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Abstract Let Yk be the family of hereditary classes of graphs defined by k forbidden
induced subgraphs. In Korpelainen and Lozin (Discrete Math 311:1813–1822, 2011),
it was shown that Y2 contains only finitely many minimal classes that are not well-
quasi-ordered (wqo) by the induced subgraph relation. This implies, in particular,
that the problem of deciding whether a class from Y2 is wqo or not admits an efficient
solution. Unfortunately, this idea does not work for k ≥ 3, as we show in the present
paper. To overcome this difficulty, we introduce the notion of boundary properties
of well-quasi-ordered sets of graphs. The importance of this notion is due to the fact
that for each k, a class from Yk is wqo if and only if it contains none of the boundary
properties. We show that the number of boundary properties is generally infinite. On
the other hand, we prove that for each fixed k, there is a finite collection of boundary
properties that allow to determine whether a class from Yk is wqo or not.
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1 Introduction

A graph property, also known as a class of graphs, is any set of graphs closed under
isomorphism. A property is hereditary if it is closed under the induced subgraph
relation. Two prominent families of hereditary properties are monotone properties
(closed under the subgraph relation) and minor-closed properties (closed under the
minor relation).

According to the celebrated result of Robertson and Seymour [15], the minor
relation is a well-quasi-order (wqo) on the set of all simple finite graphs. This means
that there are no infinite antichains with respect to the minor relation. In other words,
in any infinite set of graphs, there is a pair of graphs one of which is a minor of
the other. This implies, in particular, that any minor-closed graph property can be
characterized by finitely many “forbidden” minors and, as a result, can be recognized
in polynomial time.

When we switch to the subgraph or induced subgraph relation, the situation
becomes more complicated. The set of all chordless cycles gives an example of an
infinite antichain with respect to both relations, i.e. neither of these relations is a
well-quasi-order. On the other hand, each of them may become a well-quasi-order
when restricted to graphs in special classes. The question of well-quasi-orderability
of monotone classes with respect to each relation (subgraphs and induced subgraphs)
was completely solved by Ding in [9] as follows: a monotone property is well-quasi-
ordered by the induced subgraph relation (and thus also by the subgraph relation) if
and only if it contains only finitely many cycles and finitely many graphs of the form
Hi represented in Fig. 1.

In the present paper, we study well-quasi-orderability of hereditary classes with
respect to the induced subgraph relation. It is well known that a class is hereditary
if and only if it can be characterized in terms of forbidden induced subgraphs.
More precisely, for a set M of graphs, let us denote by Free(M) the class of graphs
containing no induced subgraphs isomorphic to graphs in M. Then a class X of graphs
is hereditary if and only if X = Free(M) for some set M, in which case M is called a
set of forbidden induced subgraphs for X.

Following [7], we restrict the question of well-quasi-orderability to finitely defined
hereditary properties, i.e. those defined by finitely many forbidden induced sub-
graphs. Let us denote by Yk the family of hereditary classes of graphs defined by
k forbidden induced subgraphs. We call classes in Y1 monogenic and classes in Y2

bigenic.
For monogenic classes, the question of well-quasi-orderability is simple: there is

only one maximal class in this family which is well-quasi-ordered by the induced
subgraph relation, the class of P4-free graphs [8].

For bigenic classes, the situation is more complicated, but still manageable. It was
shown in [11] that in this family there are finitely many minimal classes that are not

Fig. 1 Graph Hi
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well-quasi-ordered. This implies, in particular, that the problem of deciding whether
a bigenic class is well-quasi-ordered admits an efficient solution.

In the present paper, we show that for more than two forbidden induced sub-
graphs, the situation becomes uncontrollable in the sense that for each k ≥ 3, the
family Yk contains infinitely many minimal classes that are not well-quasi-ordered.

In order to study the problem under these circumstances, we employ the notion
of boundary properties of graphs, which was previously applied to some algorithmic
graph problems. The importance of this notion is due to the fact that for each k,
a class from Yk is well-quasi-ordered if and only if it contains none of the boundary
properties. We show that the number of boundary properties is generally infinite. On
the other hand, we prove that for each fixed k, there is a finite collection of boundary
properties that allow to determine whether a class from Yk is well-quasi-ordered
or not.

