
Semantic technologies: the layered approach

Unicode URI

XML + namespaces + XML Schema

RDF + RDF Schema

Ontology vocabulary

Logic

Proof

Trust

D
ig

ita
lS

ig
n

a
tu

re

Self-
descr.
doc.

Data

Data

Rules

information exchange

relational data

semantics + reasoning

(by T. Berners-Lee)

Databases all over the world contain billions of items of data, but some of them are
stored in proprietary database formats, while some are available only in human-
readable form. To make all this data accessible to computers, we must do it with

a language they can ‘understand’

Semantic Technologies 3 1

Why not XML?

XML doesn’t provide any means for talking about the semantics of data

Michael is a lecturer of the Semantic Technologies module

<module name=′′Semantic Technologies′′>
<lecturer>Michael</lecturer>

</module>

or

<lecturer name=′′Michael′′>
<module>Semantic Technologies</module>

</lecturer>

or

<teachingOffering>
<module>Semantic Technologies</module>
<lecturer>Michael</lecturer>

</teachingOffering>

How to assign ‘meaning’ to tag nesting?

Let us see how other disciplines represent such data

Semantic Technologies 3 2

Semantic networks

A semantic network is a graphic notation for representing knowledge
in patterns of interconnected nodes and edges:

• the nodes represent objects or concepts
• the links represent semantic relations between nodes

t t

Mother

Female

Father

M a l e

Homo sapiens

Child

Eve Adam
-

6 6

6 6

��
�
��
�*

HH
H
HH

HY

�
�
�
�
��3

Q
Q
Q

Q
QQk

Q
Q

Q
QQk

�
�
�
��3

loves

is is

is is

is is

parent parent

has has

Eve is a mother
Eve loves Adam

Every child has a father
Every mother is a female
Every female is a human being
. . .

Semantic networks were first developed for

AI and machine translation in the 1960s,

but earlier versions have long been used in

philosophy, psychology, and linguistics.

Semantic Technologies 3 3

Grammar: subject, predicate, object

According to a tradition going back to Aristotle, every sentence can be divided into

two main constituents, one being the subject and the other its predicate.

The subject of a sentence is sometimes defined as the argument that generally refers

to the origin of the action or the undergoer of the state shown by the predicate.

The predicate is the rest of the sentence apart from the subject.

A predicate is an expression that can be true of something.

An object in grammar is a sentence element and part of the sentence predicate.

It denotes somebody or something involved in the subject’s ‘performance’ of the verb.

• Adam loves Eve

• MZ teaches ST

• MZ is a lecturer

Semantic Technologies 3 4

Mathematical logic: relations or predicates

In mathematical logic, these sentences are represented by means of
relations or predicates:

loves(adam,eve), teaches(mz, st), lecturer(mz)

• A (binary) relation R between sets A and B is some set of ordered pairs
(x, y) such that x ∈ A and y ∈ B. If A = B then R is a relation on A.

e.g., all pairs (person1 , person2) such that person1 loves person2

• The domain of R is the set of all objects x such that (x, y) ∈ R for some y

• The range of R is the set of all objects y such that (x, y) ∈ R for some x

More generally, an n-ary relation, for n ≥ 1, on some set A
(such as: people or numbers or even all things in the universe)

is a set of n-tuples (x1, x2, . . . , xn) of elements of A.

• A 1-ary (unary) relation on A is simply a subset of A.
Unary relations are also called classes

Semantic Technologies 3 5

RDF (graphs instead of trees)

RDF stands for Resource Description Framework http://www.w3.org/RDF/

• Resources are identified by IRIs

• Statements describe properties of resources by means of triples of the form

.

.

subject
.

.

object-predicate

6
resource

(identified by IRI)

book
publisher

place
person

. . .

6

property
(identified by IRI)

written by
has title

. . .

6
value

(either literal, e.g., data value,
or IRI identifying a resource)

• Properties are identified by IRIs and, therefore, are resources

• there are also blank nodes that do not identify specific resources
Semantic Technologies 3 7

http://www.w3.org/RDF/

RDF Graph

A collection of RDF statements can be represented as a graph, which is:

• directed (edges have a source and a target)

• edge-labelled (each edge has one label)

• a restricted form of multi-graphs (there may be multiple edges between
the same vertices, but only if they have different labels)

• (partially) vertex-labelled : blank nodes are not labelled by IRIs or literals

Example of such a graph:

Melitta BentzDresden Melitta company

coffee filter

founder

named after

born in

invention inventor
produces

instance of

What does it say? Identify triples, their subject, predicate and object

Semantic Technologies 3 8

IRIs as labels

But recall that actually subjects, predicates and (some) objects in RDF are IRIs:

• IRIs define resources that appear as vertices in the graph

• IRIs are used as arrow (property) labels

So our example RDF graph should look like

https://example

.org/Melitta-Bentz

https://www.

dresden.de/#uri

https://example

.org/Melitta

https://example

.org/company

https://example

.org/coffee-filter

https://example
.org/founder

https://example
.org/named-after

https://example
.org/born-in

https://example
.org/invention https://example

.org/inventor
https://example
.org/produces

http://www.w3.org/1999/
02/22-rdf-syntax-ns#type

NB. It is not always obvious what an IRI is supposed to refer to, and many IRIs may refer

to the same thing — we cannot assume that all RDF data in the world is integrated.
Semantic Technologies 3 9

Which IRIs to use?

Where do the IRIs that we use in RDF graphs come from?

• They can be newly created for an application
; avoid confusion with resources in other graphs

• They can be IRIs that are already in common use
; support information integration and re-use across graphs

Guidelines for creating new IRIs:

1. Check if you could re-use an existing IRI ; avoid duplication if feasible

2. Use http(s) IRIs ; useful protocols, registries, resolution mechanisms

3. Create new IRIs based on domains that you own ; clear ownership; no
danger of clashing with other people’s IRIs

4. Don’t use URLs of existing web pages, unless you want to store data about
pages ; avoid confusion between pages and more abstract resources

5. Make your IRIs return some useful content via http(s) ; helps others to get
information about your resources

Semantic Technologies 3 10

Why IRIs?

IRIs may seem a bit complicated

• They look a bit technical and complex

• They are hard to display or draw in a graph

• The guidelines just given may seem quite demanding to newcomers

However, it’s not that hard:

• RDF can work with any form of IRI (most tools would probably accept any
Latin letter string with a colon inside!)

• The guidelines help sharing graphs across applications — a strength of RDF

• Internet domain name registration is a very simple way to define ownership
in a global data space

• IRIs should not be shown to users (we’ll introduce human-readable labels)

In RDF, IRIs typically look like ‘normal’ URLs, often with fragment identifiers

to point at specific parts of a document (such as a section in HTML) #
http://dublincore.org/usage/documents/principles/#element

Semantic Technologies 3 11

http://dublincore.org/usage/documents/principles/#element

Data values

IRIs can represent anything, but data values (numbers, strings, times, . . .)
should not be represented by IRIs!

Why not use IRIs here too?

1. Data values are the same everywhere
; no use in application-specific IRIs

2. Many RDF-based applications need a built-in understanding of
data values (e.g., for sorting content)

3. Data values are usually more ‘interpreted’ than IRIs.

Using a hypothetical scheme ‘integer’, the IRIs integer:42 and inte-
ger:+42 would be different, but intuitively they should represent the same
number.

