
Mobile and Ubiquitous Computing
TinyOS application example

Niki Trigoni
www.dcs.bbk.ac.uk/~niki

niki@dcs.bbk.ac.uk

Application

Consider an application with the following functionality:

The gateway node sets a timer to fire every X msecs (say X=500msecs)

When the timer is fired the gateway node increments a counter by one
(resetting it to 0 when it becomes 100) and does two things:

It sends the counter value to the computer through the serial port.
It broadcasts a message with the counter value.

Other nodes within one hop from the gateway receive the gateway’s
message (with the gateway’s counter value) and toggle the leds to reflect
the counter value (CV).

if CV < 30, toggle the red leds
if 30 <= CV < 60, toggle the yellow leds
if 60 <= CV <=100, toggle the green leds

Useful interfaces

Leds
Timer
SendMsg
ReceiveMsg

A parameterized interface allows a component to provide multiple instances
of an interface that are parameterized by a runtime or compile-time value.
For more details read:
http://www.tinyos.net/tinyos-1.x/doc/tutorial/lesson2.html.

For example, the TimerC component provides 256 instances of the
Timer interface, one for each uint8_t value:

… provides interface Timer[uint8_t id]; …

parameterised interfaces

http://www.tinyos.net/tinyos-1.x/doc/tutorial/lesson2.html

Useful components

LedsC
… provides interface Leds; …

TimerC
… provides interface Timer [uint8_t id]; …

GenericComm
… provides interface SendMsg [uint8_t id]; …
… provides interface ReceiveMsg [uint8_t id]; …

Message type

We must declare the type (and structure) of the messages that
will be sent and received in the application.

Create a file BroadcastCount.h

#ifndef BROADCAST_COUNT_H
#define BROADCAST_COUNT_H

enum { AM_COUNT_MSG = 100 };

typedef struct Count_Msg
{

uint16_t value;
} Count_Msg; #endif

Configuration ‘BroadcastCountC’

includes BroadcastCount;

configuration BroadcastCountC {}

implementation {

components Main, BroadcastCountM, LedsC, TimerC, GenericComm as Comm;

Main.StdControl -> BroadcastCountM;
Main.StdControl -> Comm.Control;
BroadcastCountM.Leds -> LedsC;
BroadcastCountM.ReceiveCountMsg -> Comm.ReceiveMsg [AM_COUNT_MSG];
BroadcastCountM.SendCountMsg -> Comm.SendMsg [AM_COUNT_MSG];
BroadcastCountM.CountTimer -> TimerC.Timer[unique("Timer")];

}

Include the .h file that describes
the message structure

Radio handling

What is the meaning of the following code?
BroadcastCountM.SendCountMsg ->

Comm.SendMsg[AM_COUNT_MSG]

The GenericComm component provides 256 different instances of the
SendMsg interface, one of which is SendMsg[AM_COUNT_MSG].

Messages have handler IDs that reflect their type. The messages of this
application have handler ID AM_COUNT_MSG.

BroadcastCountM uses the interface SendMsg (with the alias
SendCountMsg), which is provided by GenericComm (with the alias
Comm).

GenericComm (with the alias Comm) provides interface instance
SendMsg [AM_COUNT_MSG], which is used by BroadcastCountM to
send messages of type AM_COUNT_MSG.

Module ‘BroadcastCountM’

includes BroadcastCount;
module BroadcastCountM {

provides {
interface StdControl;

}

uses {
interface SendMsg as SendCountMsg;
interface Leds;
interface ReceiveMsg as ReceiveCountMsg;
interface Timer as CountTimer;

}
}
implementation { … }

‘BroadcastCountM’ local variables

includes BroadcastCount;
module BroadcastCountM {}
implementation {

uint16_t value; // value of the incoming counter message
uint8_t serial=0; // flag that shows whether a message was just sent to

// the serial port, or whether it was just broadcast
TOS_Msg message; // structure to store an outgoing or incoming message
uint16_t counter = 1; // value of the counter

…
}

‘BroadcastCountM’ provides ‘StdControl’

implementation { // implementation of BroadcastCountM
command result_t StdControl.init() {

call Leds.init();
return SUCCESS;

}

command result_t StdControl.start() {
//Gateway
if (TOS_LOCAL_ADDRESS==0)
{

call CountTimer.start(TIMER_REPEAT, 500);
call Leds.redOn();