The organization of the paper is as follows. In the rest of this section, we introduce
some notation and terminology. In Section 2, we show that for each k ≥ 3, the
family Yk contains infinitely many minimal classes that are not well-quasi-ordered.
In Section 3, we introduce the notion of a boundary class of graphs and prove several
results related to this notion. In Section 4, we show that the number of boundary
properties is infinite, while in Section 5, we prove that for each fixed k, there is a
finite collection of boundary properties that allow us to determine whether a class
from Yk is wqo or not. Finally, in Section 6, we conclude the paper with a few open
questions.

All graphs in this paper are undirected, without loops or multiple edges. As usual,
by Pn, Cn and Kn we denote a chordless path, a chordless cycle and a complete graph
on n vertices, respectively. Also, Kn,m is the complete bipartite graph with parts of
size n and m.

A graph G is an induced subgraph of a graph H if G can be obtained from H
by deletion of vertices. Also, G is a subgraph of H if G can be obtained from H by
deletion of vertices and/or edges.

To simplify the discussion, we use the term bad to refer to classes of graphs that
are not well-quasi-ordered by the induced subgraph relation and the term good to
refer to those classes that are well-quasi-ordered.

2 On the Number of Minimal Bad Classes in Yk

The following theorem shows that the number of minimal bad classes in Y1 is finite.

Theorem 1 A monogenic class is wqo if and only if it contains none of the following
as subclasses: Free(C3), Free(C4), Free(C5), Free(C3), Free(C4).

Proof None of the listed classes is good, since each of them contains either infinitely
many cycles or infinitely many complements of cycles. Therefore, if a monogenic
class contains one of them, then it is bad.

On the other hand, if a monogenic class Free(G) contains none of the classes
Free(C4), Free(C5), Free(C3), Free(C4), Free(C5), then G contains none of the
graphs C3, C4, C5, C3, C4, in which case it is not hard to check that G is a P4 or
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one of its induced subgraphs, and therefore Free(G) is wqo, according to the result
of Damaschke [8]. ��

For the family of bigenic classes, i.e. classes defined by two forbidden induced
subgraphs, the situation is somewhat similar to Theorem 1, in the sense that there
are only finitely many minimal bad classes in this family. This fact was proved in [11].
However, in the case of more than two forbidden induced subgraphs, the situation
changes dramatically.

Theorem 2 For every k ≥ 3, the set Yk contains inf initely many minimal bad classes.

Proof Let us consider the class Free(K1,3, C3, Ct) for any t ≥ 4. This class is bad,
since it contains infinitely many cycles. Assume that it is not a minimal bad class
in Y3, and let X ∈ Y3 be a proper subclass of Free(K1,3, C3, Ct) which is bad. Then
the set of forbidden induced subgraphs for X contains a graph G which is a proper
induced subgraph of one of K1,3, C3, Ct. If G is a proper induced subgraph of K1,3

or C3, then either G is an induced subgraph of P4, in which case X must be good, or
G consists of three isolated vertices, in which case X is good too, because it is finite
(every graph in X is (K3, K3)-free and hence has at most five vertices, by Ramsey’s
theorem).

Assume now that G is a proper induced subgraph of Ct with t ≥ 4. Then X ⊆
Free(K1,3, C3, Pt). We claim that:

For any natural t, the class Free(K1,3, C3, Pt) is well-quasi-ordered. Indeed, since
K1,3 is forbidden and C3 is forbidden, the degree of each vertex of any graph in
this class is at most 2, and since Pt is forbidden, every connected graph in this
class has at most t vertices. It is known (see e.g. [8, 11]) that a class of graphs is
well-quasi-ordered if and only if the set of connected graphs in the class is well-
quasi-ordered. Since Free(K1,3, C3, Pt) contains finitely many connected graphs,
it is well-quasi-ordered.

Thus, the class Free(K1,3, C3, Ct) contains no proper subclass from Y3 which is bad,
i.e. Free(K1,3, C3, Ct) is a minimal bad class for all t ≥ 4.