Semantic Technologies 3 12

Encoding data values

• Data values in RDF are written as "lexical value"ˆˆdatatype-IRI
• They are drawn as rectangular nodes in RDF graphs

Example

https://example
.org/Melitta-Bentz

https://www.
dresden.de/#uri

"547172"ˆˆxsd:int

"Melitta Bentz"ˆˆxsd:string

"1873-01-31"ˆˆxsd:date
https://example

.org/coffee-filter

https://example

.org/born-in
http://www.w3.org/2000/

01/rdf-schema#label

https://example.
org/birthdatehttps://example

.org/invention https://example
.org/inventorhttps://example.

org/population

RDF supports many datatypes, most of which based on XML Schema (“xsd”):
string , boolean , integer , float , dateTime , date , time , gYear , etc.;
see https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#section-Datatypes

“string”@language: "Pommes Frites"@de, "chips"@en-UK, "French fries"@en-US
Semantic Technologies 3 13

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#section-Datatypes

Blank nodes

RDF also supports vertices that are not identified by an IRI:
they are called blank nodes or bnodes

• Intuitively, bnodes are placeholders for some specific (but unspecified) nodes

• Their use makes the claim: ‘there is something at this position’

• Similar to existentially quantified variables (∃x, i.e., ‘there exists an x’)
in logic and maths

Example: Blank nodes have historically been used for auxiliary vertices

https://www.

dresden.de/#uri

"51.049259"ˆˆxsd:decimal

"13.73836"ˆˆxsd:decimal

https://example
.org/coordinates

https://example
.org/latitude

https://example
.org/longitude

(represent this graph as a database table)

We’ll discuss other uses of blank nodes later
Semantic Technologies 3 14

RDF Graphs: definition

We have defined all the necessary types of RDF terms : IRIs, bnodes, literals.

An RDF graph is a set of triples consisting of the following parts:

• a subject, which is an IRI or blank node

• a predicate, which is an IRI

• an object, which is an IRI, blank node, or literal

Notes:

• This view resembles a (labelled) adjacency list encoding (for representing graphs)

• The restrictions on the use of bnodes and literals in triples are a bit arbitrary

• RDF graphs are mostly syntactic (rather what we write than what we mean)

• In particular, literals are not interpreted when defining graphs
; multiple ways of writing the same value lead to multiple graphs
; ill-formed literals are allowed in graphs

Semantic Technologies 3 15

RDF Serialisations

What we outlined so far is the abstract syntax of RDF. To exchange RDF graphs,
we need concrete representation languages.

There are numerous syntactic formats available:

• N-Triples as a simple line-based format

• Turtle adds convenient abbreviations to N-Triples

• JSON-LD for encoding RDF graphs in JSON

• RDF/XML for encoding RDF graphs in XML

• RDFa for embedding RDF graphs into HTML (RDF in Attributes)

• ...

Further historic/unofficial formats exist but are hardly relevant today.

Semantic Technologies 3 16

N-Triples

N-Triples is almost the simplest format conceivable:

• Each line encodes one triple:

– IRIs are written in pointy brackets, e.g.,
<https://www.dresdenrespekt.de/>

– Literals are written as usual with a given type IRI, e.g.,
"2018-10-21"ˆˆ<http://www.w3.org/2001/XMLSchema#date> or

"Wir sind mehr"@de

– Blank nodes are written as :stringId , where stringId is a string that
identifies the blank node within the document (no global meaning!)

– Parts are separated by whitespace, and lines end with .

• Unicode is supported, but various escape sequences also work

• Comments are allowed after triples (nowhere else); they start with #

Full specification at https://www.w3.org/TR/n-triples/
Semantic Technologies 3 17

https://www.dresdenrespekt.de/
https://www.w3.org/TR/n-triples/

Example

https://example

.org/Melitta-Bentz

https://www.

dresden.de/#uri

"547172"ˆˆxsd:int

"Melitta Bentz"@en

"1873-01-31"ˆˆxsd:date

https://example
.org/born-in

http://www.w3.org/2000/
01/rdf-schema#label

https://example.
org/birthdatehttps://example

.org/invention https://example
.org/inventor

https://example.
org/population

could be encoded as the following N-triples:

<https://example.org/Melitta-Bentz> <http://www.w3.org/2000/01/rdf-schema#label> "Melitta Bentz"@en .

<https://example.org/Melitta-Bentz> <https://example.org/birthdate>

"1873-01-31"ˆˆ<http://www.w3.org/2001/XMLSchema#date> .

<https://example.org/Melitta-Bentz> <https://example.org/invention> :1 .

<https://example.org/Melitta-Bentz> <https://example.org/born-in> <https://www.dresden.de/#uri> .

<https://www.dresden.de/#uri> <https://example.org/population>

"547172"ˆˆ<http://www.w3.org/2001/XMLSchema#int> .

:1 <https://example.org/inventor> <https://example.org/Melitta-Bentz> .

Semantic Technologies 3 18

N-Triples: Summary

Advantages

• Very simple

• Fast and easy to parse

• Processable even with basic text-processing tools, e.g., grep

Disadvantages:

• Somewhat inefficient in terms of storage space

• Not particularly human-friendly (reading and writing)

Semantic Technologies 3 19

Turtle: Terse RDF Triple Language

The Turtle format extends N-Triples with several convenient abbreviations:

• Prefix declarations and base namespaces allow us to shorten IRIs

• If we terminate triples with ; (or with ,) then the next triple is assumed to start
with the same subject (respectively, the same subject and predicate)

• Blank nodes can be encoded using square brackets; they might contain
predicate-object pairs that refer to the blank node as subject

• More liberal support for comments (possibly on own line)

• Simpler forms for some types of data values

There are several other shortcuts and simplifications. Full specification is at
https://www.w3.org/TR/turtle/

Semantic Technologies 3 20

https://www.w3.org/TR/turtle/

PREFIX and BASE by example

– BASE is used to declare a base IRI, so that we can use relative IRIs

– PREFIX is used to declare abbreviations for IRI prefixes

A Turtle document for the previous example (on page 18):

BASE <https://example.org/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

<Melitta-Bentz> rdfs:label ”Melitta Bentz”@en .
<Melitta-Bentz> <birthdate> "1873-01-31"ˆˆxsd:date .
<Melitta-Bentz> <invention> :1 .
<Melitta-Bentz> <born-in> <https://www.dresden.de/#uri> .
<https://www.dresden.de/#uri> <population> "547172"ˆˆxsd:int .
:1 <inventor> <Melitta-Bentz> .

NB. Relative IRIs are still written in < and > (e.g., <birthdate>);
prefixed names are written without brackets (e.g., rdfs:label).

Semantic Technologies 3 21

Use of semicolon by example

If a triple ends with ; the next triple is assumed to start with the same subject

If a triple ends with , the next triple is assumed to start with the same
subject and predicate

We can write the previous example as follows:

BASE <https://example.org/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

<Melitta-Bentz> rdfs:label "Melitta Bentz"@en ;
<birthdate> "1873-01-31"ˆˆxsd:date ;
<invention> :1 ;
<born-in> <https://www.dresden.de/#uri> ;

<https://www.dresden.de/#uri> <population> "547172"ˆˆxsd:int .
:1 <inventor> <Melitta-Bentz> .

