledge base via SPARQL

– Results are typically returned in one or more machine-processable formats.

– Therefore, a SPARQL endpoint is mostly conceived as a machine-friendly
interface towards a knowledge base.

– Both the formulation of the queries and the human-readable presentation of
the results should typically be implemented by the calling software

– Several Linked Data sets exposed via SPARQL endpoint:
send your query, receive the result!

DBpedia and Wikidata

Musicbrainz

World Factbook

LinkedMDB

DBLP ...

Semantic Technologies 4 34

http://dbpedia.org/sparql
https://query.wikidata.org
http://dbtune.org/musicbrainz/sparql
http://www4.wiwiss.fu-berlin.de/factbook/snorql/
http://data.linkedmdb.org/sparql
http://dblp.rkbexplorer.com/sparql/