For k > 3, the proof is similar, i.e. we consider the class Free(K1,3, C3, . . . , Ck, Ct)

and show that it is a minimal bad class for any t > k. ��

The finiteness of the number of minimal bad classes in the family Y1 ∪ Y2 implies,
in particular, that the problem of deciding whether a class in this family is good or
bad is polynomial-time solvable. For larger values of k, this approach does not work,
as is shown by Theorem 2. In the attempt to overcome this difficulty, we introduce in
the next section the notion of a boundary class of graphs, which is a helpful tool for
investigating finitely defined classes of graphs.

3 Boundary Properties of Graphs

The notion of boundary properties of graphs was introduced in [1] to study the max-
imum independent set problem in hereditary classes. Later this notion was applied
to some other graph problems of both algorithmic [2, 3, 12] and combinatorial [13]
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nature. Now we employ it for the problem of determining whether a finitely defined
class of graphs is well-quasi-ordered by the induced subgraph relation or not.

Definition 1 We will say that X is a limit class if X is the intersection of any
sequence X1 ⊇ X2 ⊇ X3 ⊇ . . . of bad classes.

To illustrate this definition, consider the sequence of graph classes
Free(C3, . . . , Ck), k ≥ 3. Clearly, each class in this sequence is bad, because
each of them contains infinitely many cycles. The intersection of this sequence is the
class of graphs without cycles, i.e. the class of forests. Therefore, the class of forests
is a limit class.

If X is the limit class of a sequence X1 ⊇ X2 ⊇ X3 ⊇ . . ., we say that the sequence
converges to X. Observe that we do not require classes in the sequence X1 ⊇ X2 ⊇
X3 ⊇ . . . to be distinct, which means that every bad class is a limit class. The converse
is generally not true. Indeed, consider the sequence Y3 ⊇ Y4 ⊇ Y5 ⊇ . . . with Yk

being the class of (C3, C4, . . . , Ck, H1, H2, . . . , Hk)-free graphs (where Hi denotes
the graph represented in Fig. 1). Clearly, each class in this sequence is bad, since each
of them contains infinitely many cycles. On the other hand, the limit class defined by
this sequence contains no cycles and no graphs of the form Hi, i.e. in the limit class,
every graph is a forest each connected component of which is a subdivision of a star.
It is not difficult to see that this class is monotone. According to [9], every monotone
class containing only finitely many cycles and finitely many H-graphs is well-quasi-
ordered by the induced subgraph relation. Therefore, this example shows that a limit
class is not necessarily bad.

This example also shows that the class of forests is not a minimal limit class,
since it contains the smaller limit class, namely, the class of graphs each connected
component of which is a subdivision of a star. Is this new limit class minimal? No.
To see this, consider the following sequence: Free(K1,3, C3, C4, . . . , Ck), k ≥ 3. Since
each class of this sequence contains infinitely many cycles, each of them is bad. The
limit class of this sequence is the class of K1,3-free forests, i.e. the class of graphs every
connected component of which is a path. Sometimes this class is called the class of
linear forests. Obviously, linear forests constitute a proper subclass of the limit class
from the above example. Is it a minimal limit class? Yes, as we shall see at the end of
this section.

The above discussion supposes that there exist limit classes which are minimal in
the sense that they do not contain any proper limit subclasses. Moreover, it is correct
to assume that every bad class contains a minimal limit class. To show this, we need
to prove a number of lemmas about limit classes.

Lemma 1 A f initely def ined class is a limit class if and only if it is bad.

Proof Every bad class is a limit class by definition. Now let X = Free(G1, . . . , Gk)

be a limit class and let X1 ⊇ X2 ⊇ X3 ⊇ . . . be a sequence of bad classes converging
to X. Obviously, there must exist a number n such that Xn is (G1, . . . , Gk)-free. But
then for each i ≥ n, we have Xi = X and therefore X is bad. ��

Lemma 2 If a class Y contains a limit class X, then Y also is a limit class.
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Proof Let X1 ⊇ X2 ⊇ X3 . . . be a sequence of bad classes converging to X. Then
the sequence (X1 ∪ Y) ⊇ (X2 ∪ Y) ⊇ (X3 ∪ Y) . . . consists of bad classes and it
converges to Y. ��

Lemma 3 If a sequence X1 ⊇ X2 ⊇ X3 . . . of limit classes converges to a class X, then
X also is a limit class.