Semantic Technologies 3 22

Brackets for bnodes by example

The expression [] represents a bnode (without id)

predicate-object pairs within [...] are allowed to give further triples with
the bnode as subject

We can write the previous example as follows:

BASE <https://example.org/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

<Melitta-Bentz> rdfs:label "Melitta Bentz"@en ;
<birthdate> "1873-01-31"ˆˆxsd:date ;
<invention> [<inventor> <Melitta-Bentz>] ;
<born-in> <https://www.dresden.de/#uri> ;

<https://www.dresden.de/#uri> <population> "547172"ˆˆxsd:int .

(more examples will be given later)

Semantic Technologies 3 23

Abbreviating numbers and Booleans

Numbers can be written without quotes and type for literals in default types
(integer, decimal, or double)

Booleans can also be written as true or false directly

We can write the previous example as follows:

BASE <https://example.org/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

<Melitta-Bentz> rdfs:label "Melitta Bentz"@en ;
<birthdate> "1873-01-31"ˆˆxsd:date ;
<invention> [<inventor> <Melitta-Bentz>] ;
<born-in> <https://www.dresden.de/#uri> ;

<https://www.dresden.de/#uri> <population> 547172 .

Semantic Technologies 3 24

Turtle: Summary

Advantages:

• Still quite simple

• Not hard to parse

• Human-readable (if formatted carefully)

Disadvantages:

• Not safely processable with grep and similar tools

Semantic Technologies 3 25

RDF: four different views of RDF

(1) N-Triples

〈http://dcs.bbk.ac.uk/#st〉 〈http://dcs.bbk.ac.uk/#name〉 “Semantic Technologies” .
〈http://dcs.bbk.ac.uk/#st〉 〈http://dcs.bbk.ac.uk/#isTaughtBy〉 〈http://dcs.bbk.ac.uk/#MZ〉 .
〈http://dcs.bbk.ac.uk/#st〉 〈http://dcs.bbk.ac.uk/#homepage〉

〈http://www.dcs.bbk.ac.uk/∼michael/st/st.html〉 .
〈http://dcs.bbk.ac.uk/#MZ〉 〈http://dcs.bbk.ac.uk/#name〉 “Michael Zakharyaschev” .

(2) RDF Graph

.

.

st
.

.

MZ

“Semantic Technologies”
“Michael Zakharyaschev”

.

.

http://www.dcs.bbk.ac.uk/∼michael/st/st.html

@
@
@R

homepage

-
isTaughtBy

�
�
��name

6

name

Semantic Technologies 3 26

RDF: four different views of RDF (cont.)

(3) Turtle (see http://www.w3.org/TR/turtle/)

this is a complete turtle document
@prefix dcs: <http://dcs.bbk.ac.uk/#> .
dcs:st dcs:name ”Semantic Technologies” .
dcs:st dcs:isTaughtBy dcs:MZ .
dcs:st dcs:homepage <http://www.dcs.bbk.ac.uk/∼michael/st/st.html> .
dcs:MZ dcs:name ”Michael Zakharyaschev” .

Abbreviating groups of triples with the same subject:

dcs:st dcs:name ”Semantic Technologies” ;
dcs:isTaughtBy dcs:MZ .

Abbreviating groups of triples with the same subject & predicate:

dcs:MZ dcs:teaches ”Semantic Technologies” ,
”Fundamentals of Computing” .

Semantic Technologies 3 27

http://www.w3.org/TR/turtle/

RDF: four different views of RDF (cont.)

(4) XML syntax:
An RDF document is represented by an XML element with tag rdf:RDF
The content of this element is a number of descriptions,

which use rdf:Description tags

<?xml version=′′1.0′′ encoding=′′UTF-8′′?>
<rdf:RDF xmlns:rdf=′′http://www.w3.org/1999/02/22-rdf-syntax-ns#′′

xmlns:dcs=′′http://dcs.bbk.ac.uk/#′′

xml:base=′′http://dcs.bbk.ac.uk/′′>

<rdf:Description rdf:about=′′#st′′>
<dcs:isTaughtBy rdf:resource=′′#MZ′′/>
<dcs:name>Semantic Technologies</dcs:name>
<dcs:homepage rdf:resource=′′http://www.dcs.bbk.ac.uk/∼michael/st/′′/>

</rdf:Description>

<rdf:Description rdf:about=′′#MZ′′>
<dcs:name>Michael Zakharyaschev</dcs:name>

</rdf:Description>
</rdf:RDF>

NB. The order of descriptions or resources is not important!

Semantic Technologies 3 28

RDF: XML-based syntax

• An RDF document consists of an rdf:RDF element
the content of which is a number of descriptions

• The content of rdf:Description elements are called property elements

<rdf:Description rdf:about=′′#st′′>
<dcs:isTaughtBy>Michael Zakharyaschev</dcs:isTaughtBy>
<dcs:name>Semantic Technologies</dcs:name>

</rdf:Description>

} both define
property-value pairs

• Resource references: rdf:resource and rdf:ID

<rdf:Description rdf:ID=′′st′′>
<dcs:isTaughtBy rdf:resource=′′#MZ′′/>
<dcs:name>Semantic Technologies</dcs:name>

</rdf:Description>

<rdf:Description rdf:ID=′′MZ′′>
<dcs:name>Michael Zakharyaschev</dcs:name>

</rdf:Description>

�
�
�

�	

#

NB: rdf:ID defines the resource (#MZ is appended to the base URI)

For details see http://www.ibm.com/developerworks/library/x-tiprdfai/
Semantic Technologies 3 29

http://www.ibm.com/developerworks/library/x-tiprdfai/

RDF: XML-based syntax (cont.)

• Nested descriptions
<rdf:Description rdf:ID=′′st′′>

<dcs:name>Semantic Technologies</dcs:name>
<dcs:isTaughtBy>

<rdf:Description rdf:ID=′′MZ′′>
<dcs:name>Michael Zakharyaschev</dcs:name>

</rdf:Description>
</dcs:isTaughtBy>

</rdf:Description>

• The rdf:type element allows us to classify resources according to their types

<rdf:Description rdf:ID=′′st′′>
<rdf:type rdf:resource=′′#module′′/>
<dcs:name>Semantic Technologies</dcs:name>
<dcs:isTaughtBy rdf:resource=′′#MZ′′/>

</rdf:Description>

<rdf:Description rdf:ID=′′MZ′′>
<rdf:type rdf:resource=′′#lecturer′′/>
<dcs:name>Michael Zakharyaschev</dcs:name>

</rdf:Description>

� st is of type module

� MZ is of type lecturer

The same resource may be of different types; e.g., MZ can also be a taxpayer

Semantic Technologies 3 30

RDF: abbreviated syntax

• childless property elements may be replaced by XML attributes;

• for description elements with a typing element we can use
the name specified in rdf:type instead of rdf:Description

Example: (all three are equivalent)

(i) <rdf:Description rdf:ID=′′st′′>
<rdf:type rdf:resource=′′#module′′/>
<dcs:name>Semantic Technologies</dcs:name>
<dcs:isTaughtBy rdf:resource=′′#MZ′′/>

</rdf:Description>

(ii) <rdf:Description rdf:ID=′′st′′ dcs:name=′′Semantic Technologies′′>
<rdf:type rdf:resource=′′#module′′/>
<dcs:isTaughtBy rdf:resource=′′#MZ′′/>

</rdf:Description>

(iii) <dcs:module rdf:ID=′′st′′ dcs:name=′′Semantic Technologies′′>
<dcs:isTaughtBy rdf:resource=′′#MZ′′/>

</dcs:module>

.