}
return SUCCESS;

}

‘BroadcastCountM’ provides ‘StdControl’

// continued from previous page
…
command result_t StdControl.stop() {

//Gateway
if(TOS_LOCAL_ADDRESS==0)
{

call CountTimer.stop();
call Leds.redOff();

}
return SUCCESS;

}

…

‘BroadcastCountM’ uses
‘ReceiveMsg as ReceiveCountMsg’

event TOS_MsgPtr ReceiveCountMsg.receive (TOS_MsgPtr receivedMessage) {
// if the current node is not the gateway
if (TOS_LOCAL_ADDRESS != 0)
{

Count_Msg * payload;
payload = (Count_Msg *) receivedMessage->data;
value = (uint16_t) payload->value;
if (value<30) {

call Leds.redToggle();
call Leds.greenOff();
call Leds.yellowOff();

} else if (value>=30 && value<60) { …}
else {…}

}
return receivedMessage;

}

‘BroadcastCountM’ uses
‘Timer as CountTimer’

event result_t CountTimer.fired() {

Count_Msg * payload;
call Leds.greenOn();
payload = (Count_Msg *) message.data;
payload->value = counter;
//BCAST for radio, UART for serial
call SendCountMsg.send(TOS_UART_ADDR, sizeof(Count_Msg), &message);
return SUCCESS;

}

‘BroadcastCountM’ uses
‘SendMsg as SendCountMsg’

event result_t SendCountMsg.sendDone(TOS_MsgPtr sentMessage, result_t result) {
if (serial==0)
// if the sendDone was signalled as a result of sending to the serial port
{

serial=1;
call SendCountMsg.send(TOS_BCAST_ADDR, sizeof(Count_Msg), &message);

}
else // if the sendDone was signalled after broadcasting to neighbor nodes
{

serial=0;
counter++;
if(counter>100) counter=1;
call Leds.greenOff();

}
return SUCCESS;

}

Java class ‘ListenCount.java’ that reads
messages from the serial port

import net.tinyos.tools.*;
import java.io.*;
import net.tinyos.packet.*;
import net.tinyos.util.*;
import net.tinyos.message.*;

public class ListenCount {

public static void main(String args[]) throws IOException {

PacketSource reader = BuildSource.makePacketSource();
if (reader == null) {

System.err.println("Invalid packet source (check your MOTECOM environment variable)");
System.exit(2);

}
// continued …

Java class ‘ListenCount.java’ that reads
messages from the serial port

// … continued from last page
try {

reader.open(PrintStreamMessenger.err);
for (;;) {
byte[] packet = reader.readPacket();
double first = (double)unsignedByteToInt(packet[11]);
double second = (double)unsignedByteToInt(packet[10]);
double light = 256.0d*first+second;
System.out.println(light);
System.out.flush();

}
}
catch (IOException e) {

System.err.println("Error on " + reader.getName() + ": " + e);
}

}
public static int unsignedByteToInt(byte b)
{

return (int) b & 0xFF;
}

}

How to run the application

Go to the directory where the code of the application is
Connect a sensor node to the serial port
Write ‘motelist’. This command should return which port the
sensor node uses to connect to the computer (say this is
COM7)
Write ‘export MOTECOM=serial@COM7:tmote’
MOTECOM is an environment variable that Java uses to
know which port it should listen to
‘make tmote reinstall.0’ // to install code to the gateway node
‘make tmote reinstall.1’ // to install code to another node
run the ListenCount program to listen to the serial port

	Mobile and Ubiquitous ComputingTinyOS application example
	Application
	Useful interfaces
	Useful components
	Message type
	Configuration ‘BroadcastCountC’
	Radio handling
	Module ‘BroadcastCountM’
	‘BroadcastCountM’ local variables
	‘BroadcastCountM’ provides ‘StdControl’
	‘BroadcastCountM’ provides ‘StdControl’
	‘BroadcastCountM’ uses ‘ReceiveMsg as ReceiveCountMsg’
	‘BroadcastCountM’ uses ‘Timer as CountTimer’
	‘BroadcastCountM’ uses ‘SendMsg as SendCountMsg’
	Java class ‘ListenCount.java’ that reads messages from the serial port
	Java class ‘ListenCount.java’ that reads messages from the serial port
	How to run the application