Proof Let {G1, G2, . . .} be the set of minimal forbidden induced subgraphs of X.
For each natural k, define X(k) to be the class Free(G1, . . . , Gk). Clearly, for every
k, there must exist an n such that Xn does not contain G1, . . . , Gk, implying that
Xn ⊆ X(k). Therefore, by Lemma 2, X(k) is a limit class, and by Lemma 1, X(k) is
bad. This is true for all natural k, and therefore, X(1) ⊇ X(2) ⊇ X(3) . . . is a sequence
of bad classes converging to X, i.e. X is a limit class. ��

Lemma 4 Every bad class X contains a minimal limit class Y.

Proof Let X be a bad class. To reveal a minimal limit class contained in X, let us
fix an arbitrary enumeration L of the set of all graphs and let us define a sequence
X1 ⊇ X2 ⊇ . . . of graph classes as follows. We define X1 to be equal X. For i > 1, let
G be the first graph in the enumeration L such that G belongs to Xi−1 and Xi−1 ∩
Free(G) is a limit class. If there is no such graph G, we define Xi := Xi−1. Otherwise,
Xi := Xi−1 ∩ Free(G).

Denote by Y the intersection of classes X1 ⊇ X2 ⊇ X3 . . .. Clearly, Y ⊆ X. By
Lemma 3, Y is a limit class. Let us show that Y is a minimal limit class contained in
X. By contradiction, assume there exists a limit class Z which is properly contained
in Y. Let H be a graph in Y which does not belong to Z . Then Z ⊆ Y ∩ Free(H) ⊆
Xk ∩ Free(H) for each k. Therefore, by Lemma 2, Xk ∩ Free(H) is a limit class for
each k. For some k, the graph H becomes the first graph in the enumeration L such
that Xk ∩ Free(H) is a limit class. But then Xk+1 := Xk ∩ Free(H), and H belongs
to no class Xi with i > k, which contradicts the fact that H belongs to Y. ��

Lemma 4 motivates the following key definition.

Definition 2 A minimal limit class will be called a boundary class.

The importance of this notion is due to the following theorem.

Theorem 3 A f initely def ined class is good if and only if it contains no boundary class.

Proof From Lemma 4, we know that every bad class contains a boundary class. To
prove the converse, consider a finitely defined class X containing a boundary class.
Then, by Lemma 2, X is a limit class, and therefore, by Lemma 1, X is bad. ��

A helpful minimality criterion is given by the following lemma.

Lemma 5 A limit class X = Free(M) is minimal (i.e. boundary) if and only if for
every graph G ∈ X there is a f inite set T ⊆ M such that Free({G} ∪ T) is good.
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Proof Suppose X is a boundary class, and assume for contradiction that there is a
graph G ∈ X such that for every finite set T ⊆ M, the class Free({G} ∪ T) is bad.
Let M := {m1, m2, . . .} and Zi := Free(G, m1, m2, . . . , mi). Then, according to our
assumption, Zi is bad for each i and therefore Z := ∩i Zi is a limit class. It contains
no element from M and it does not contain G. Therefore, it is a proper subset of X,
contradicting the minimality of X.

Conversely, assume that for every graph G ∈ X, there is a finite set T ⊆ M such
that Free({G} ∪ T) is good, and suppose for contradiction that there exists a limit
class Z which is properly contained in X. Since Z is a limit class, there exists a
sequence Z1 ⊇ Z2 ⊇ . . . of bad classes converging to Z . Pick any graph G ∈ X \ Z
and a finite set T ⊆ M such that Free({G} ∪ T) is good. Then there must exist an n
such that Zn is ({G} ∪ T)-free, in which case Zn is good. This contradiction finishes
the proof. ��

Theorem 4 The class of linear forests is a boundary class.

Proof Let F be a linear forest. Without loss of generality, we may assume that F =
Pt, since every linear forest is an induced subgraph of Pt for some value of t. Clearly,
the class Free(Pt, K1,3, C3, C4, . . . , Ct) is a subclass of linear forests, and obviously,
the class of linear forests is well-quasi-ordered. Therefore, by Lemma 5, the class of
linear forests is a minimal limit class. ��

In the proof of Theorem 4 we observed that the class of linear forests is well-quasi-
ordered by the induced subgraph relation. This is no wonder, because any boundary
class must be good.