.

module

.

.

st
.

.

MZ

“Semantic Technologies”

-
isTaughtBy

XX
XXX

XXy

name

��
��

�
�*

rdf:ty
pe

Semantic Technologies 3 31

Blank nodes (for n-ary relations)

• RDF uses only binary relations:

what can be done about the ternary relation
referee(X, Y, Z): ‘X is a referee in a chess game between Y and Z’?

Solution: introduce an anonymous auxiliary resource

.

.

X
.

.

.

.

Y

.

.

Z

-referee ��
���

��:
player1

XXXXXXXz
player2

<rdf:Description rdf:ID=′′X′′>
<referee>

<rdf:Description>
<player1 rdf:resource=′′#Y′′/>
<player2 rdf:resource=′′#Z′′/>

</rdf:Description>
</referee>

</rdf:Description>

A blank node (or bnode) is a node in
an RDF graph representing a resource
for which an IRI or literal is not given.
The resource represented by a blank
node is called anonymous. A blank node
can only be used as subject or object
in an RDF triple

Exercise: give a Turtle document for the RDF graph above
Semantic Technologies 3 32

Using blank nodes

Blank nodes indicate the existence of a thing,
without using an IRI to identify any particular thing

(not the same as assuming that the blank node indicates an ‘unknown’ IRI)

Anonymous resources in RDF are used to:

– describe multi-component structures, like the RDF containers

– describe reification (i.e., provenance information)

– represent complex attributes without having to name explicitly auxiliary nodes
(e.g., the address of a person consisting of the street, number, postal code, and city)

– offer protection of the inner information
(e.g., protecting the sensitive information of the customers from the browsers)

Semantic Technologies 3 33

Blank nodes: examples (1)

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

There exist two people who know each other
:alice foaf:knows :bob .
:bob foaf:knows :alice . blank nodes are expressed as : followed by a label

also using []

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

Someone knows someone else, who has the name ”Bob”
[] foaf:knows [foaf:name ”Bob”] .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

[foaf:name ”Alice”] foaf:knows [
foaf:name ”Bob” ;
foaf:knows [

foaf:name ”Eve”] ;
foaf:mbox <bob@example.com>] .

:a foaf:name ”Alice” .
:a foaf:knows :b .
:b foaf:name ”Bob” .
:b foaf:knows :c .
:c foaf:name ”Eve” .
:b foaf:mbox <bob@example.com> .

Semantic Technologies 3 34

bob@example.com

Blank nodes: examples (2)
<http://www.csd.uoc.gr/∼hy561/> dc:title ”Web Data Management” ;

ex:professor :b ;
ex:students :students ;
prov:generatedBy :a1 .

:b ex:fullName ”Adam Smith” ; (complex attribute)
ex:homePage <http://www.csd.uoc.gr/∼smith/> ;
ex:hasAddress :ad .

:ad rdf:type ex:Address ; (complex attribute)
ex:street ”Knossou” ;
ex:number ”122” ;
ex:postalcode ”71409” ;
ex:city ”Heraklion” .

:students rdf:type rdf:Bag ; (Bag RDF container)
dc:hasMember :s1 ;
dc:hasMember :s2 .

:a1 rdf:type prov:Event ; (event in the lifecycle)
prov:creator :b ;
prov:atTime ”Tuesday 11 February, 06:51:00 CST”.

:a2 rdf:type prov:Event;
rdf:type prov:Update ;
prov:ActionOver :a1 ;
prov:creator :b ;
prov:atTime ”Monday 17 February, 08:12:00 CST”.

Semantic Technologies 3 35

RDF: container elements

• are used to collect a number of resources or attributes
about which we want to make statement as a whole

rdf:Bag an unordered container, which may contain multiple occurrences
rdf:Seq an ordered container, which may contain multiple occurrences
rdf:Alt a set of alternatives

• Ex.: <rdf:Description rdf:about=′′#X′′>
<referee>

<rdf:Bag>
<rdf: 1 rdf:resource=′′#Y′′/>
<rdf: 2 rdf:resource=′′#Z′′/>

</rdf:Bag>
</referee>

</rdf:Description>

or

<rdf:Description rdf:about=′′#X′′>
<referee>

<rdf:Bag>
<rdf:li rdf:resource=′′#Y′′/>
<rdf:li rdf:resource=′′#Z′′/>

</rdf:Bag>
</referee>

</rdf:Description>

.

.

X
.

.

.

.

rdf:Bag

.

.

Y

.

.

Z

-referee

6rdf:type

���
���

�:rdf: 1
XXXXXXXzrdf: 2

NB: Containers define anonymous auxiliary resources (see also prev. slide)

NB: There is no way to close the containers, i.e.,
to say ‘these are all the members of the container’

Semantic Technologies 3 36

RDF: container elements (cont.)

• To describe groups containing only the specified members, use list structures
<rdf:Description rdf:about=′′#B′′>

<contains>
<rdf:List>
<rdf:first>

<rdf:Description rdf:about=′′#X′′/>
</rdf:first>
<rdf:rest>
<rdf:List>
<rdf:first>

<rdf:Description rdf:about=′′#Y′′/>
</rdf:first>
<rdf:rest>

<rdf:Description rdf:about=′′&rdf;nil′′/>
</rdf:rest>

</rdf:List>
</rdf:rest>

</rdf:List>
</contains>

</rdf:Description>

.

.

B

.

.

.

.

rdf:List

.

.

X

.

.

.

.

rdf:List

.

.

Y

.

.

rdf:nil

?
contains

��
��

��1
rdf:type

PPPPPPqrdf:first

?

rdf:rest

��
��

��1
rdf:type

PPPPPPqrdf:first

?
rdf:rest

OR

<rdf:Description rdf:about=′′#B′′>
<contains rdf:parseType=′′Collection′′>

<rdf:Description rdf:about=′′#X′′/>
<rdf:Description rdf:about=′′#Y′′/>

</contains>
</rdf:Description>

Semantic Technologies 3 37

Reification: statements about statements

‘MZ says that http://www.dcs.bbk.ac.uk/˜michael/st is the homepage for st︸ ︷︷ ︸
statement

’

.

.

MZ

.

.

rdf:Statement

.

.

S

.

.

st

.

.

homepage

.

.

http://. . .