Lemma 6 Every boundary class is well-quasi-ordered.

Proof If a boundary class X is bad, it must contain an infinite antichain G1, G2, . . ..
Then for any Gi, the class Free(Gi) ∩ X is a proper limit subclass of X, contradicting
the minimality of X. ��

4 On the Number of Boundary Classes

The previous section not only introduces the notion of a boundary class, but also
reveals one them, i.e. the class of linear forests. Throughout the paper we denote
this class by F . Are there other boundary classes? Yes, because for any boundary
class X, the class of complements of graphs in X is also boundary. Therefore, the
complements of linear forests form a boundary class; we denote this class by F .
As we shall see later, there are many other boundary classes. Moreover, in this
section we show that the family of boundary classes is infinite. To this end, for any
natural number k ≥ 1, we define the following graph operation. Given a graph G, we
subdivide each edge of G by exactly k ‘new’ vertices and then create a clique on the
set of ‘old’ vertices. Let us denote the graph obtained in this way by G(k). Also, for an
arbitrary hereditary class X we define X(k) to be the class of all induced subgraphs
of the graphs G(k) formed from graphs G ∈ X.
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It is not difficult to see that classes F (k) for various values of k are pairwise
incomparable, i.e. none of them is a subclass of another. We will show that for any
k ≥ 3, the class F (k) is a boundary class. To this end, let us prove a few auxiliary
results.

Throughout the section we denote by D the class of graphs of vertex degree at
most 2. Clearly, this is a hereditary class. The set of minimal forbidden induced
subgraphs for this class consists of four graphs (each of them has a vertex of degree 3
and the three neighbours of that vertex induce all possible graphs on three vertices).
We will show that for the class D(k) the situation is similar in the sense that the set of
minimal forbidden induced subgraphs for it is finite, regardless of the value of k.

Lemma 7 For each k ≥ 3, the set of minimal forbidden induced subgraphs for the
class D(k) is f inite.

Proof First of all, let us observe that the class D(k) is a subclass of the class M[k]
of graphs whose vertices can be partitioned into a clique A and a set B of vertices
inducing a Pk+1-free linear forest (i.e. a graph every connected component of which
is a path on at most k vertices). M[k] is a wider class than D(k), since by definition we
do not specify what is happening between the two parts A and B for graphs in M[k],
while for graphs in D(k) there are severe restrictions on the edges between A and
B (these restrictions are described below). Therefore, the set of minimal forbidden
induced subgraphs for D(k) is a subset of the set M ∪ D, where M is the set of minimal
forbidden induced subgraphs for M[k] and D is the set of graphs from M[k] that
restrict the behavior of edges between A and B. We will show that both sets M and
D are finite.

For the finiteness of M we refer the reader to [17], where the following result was
proved: Let P and Q be two hereditary classes of graphs such that both P and Q
are defined by finitely many forbidden induced subgraphs, and there is a constant
bounding the size of a maximum clique for all graphs in P and the size of a maximum
independent set for all graphs in Q. Then the class of all graphs whose vertices can
be partitioned into a set inducing a graph from P and a set inducing a graph from Q
has a finite characterization in terms of forbidden induced subgraphs. For the class
M[k], we have Q = Free(K2) is the class of complete graphs, in which case the the
size of a maximum independent set is 1, and P = Free(K1,3, C3, . . . , Ck+1, Pk+1), in
which case the size of a maximum clique is at most 2. Therefore, M is a finite set.

In order to show that the size of D is bounded, let us describe the restrictions on
the behavior of edges connecting vertices of A to the vertices of B in graphs in the
class D(k).

(1) Every vertex of B has at most one neighbour in A;
(2) Only an end-vertex of a path in B can have a neighbour in A;
(3) If both end-vertices of a path in B have neighbours in A, then these neighbours

are different and the path has exactly k vertices;
(4) Let P and P′ be two paths in B such that each contains exactly k vertices

and both end-vertices in both paths have neighbours in A. Then the pair of
neighbours of P in A and the pair of neighbours of P′ in A are different, i.e.
they share at most one vertex.

(5) Every vertex of A has at most two neighbours in B.
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It is not difficult to see that a graph G ∈ M[k] belongs to D(k) if an only if G
satisfies restrictions (1)–(5). The first four restrictions are common for any graph
G(k) (or an induced subgraph of G(k)) and they completely specify the behavior of the
edges connecting ‘new’ vertices to ‘old’ ones. Restriction (5) is specific for graphs inD(k).

Now we translate restrictions (1)–(5) to the language of forbidden induced
subgraphs. We denote by � and T the two graphs represented in Fig. 2. Also,
C′′

k+2 stands for the graph consisting of two cycles Ck+2 sharing an edge, and
diamond stands for K4 without an edge. It is a routine task to verify that the graphs
diamond, K1,4, C4, . . . , Ck+1, C′′

k+2, �, T belong to M[k] but do not belong to D(k)

(for k ≥ 3). Moreover, they are minimal graphs that do not belong to D(k).
Now let G be a graph in M[k] (k ≥ 3) which is free of diamond, K1,4, C4, . . . , Ck+1,

C′′
k+2, �, T. We may assume that

• every vertex of B has at least one non-neighbour in A, since otherwise this vertex
can be moved to A,

• A contains at least three vertices, because there are finitely many connected K1,4-
free graphs in M[k] with |A| ≤ 2, and a minimal graph in M[k] which does not
belong to D(k) must be connected.

Under these assumptions, the diamond-freeness of G guarantees that (1) is satisfied.
Suppose that the part B of G contains a path in which a non-end-vertex v has a

neighbour x in A. Since |A| ≥ 3, there must exist two other vertices y, z in A, and
these vertices must be non-adjacent to v, by (1). Since v is a non-end-vertex of a path
in B, it must have two distinct neighbours in the path, say u and w, with u being non-
adjacent to w. By (1), each of u and w has at most one neighbour among x, y, z. If
one of them is adjacent to x, then the forbidden graph � arises. If u or w is adjacent
to y or z, then a C4 arises, and if the vertices u, w have no neighbours among x, y, z,
then the graph T arises. This discussion shows that restriction (2) is satisfied.

Assume both end-vertices of a path P in B have neighbours in A. Together with
(2) this gives rise to a chordless cycle C consisting of P and its neighbours in A.
If P has less than k vertices, then C is of size at most k + 1, which is forbidden. If
P has exactly k vertices and just one neighbour in A, then the size of C is k + 1,
which is impossible. Therefore, P has k vertices and two neighbours in A. Therefore,
restriction (3) is satisfied.

Let P and P′ be two paths in B such that each contains exactly k vertices and both
end-vertices in both paths have neighbours in A. If the neighbours of P in A coincide
with the neighbours of P′ in A, then G contains the forbidden graph C′′

k+2. Therefore,
restriction (4) is satisfied.

Finally, if a vertex x of A has at least three neighbours in B, say u, v, w, then
from the previous discussion, we know that u, v, w belong to different connected
components of B, and therefore, x, u, v, w together with any vertex y ∈ A different
from x induce a K1,4. This shows that restriction (5) is satisfied.

Fig. 2 The graphs � (left) and
T (right)
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From the above discussion, we conclude that D must be finite, which completes
the proof of the lemma. ��

Lemma 8 Let G be a graph with at least four vertices, and let G(k) be an induced
subgraph of H(k). Then G is a subgraph of H.

Proof Observe that in the graphs G(k) and H(k), every ‘new’ vertex has degree
2, while every ‘old’ vertex has degree at least 3. Therefore, if G(k) is an induced
subgraph of H(k), then ‘new’ vertices of G(k) are mapped to ‘new’ vertices of H(k) and
‘old’ vertices of G(k) are mapped to ‘old’ vertices of H(k). Let U be the set of vertices
whose deletion from H(k) results in G(k). If U contains a ‘new’ vertex v subdividing
an edge e of H, then U must contain all new vertices subdividing e, since otherwise
a pendant vertex appears, which is not possible for G(k). Obviously, deletion of all
new vertices subdividing e from H(k) is equivalent to deletion of the edge e from
H. Also, if U contains an ‘old’ vertex v of H, then U must contain all new vertices
subdividing all edges incident to v (in H), since otherwise again a pendent vertex
appears. Clearly, deleting from H(k) an ‘old’ vertex v together with all new vertices
subdividing all edges incident to v (in H) is equivalent to deleting from H vertex
v together with all edges incident to v. Therefore, if G(k) is an induced subgraph of
H(k), then G is a subgraph of H. ��

Theorem 5 For any natural number k ≥ 3, the class F (k) is a boundary class.