?

ho
m

e
p

a
g

e

6rdf:type

-says ��
���

���
���

��:

rdf:subject

-rdf:predicate
XXXXXXXXXXXXXz

rdf:object

<rdf:Description rdf:about=′′#MZ′′>
<dcs:says rdf:resource=′′#S′′/>

</rdf:Description>

<rdf:Description rdf:about=′′#st′′>
<dcs:homepage rdf:resource=′′http://www.dcs.bbk.ac.uk/∼michael/st′′/>

</rdf:Description>
<rdf:Statement rdf:ID=′′S′′>

<rdf:subject rdf:resource=′′#st′′/>
<rdf:predicate rdf:resource=′′#homepage′′/>
<rdf:object rdf:resource=′′http://www.dcs.bbk.ac.uk/∼michael/st′′/>

</rdf:Statement>
Exercise: give a Turtle document for the RDF graph above

Semantic Technologies 3 38

http://www.dcs.bbk.ac.uk/~michael/st

Criminal story

Translate into English

Reification
A small reification riddle: another criminal story...

ex:?x

ex:hasKilled

ex:?y

ex:?z

rdf:Statement

ex:discovers

rdf:object

rdf:predicate

rdf:subject

ex:wantsToPrevent

rdf:object

rdf:subject

rdf:type

rdf:type

rdf:predicate

TU Dresden Foundations of Semantic Web Technologies slide 41 of 53
Semantic Technologies 3 39

RDF: a quick summary

RDF 1.1 Turtle: official W3C document

• Example 1

• Note in 2.4

• Example 9 and Note after it

• Examples 11, 12, 14, 15

Semantic Technologies 3 40

https://www.w3.org/TR/turtle/

RDF and RDF Schema

Consider the RDF document (rewrite it in the Turtle syntax)

<dcs:academicStaff rdf:ID=′′PTW′′ dcs:name=′′Peter Wood′′/>

<dcs:professor rdf:ID=′′MZ′′ dcs:name=′′Michael Zakharyaschev′′/>

<dcs:module rdf:ID=′′st′′ dcs:name=′′Semantic Technologies′′>
<dcs:isTaughtBy rdf:resource=′′#MZ′′/>

</dcs:module>

How can we collect all academicStaff members?

What about

− professors are academic staff members
− modules are taught by academic staff members only ?

We need statements not only about individual objects (such as MZ, PTW, st)

but also about classes of objects (such as professors, academic staff, etc.)

RDF Schema

Semantic Technologies 3 41

What do we need?

How about the following triples?

MZ professor academicStaff
rdf:type rdfs:subClassOf

(1) MZ is in relation rdf:type with professor
(2) professor is in relation rdfs:subClassOf with academicStaff

However, rdf:type and subClassOf are not ordinary properties.
What we actually want to say is that

(1′) MZ is an instance of the class professor
(2′) every instance of professor is also an instance of academicStaff

In particular, (1) and (2) should imply that

(3) MZ is in relation rdf:type with academicStaff

MZ

professor

academicStaff

rdf:type rdfs:subClassOf

rdf:type

Semantic Technologies 3 42

RDF Schema

• RDF Schema defines a ‘schema vocabulary’
that supports definition of ontologies

– gives ‘extra meaning’ to particular RDF predicates and resources
(such as type, subClassOf)

– this ‘extra meaning’, or semantics ,
specifies how a term should be interpreted

RDF Schema fixes the semantics

Example. Is there any implicit knowledge in the RDF graph?

professor staffacademicStaff
rdfs:subClassOf rdfs:subClassOf

It should follow that every instance of professor is also an instance of staff

professor staff

academicStaff
rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

Semantic Technologies 3 43

Reasoner to extract implicit knowledge

ontology
(RDFS, OWL, ...)

reasoner
implicit knowledge

accesses

application

The RDFS reasoner uses entailment rules such as

• if such and such triples are in the RDFS graph, then
add this and that triples to the graph

• do that recursively until the graph does not change

(≈ 30 rules are specified in the RDFS Semantics document)

These rules are supposed to capture the intended semantics

Semantic Technologies 3 44

RDF Schema: the language

• Core classes (predefined in RDF/S and carrying a fixed meaning)

– rdfs:Resource, the class of all resources (everything is a resource)

– rdfs:Class, the class of all classes (and so it contains itself as an element)

rdfs:Class rdf:type rdfs:Class . is always valid

– rdfs:Literal, the class of all literals (strings)

– rdf:Property, the class of all properties

– rdf:Statement, the class of all statements

Example: <rdfs:Class rdf:ID=′′lecturer′′>
. . .

</rdfs:Class>

<rdf:Property rdf:ID=′′isTaughtBy′′>
. . .

</rdf:Property>

Thus, ‘lecturer’ is a class and ‘isTaughtBy’ is a property

Semantic Technologies 3 45

RDF Schema: the language

• Core properties for defining relationships

– rdf:type, which relates resource to its class (see slide 30)

(the resource is declared to be an instance of that class)

– rdfs:subClassOf, which relates a class to one of its superclasses
all instances of a class are instances of its superclass

(note that a class may be a subclass of more than one class)

– rdfs:subPropertyOf, which relates a property to one of its superproperties
P is a subproperty of Q if Q(x, y) whenever P (x, y)

Example: <rdfs:Class rdf:about=′′#lecturer′′>
<rdfs:subClassOf rdf:resource=′′#academicStaff′′/>

</rdfs:Class>

<rdf:Property rdf:about=′′#isTaughtBy′′>
<rdfs:subPropertyOf rdf:resource=′′#involves′′/>

</rdf:Property>

Thus, ‘lecturer’ is a subclass of ‘academicStaff’ and ‘isTaughtBy’ a subproperty of ‘involves’
Semantic Technologies 3 46

RDF Schema: the language

• Core properties for restricting properties

– rdfs:domain, which specifies the domain of a property,
(the class of those resources that may appear as subjects

in a triple with that predicate)

– rdfs:range, which specifies the range of a property,
(the class of those resources that may appear as objects

in a triple with that predicate)

Example: <rdf:Property rdf:ID=′′isTaughtBy′′>
<rdfs:domain rdf:resource=′′#module′′/>
<rdfs:range rdf:resource=′′#academicStaff′′/>

</rdf:Property>

Thus, the domain of ‘isTaughtBy’ is a subset of ‘module’ and

the range of ‘isTaughtBy’ is a subset of ‘academicStaff’

Semantic Technologies 3 47

Impact of domain and range restrictions

Example: <rdf:Property rdf:ID=′′authourOf′′>
<rdfs:range rdf:resource=′′#textBook′′/>
<rdfs:range rdf:resource=′′#crimeFiction′′/>

</rdf:Property>

According to the RDFS semantics, for every triple 〈x, authorOf, y〉,
object y is both a textbook and a crime fiction book

because the range of authourOf belongs to textBook and also to crimeFiction

Example: suppose <rdf:Property rdf:ID=′′isMarriedTo′′>
<rdfs:domain rdf:resource=′′#person′′/>
<rdfs:range rdf:resource=′′#person′′/>

</rdf:Property>

is merged with <rdf:Description rdf:about=′′#ML′′>
<dcs:isMarriedTo rdf:resource=′′#BBK′′/>

</rdf:Description>
<rdf:Description rdf:about=′′#BBK′′>

<rdf:type rdf:resource=′′#college′′/>
</rdf:Description>

Then, according to the RDFS semantics, BBK must be of type person

Semantic Technologies 3 48

RDF vs. RDFS layers

RDF

RDF Schema

.

.

sw
.

.

MZ-isTaughtBy

.

.

module

6rdf:type

.

.

professor

6rdf:type

.

.

academicStaff

HH
HH

H
HY rdfs:subClassOf

.

.

isTaughtBy

.

.

involves

6rdfs:subPropertyOf

�
�
�

��	 rd
fs:

dom
ain

�

rd
fs:

do
m

ai
n
XXXXXXz

rdfs:range

HH
HHH

HHHj

rdfs:range

What ‘implicit knowledge’ is missing in the picture?

Semantic Technologies 3 49

RDFS Semantics: example

.

.

sw
.

.