Proof As before, D is the class of graphs of vertex degree at most 2. First, we show
that F (k) is a limit class. To this end, define the sequence F (k)

3 ,F (k)
4 , . . . of graph

classes by F (k)

i := Free(C(k)
3 , C(k)

4 , . . . , C(k)

i ) ∩ D(k). It is not difficult to see that the
sequence F (k)

3 ,F (k)
4 , . . . converges to F (k). Also, for each i, the class F (k)

i contains
an infinite antichain, namely C(k)

i+1, C(k)

i+2, . . ., which follows from Lemma 8 and the
obvious observation that cycles form an antichain with respect to the subgraph
relation.

The proof of minimality of F (k) is similar to that of Theorem 4. We consider
a graph G in F (k) and without loss of generality assume that G = P(k)

t , since
every graph in F (k) is an induced subgraph of P(k)

t for some t. Then the class
Free(P(k)

t , C(k)
3 , C(k)

4 , . . . , C(k)
t ) ∩ D(k) is a subclass of F (k). By Lemma 7, this class is

finitely defined, and since F (k) is well-quasi-ordered, this class is well-quasi-ordered
too. Therefore, by Lemma 5, F (k) is a minimal limit class. ��

5 Boundary Properties for Finitely Defined Classes

In the previous section we showed that there are infinitely many boundary prop-
erties. However, we need to know only two of them to determine well-quasi-
orderability of monogenic classes. These are the class F of linear forests and the
class F of the complements of linear forests.

Theorem 6 A monogenic class of graphs is wqo if and only if it contains neither F
nor F .
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Proof Let X = Free(G) be a monogenic class of graphs. If X contains F or F , then
X is not wqo, by Theorem 3. Assume now that X contains neither F nor F , i.e. G be-
longs both to F and to F . In this case, G does not contain C3, C4, C5, C3, C4, and thus
X does not contain Free(C3), Free(C4), Free(C5), Free(C3), Free(C4). Therefore, X
is wqo by Theorem 1. ��

In what follows, we show that for larger values of k, the situation is similar to the
monogenic case, in the sense that for any k ≥ 1, the set of boundary classes essential
for determining well-quasi-orderability of classes in Yk is finite.

We start from stating Higman’s Lemma [10] in the form provided in [11]. For an
arbitrary set M, denote by M∗ the set of all finite sequences of elements of M. If ≤ is
a partial order on M, the elements of M∗ can be partially ordered by the following re-
lation: (a1, . . . , am)  (b 1, . . . , b n) if and only if there is an order-preserving injection
f : {a1, . . . , am} → {b 1, . . . , b n} with ai ≤ f (ai) for each i = 1, . . . , m. The Higman’s
lemma states:

Lemma 9 If (M, ≤) is a wqo, then (M∗, ) is a wqo.

The following lemma is a corollary of Higman’s lemma.

Lemma 10 Let A be a class of graphs which is wqo under the induced subgraph
relation. Let B be a family of graph classes such that each B ∈ B is obtained by
forbidding a f inite set of graphs from A. Then B is wqo under the subclass inclusion.

Proof Let B1 = Free(G1, . . . , Gq) and B2 = Free(H1, . . . , Hr) be two classes in B.
Then it is not hard to see that B1 ⊆ B2 if and only if there is a mapping f from
{H1, . . . , Hr} to {G1, . . . , Gq} such that f (Hi) is an induced subgraph of Hi. Let us
relax the partial order ⊆ by making B1 and B2 incomparable if f is not injective.
Under this new partial order B is a wqo according to Higman’s Lemma. Therefore,
the subclass inclusion ⊆ is a wqo too, since any antichain in this partial order is also
an antichain in the relaxed partial order. ��

Theorem 7 For any natural k, there is a f inite set Bk of boundary classes such that
a class X = Free(G1, . . . , Gk) is wqo if and only if it contains none of the boundary
classes from the set Bk.

Proof We prove the theorem by induction on k. For k = 1, the result follows from
Theorem 6.

To make the inductive step, we assume that the theorem is true for k − 1. Let C
be the set of graph classes Free(G1, . . . , Gk) such that

• each of the graphs G1, . . . , Gk belongs to at least one of the boundary classes in
Bk−1,

• Free(G1, . . . , Gk) is not wqo.

Since the set Bk−1 is finite and each class in this set is well-quasi-ordered (Lemma 6),
their union

⋃
B∈B B is well-quasi-ordered too. This implies by Lemma 10 that C is

well-quasi-ordered by the subclass inclusion, and thus the set of minimal classes in C
is finite; we denote this set by C∗.
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For each class in C∗, we arbitrarily choose a boundary class contained in it
(such a boundary class must exist by Theorem 3), and denote the set of boundary
classes chosen in this way by B. Since C∗ is finite, B is finite too. Now we claim
that the theorem holds with Bk = Bk−1 ∪ B. To see this, consider a class of graphs
X = Free(G1, . . . , Gk). If it is wqo, then it does not contain any boundary class from
Bk, since it contains no boundary classes at all, by Theorem 3.

Suppose now that X = Free(G1, . . . , Gk) is not wqo. If each of the graphs
G1, . . . , Gk belongs to one of the boundary classes in Bk−1, then it must contain
a class from C∗ by definition of C∗ and therefore it must contain a boundary class
from B ⊆ Bk. If one of the forbidden graphs, say Gi, does not belong to any class in
Bk−1, then we consider the class Free(G1, . . . , Gi−1, Gi+1, . . . , Gk). By induction, it
contains a boundary class from Bk−1. But then X contains the same boundary class.

��

6 Concluding Remarks and Open Problems

In this paper, we introduced the notion of boundary properties of the family of well-
quasi-ordered classes of graphs. This is a helpful tool to study well-quasi-orderability
of finitely defined classes. We proved that for each k, there is a finite collection of
boundary properties that allow us to determine whether a class of graphs defined by
k forbidden induced subgraphs is wqo or not. This conclusion is in a sharp contrast
with the fact that the number of boundary properties is generally infinite, which was
also proved in this paper. The proof of this fact is obtained with the help of a simple
graph operation applied to linear forests. More graph operations (complementation,
“bipartite” complementation, etc.) can produce more boundary classes related to
the class of linear forests. However, the authors are not aware of any boundary
properties that are not derived from linear forests. Identifying such properties is a
natural open question.

To formulate one more open problem related to this topic, let us extend the
induced subgraph relation to a more general notion known as the labelled-induced
subgraph relation. Assume (W,≤) is an arbitrary well-quasi-order. We call G a
labelled graph if each vertex v ∈ V(G) is equipped with an element l(v) ∈ W (the
label of v), and we say that a graph G is a labelled-induced subgraph of H if G is
isomorphic to an induced subgraph of H and the isomorphism maps each vertex
v ∈ G to a vertex w ∈ H with l(v) ≤ l(w).

It is interesting to observe that the class of linear forests, although well-quasi-
ordered by the induced subgraph relation, is not well-quasi-ordered by the labelled-
induced subgraph relation. On the other hand, all finitely defined classes which are
known to be well-quasi-ordered by induced subgraphs also are well-quasi-ordered
by the labelled-induced subgraph relation. This observation motivates the following
conjecture.

Conjecture Let X be a hereditary class which is well-quasi-ordered by the induced
subgraph relation. Then X is well-quasi-ordered by the labelled-induced subgraph
relation if and only if the set of minimal forbidden induced subgraphs for X is f inite.
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Finally, we observe that the notion of boundary properties can also be applied
to the study of other partial orders that are generally not well-quasi-orders. For
instance, recently there was a considerable attention to the pattern containment
relation on permutations (see e.g. [4, 5, 14, 16]). The problem of deciding whether
a permutation class given by a finite set of “forbidden” permutations is wqo or not
was proposed in [6], and we believe that the notion of boundary properties can be
helpful in finding an answer to this question.
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