MZ-isTaughtBy

.

.

module

6rdf:type

.

.

professor

6rdf:type

.

.

academicStaff

HH
HH

H
HY rdfs:subClassOf

.

.

isTaughtBy

.

.

involves

6rdfs:subPropertyOf

�
�
�

��	 rd
fs:

dom
ain

�

rd
fs:

do
m

ai
n

XXXXXXz

rdfs:range

HH
HHHH

HHj

rdfs:range

.

.

rdf:Property
.

.

rdfs:Class

.

.

rdfs:Resource

Semantic Technologies 3 50

RDFS Semantics: rdfs:subClassOf and rdfs:Class

• If 〈x, rdf:type, C〉 then 〈C, rdf:type, rdfs:Class〉
‘If C is a type of something then C is a class’

• If 〈C, rdf:type, rdfs:Class〉 then 〈C, rdfs:subClassOf, rdfs:Resource〉
‘Every class is a subclass of rdfs:Resource’

• If 〈C1, rdfs:subClassOf, C2〉 then
〈C1, rdf:type, rdfs:Class〉 and 〈C2, rdf:type, rdfs:Class〉

‘C1 is a subclass of C2 then both C1 and C2 are classes’

• If 〈C, rdf:type, rdfs:Class〉 then 〈C, rdfs:subClassOf, C〉
‘rdfs:subClassOf is a reflexive relation on classes’

• If 〈C1, rdfs:subClassOf, C2〉 and 〈C2, rdfs:subClassOf, C3〉 then
〈C1, rdfs:subClassOf, C3〉

‘rdfs:subClassOf is a transitive relation’

Semantic Technologies 3 51

RDFS Semantics: rdfs:subClassOf and rdfs:Class (cont.)

6

rd
f:t

yp
e

�
�
�
�
�
�
�
�
�
�
��

rd
f:t

yp
e

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��3

rdf:ty
pe

.

.

sw
.

.

MZ-isTaughtBy

.

.

module

6rdf:type

.

.

professor

6rdf:type

.

.

academicStaff

H
HH

H
HHY
rdfs:subClassOf

.

.

isTaughtBy

.

.

involves

6rdfs:subPropertyOf

�
�
�

��	 rd
fs:

dom
ain

�

rd
fs:

do
m

ai
n

XXXXXXz

rdfs:range

HHH
HHH

HHj

rdfs:range

.

.

rdfs:Class
?

rdf:type

6

rd
f:s

ub
C

la
ss

O
f

6

rdf:subClassOf
6

rd
f:s

ub
C

la
ss

O
f

6

rd
f:s

ub
C

la
ss

O
f

.

.

rdfs:Resource

��
��*

rdfs:s
ubClassO

f

XXX
XXX

XXX
XXX

Xy

rdfs:subClassOf

����)rdfs:subClassOf

A
A
A
A
A
A
A
AK

rdf:type

PP
PP

PP
PP

PP
PP

PP
PP

Pi

rdf:type
�
�
�
�
���

rd
f:ty

pe

��
�
��

�
��

�
��

�
��
�

�

rd
f:t

yp
e

�

rd
fs

:s
ub

C
la

ss
O

f

What arrows are missing here?
Semantic Technologies 3 52

RDFS Semantics: rdfs:subClassOf and rdfs:Class (cont.)

Summary of subclass and membership relations:

• professor is a subclass of professor, academicStaff, rdfs:Resource

• academicStaff is a subclass of academicStaff, rdfs:Resource

• module is a subclass of module, rdfs:Resource

• rdfs:Class is a subclass of rdfs:Class, rdfs:Resource

• rdfs:Resource is a subclass of rdfs:Resource

rdfs:subClassOf
means

‘⊆⊆⊆’
• MZ is an instance of professor, academicStaff, rdfs:Resource

• sw is an instance of module, rdfs:Resource

• professor is an instance of rdfs:Class, rdfs:Resource

• academicStaff is an instance of rdfs:Class, rdfs:Resource

• module is an instance of rdfs:Class, rdfs:Resource

• rdfs:Class is an instance of rdfs:Class, rdfs:Resource

• rdfs:Resource is an instance of rdfs:Class, rdfs:Resource

rdf:type
means

‘∈∈∈’
(almost)

(Class ∈ Class?)
Semantic Technologies 3 53

RDFS Semantics: rdfs:subPropertyOf and rdf:Property

• P is a property if and only if 〈P, rdf:type, rdf:Property〉

• If 〈P1, rdfs:subPropertyOf, P2〉 then
〈P1, rdf:type, rdf:Property〉 and 〈P2, rdf:type, rdf:Property〉

• If 〈P, rdf:type, rdf:Property〉 then 〈P, rdfs:subPropertyOf, P 〉
‘rdfs:subPropertyOf is a reflexive relation on properties’

• If 〈P1, rdfs:subPropertyOf, P2〉 and 〈P2, rdfs:subPropertyOf, P3〉 then
〈P1, rdfs:subPropertyOf, P3〉

‘rdfs:subPropertyOf is a transitive relation’

Semantic Technologies 3 54

RDFS Semantics: rdfs:subPropertyOf and rdf:Property (cont.)

6

rd
f:t

yp
e

�
�
�
�
�
�
�
�
�
�
��

rd
f:t

yp
e

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��3

rdf:ty
pe

.

.

sw
.

.

MZ-isTaughtBy

.

.

module

6rdf:type

.

.

professor

6rdf:type

.

.

academicStaff

HH
HH

H
HY rdfs:subClassOf

.

.

isTaughtBy

.

.

involves

6rdfs:subPropertyOf

�
�
�

��	 rd
fs:

dom
ain

�

rd
fs:

do
m

ai
n

XXXXXXz

rdfs:range

HH
HHHH

HHj

rdfs:range

.

.

rdf:Property

Q
Q

Q
Q

Q
Q
Q

Qk

rdf:type

@
@

@
@

@
@

@
@
@
@I

rdf:type

Q
Q
QQs

rdf:type

.

.

rdfs:Class
?

rdf:type

6

rd
f:s

ub
C

la
ss

O
f

6

rdf:subClassOf
6

rd
f:s

ub
C

la
ss

O
f

6

rd
f:s

ub
C

la
ss

O
f

6

rd
f:s

ub
C

la
ss

O
f

.

.

rdfs:Resource

��
��*

rdfs:s
ubClassO

f

XX
XXX

XXX
XXX

XXy

rdfs:subClassOf

����)rdfs:subClassOf

A
A
A
A
A
A
A
AK

rdf:type

PP
PP

PP
PP

PP
PP

PP
PP

Pi

rdf:type
�
�
�
�
���

rd
f:ty

pe

��
�
��

��
��

�
��

�
��

�

rd
f:t

yp
e

XXXXXXXXXXXXXz

rdfs:subClassOf

�

rd
fs

:s
ub

C
la

ss
O

f

What arrows are missing here?
Semantic Technologies 3 55

RDFS Semantics: rdf:type is a property

6

rd
f:t

yp
e

�
�
�
�
�
�
�
�
�
�
��

rd
f:t

yp
e

.

.

sw
.

.

MZ-isTaughtBy

.

.

module

6rdf:type

.

.

professor

6rdf:type

.

.

academicStaff

HH
HH

H
HY rdfs:subClassOf

.

.

isTaughtBy

.

.

involves

6rdfs:subPropertyOf

�
�
�

��	 rd
fs:

dom
ain

�

rd
fs:

do
m

ai
n

XXXXXXz

rdfs:range

HH
HHHH

HHj

rdfs:range

.

.

rdf:Property

Q
Q

Q
Q

Q
Q
Q

Qk

rdf:type

@
@

@
@

@
@

@
@
@
@I

rdf:type

Q
Q
QQs

rdf:type

.

.

rdf:typePP
PP

PP
PP

PP
PP

PP
PP

PPi

rdf:type �
�
�
�
���

rd
fs:

ra
nge

�
�
�

�
�
�

�	

rd
fs:

dom
ain

.

.

rdfs:Class
?

rdf:type

6

rd
f:s

ub
C

la
ss

O
f

6

rdf:subClassOf
6

rd
f:s

ub
C

la
ss

O
f

6

rd
f:s

ub
C

la
ss

O
f

6

rd
f:s

ub
C

la
ss

O
f

.

.

rdfs:Resource

��
��*

rdfs:s
ubClassO

f

XX
XXX

XXX
XXX

XXy

rdfs:subClassOf

����)rdfs:subClassOf

A
A
A
A
A
A
A
AK

rdf:type

PP
PP

PP
PP

PP
PP

PP
PP

Pi

rdf:type
�
�
�
�
���

rd
f:ty

pe

��
�
��

��
��

�
��

�
��

�

rd
f:t

yp
e

XXXXXXXXXXXXXz

rdfs:subClassOf

�

rd
fs

:s
ub

C
la

ss
O

f

Semantic Technologies 3 56

RDFS Semantics: rdfs:subClassOf and rdfs:subPropertyOf

6

rd
f:t

yp
e

�
�
�
�
�
�
�
�
�
�
��

rd
f:t

yp
e

.

.

sw
.

.

MZ-isTaughtBy

.

.

module

6rdf:type

.

.

professor

6rdf:type

.

.

academicStaff

HH
HH

H
HY rdfs:subClassOf

.

.

isTaughtBy

.

.

involves

6rdfs:subPropertyOf

�
�
�

��	 rd
fs:

dom
ain

�

rd
fs:

do
m

ai
n

XXXXXXz

rdfs:range

HH
HHHH

HHj

rdfs:range

.

.

rdf:Property

Q
Q

Q
Q

Q
Q
Q

Qk

rdf:type

@
@

@
@

@
@

@
@
@
@I

rdf:type

Q
Q
QQs

rdf:type

.

.

rdf:typePP
PP

PP
PP

PP
PP

PP
PP

PPi

rdf:type �
�
�
�
���

rd
fs:

ra
nge

�
�
�

�
�
�

�	

rd
fs:

dom
ain

.

.

rdfs:subPropertyOf

6

rd
f:t

yp
e

rd
fs

:d
o

m
a

in
rd

fs
:ra

ng
e

.

.

rdfs:subClassOfXXX
XXX

XXX
XXX

XXXy

rdf:type
��

��
��*

rdfs:ra
nge

rdfs:d
omain

.

.

rdfs:Class
?

rdf:type

6

rd
f:s

ub
C

la
ss

O
f

6

rdf:subClassOf
6

rd
f:s

ub
C

la
ss

O
f

6

rd
f:s

ub
C

la
ss

O
f

6

rd
f:s

ub
C

la
ss

O
f

.

.

rdfs:Resource

��
��*

rdfs:s
ubClassO

f

XX
XXX

XXX
XXX

XXy

rdfs:subClassOf

����)rdfs:subClassOf

A
A
A
A
A
A
A
AK

rdf:type

PP
PP

PP
PP

PP
PP

PP
PP

Pi

rdf:type
�
�
�
�
���

rd
f:ty

pe

��
�
��

��
��

�
��

�
��

�

rd
f:t

yp
e

XXXXXXXXXXXXXz

rdfs:subClassOf

�

rd
fs

:s
ub

C
la

ss
O

f

Semantic Technologies 3 57

RDFS Semantics: rdfs:domain and rdfs:range

• If 〈P, rdfs:domain, C〉 then 〈C, rdf:type, rdfs:Class〉

• If 〈P, rdfs:range, C〉 then 〈C, rdf:type, rdfs:Class〉

The following are axiomatic triples (they must always hold)

• 〈rdf:type, rdfs:domain, rdfs:Resource〉
• 〈rdfs:subClassOf, rdfs:domain, rdfs:Class〉
• 〈rdfs:subPropertyOf, rdfs:domain, rdf:Property〉
• 〈rdfs:domain, rdfs:domain, rdf:Property〉
• 〈rdfs:range, rdfs:domain, rdf:Property〉
• . . .

• 〈rdf:type, rdfs:range, rdfs:Class〉
• 〈rdfs:subClassOf, rdfs:domain, rdfs:Class〉
• 〈rdfs:subPropertyOf, rdfs:domain, rdf:Property〉
• 〈rdfs:domain, rdfs:domain, rdfs:Class〉
• 〈rdfs:range, rdfs:domain, rdfs:Class〉
• . . .

Semantic Technologies 3 58

RDFS Semantics: rdfs:domain and rdfs:range (cont.)

6

rd
f:t

yp
e

�
�
�
�
�
�
�
�
�
�
��

rd
f:t

yp
e

.

.

sw
.

.

MZ-isTaughtBy

.

.

module

6rdf:type

.

.

professor

6rdf:type

.

.

academicStaff

HH
HH

H
HY rdfs:subClassOf

.

.

isTaughtBy

.

.

involves

6rdfs:subPropertyOf

�
�
�

��	 rd
fs:

dom
ain

�

rd
fs:

do
m

ai
n

XXXXXXz

rdfs:range

HH
HHH

HHHj

rdfs:range

.

.

rdf:Property

Q
Q

Q
Q

Q
Q
Q

Qk

rdf:type

@
@

@
@

@
@

@
@
@@I

rdf:type

Q
Q
QQs

rdf:type

.

.

rdf:typePP
PP

PP
PP

PP
PP

PP
PP

PPi

rdf:type �
�
�
�
���

rd
fs:

ra
nge

�
�
�

�
�
�

�	

rd
fs:

dom
ain

.

.

rdfs:subPropertyOf

6

rd
f:t

yp
e

rd
fs

:d
o

m
a

in
rd

fs
:ra

ng
e

.

.

rdfs:domain������9
rdfs:domain

rdf:type
XXXXXz

rdfs:range

.

.

rdfs:range�
rdf:type

rdfs:domain -rdfs:range

.

.

rdfs:subClassOfXX
XXX

XXX
XXX

XXX
Xy

rdf:type
��

�
��
�*

rdfs:ra
nge

rdfs:d
omain

.

.

rdfs:Class
?

rdf:type

6

rd
f:s

ub
C

la
ss

O
f

6

rdf:subClassOf
6

rd
f:s

ub
C

la
ss

O
f

6

rd
f:s

ub
C

la
ss

O
f

6

rd
f:s

ub
C

la
ss

O
f

.

.

rdfs:Resource

��
��*

rdfs:s
ubClassO

f

XX
XXX

XXX
XXX

XXy

rdfs:subClassOf

����)rdfs:subClassOf

A
A
A
A
A
A
A
AK

rdf:type

PP
PP

PP
PP

PP
PP

PP
PP

Pi

rdf:type
�
�
�
�
���

rd
f:ty

pe

�
��

�
��

�
��

�
��

�
��

�

rd
f:t

yp
e

XXXXXXXXXXXXXz

rdfs:subClassOf

�

rd
fs

:s
ub

C
la

ss
O

f

Semantic Technologies 3 59

RDFS Semantics: not covered

• datatypes and literals:
rdf:XMLLiteral, rdfs:Literal and rdfs:Datatype

• containers:
rdfs:member, rdfs:Container, rdfs:ContainerMembershipProperty,
rdf:List, rdf:first, rdf:rest and rdf:nil

• various:
rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy and rdfs:label

more information at http://www.w3.org/TR/rdf-mt/

Semantic Technologies 3 60

http://www.w3.org/TR/rdf-mt/

Beware of Russell’s paradox (1901)

Russell’s paradox shows that the ‘object’ {x | P (x)} is not always meaningful.

Consider the set A = {B | B /∈ B} (cf. page 53)

Give an example of an element of A

Problem: do we have A ∈ A?

For every set C, denote by P (C) the statement C 6∈ C

Then A = {B | P (B)}.

• Suppose A ∈ A. Then not P (A). Therefore, we must have A /∈ A.

• But if A /∈ A, then P (A). Therefore, A ∈ A, which is a contradiction

Visit also http://plato.stanford.edu/entries/russell-paradox/

Popular version: the barber paradox
Suppose there is a town with just one male barber. According to law in this town,

the barber shaves all and only those men in town who do not shave themselves.
Who shaves the barber?

• if the barber does shave himself, then the barber (himself) must not shave himself
• if the barber does not shave himself, then the barber (himself) must shave himself

Semantic Technologies 3 61

http://plato.stanford.edu/entries/russell-paradox/

Where is RDF on the Web?

• In files:
In some serialisation: XML/RDF, Turtle, ...
Typically small RDF graphs, i.e., max. a few 100 triples, e.g.,

vocabularies: http://xmlns.com/foaf/spec/index.rdf
tiny datasets: http://folk.uio.no/martingi/foaf.rdf

• From SPARQL endpoints:
Data kept in a triple store, i.e., a database (Sesame, Jena, Redland, ...)

http://en.wikipedia.org/wiki/Triplestore

RDF is served from endpoint as results of SPARQL queries
Exposes data (in different formats)

with endpoint frontends, e.g., http://dbpedia.org/resource/Norway
by direct SPARQL query: http://dbpedia.org/sparql

• There are many RDFisers which convert data to RDF
Tabular files (CSV, Excel): XLWrap
Relational DB: D2RQ. (http://sws.ifi.uio.no/d2rq/)
W3C keeps a list: http://www.w3.org/wiki/ConverterToRdf

Semantic Technologies 3 62

http://xmlns.com/foaf/spec/index.rdf
http://folk.uio.no/martingi/foaf.rdf
http://en.wikipedia.org/wiki/Triplestore
http://dbpedia.org/resource/Norway
http://dbpedia.org/sparql
http://sws.ifi.uio.no/d2rq/
http://www.w3.org/wiki/ConverterToRdf

Creating RDF data and vocabularies

• Designing an easy-to-use and robust namespace is non-trivial

• Naming is difficult

• Reuse existing vocabularies if possible. Don’t reinvent
consult http://lov.okfn.org/dataset/lov

• IRIs are also addresses, consider publishing issues when naming

• Adhere to the policies described in best practice documents:
Best Practice Recipes for Publishing RDF Vocabularies
http://www.w3.org/TR/2008/NOTE-swbp-vocab-pub-20080828/

Cool IRIs for the Semantic Web
http://www.w3.org/TR/cooluris/

• Use http://www.example.[com|net|org] for prototyping and
documentation

For more details, consult

http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/LinkedDataTutorial/

Semantic Technologies 3 63

http://lov.okfn.org/dataset/lov
http://www.w3.org/TR/2008/NOTE-swbp-vocab-pub-20080828/
http://www.w3.org/TR/cooluris/
http://www.example.[com|net|org]
http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/LinkedDataTutorial/

The RDF vocabulary

• @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
needs to be declared like all others!

• Important elements in rdf:

type links a resource to a type (can be abbreviated)

Resource type of all resources

Property type of all properties

Examples:

geo:berlin rdf:type rdf:Resource .

geo:containedIn a rdf:Property .

rdf:type a rdf:Property .

Semantic Technologies 3 64

Friend Of A Friend

• People, personal information, friends, see
http://www.foaf-project.org/

• @prefix foaf: <http://xmlns.com/foaf/0.1/> .

• Important elements in foaf:

Person a person, alive, dead, real, imaginary

name name of a person (also firstName, familyName)

mbox mailbox URL of a person

knows a person knows another person

Examples:

<http://dcs.bbk.ac.uk/mz/foaf#me> a foaf:Person ;

foaf:name ”Michael Zakharyaschev” ;

foaf:mbox <mailto:michael@dcs.bbk.ac.uk> ;

foaf:knows <http://.../mz/foaf#me> .

Semantic Technologies 3 65

http://www.foaf-project.org/

Dublin Core

• Metadata for documents, see http://dublincore.org/

• @prefix dct: <http://purl.org/dc/terms/> .
use this instead of legacy dc:

• Important elements in dct:

creator a document’s main author

created the creation date

description a natural language description

replaces another document superseded by this one

Examples:

<http://dcs.bbk.ac.uk/mz/> dct:creator <http://.../foaf#me> ;
dct:created ”2007-08-01” ;
dct:description ”MZ’s homepage”@en ;
dct:replaces <http://my.old.homepage/> .

Semantic Technologies 3 66

http://dublincore.org/

DBLP: Computer Science bibliography

• DBLP contains computer science publications
http://dblp.uni-trier.de

• vocabulary of the RDF version http://dblp.l3s.de/d2r/snorql/:

author of a document: dc:creator

title of a document: dc:title

name of a person: foaf:name

Semantic Technologies 3 67

http://dblp.uni-trier.de
http://dblp.l3s.de/d2r/snorql/

Encoding Wikidata statements in RDF (1)

wd:Q80
Tim Berners-Lee

wd:Q4273323
Queen Elizabeth Prize. . .

wdt:P166 award received

Where to store the annotations?

Note: For prefix declarations, see
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format

Semantic Technologies 3 68

https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format

Encoding Wikidata statements in RDF (2)

We can encode statements in the style of reification:

wd:Q80
Tim Berners-Lee

wd:Q4273323
Queen Elizabeth Prize. . .

wds:Q80-. . .
(statement node)

p:P166 award received psv:P166 award received

"2013"ˆˆxsd:gYear

pq:P585 point in time

wd:Q214129
Robert Kahn

wd:Q92743
Vint Cerf

. . .

pq:P1706
together with

wdref:30b9. . .
reference node

prov:wasDerivedFrom

. . .

wdt:P166 award received

The complete Wikidata-to-RDF documentation is available online https://
www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format
Any item can be viewed in RDF in the browser using URLs such as http://www.
wikidata.org/wiki/Special:EntityData/Q80.ttl
Semantic Technologies 3 69

https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format
http://www.wikidata.org/wiki/Special:EntityData/Q80.ttl
http://www.wikidata.org/wiki/Special:EntityData/Q80.ttl

