

	[] londonknowledgelab
	Identification Friend or Foe
A FRANK	 Introduced during WWII to distinguish between own and enemy aircraft Uses the Radar system In common use today for air traffic management Employs the secondary surveillance radar Air traffic management uses Mode 3/A or S Uses a lot of power
Birkbeck	nter

[] londonknowledgelab

Near Field Coupling

- Coils of reader and tag separated in space
- Coupling requires that magnetic field of reader intersects the tag coil
- This is the near field of the EM field created by AC oscillation
- Strength of field falls proportionally to 1/d³ – center of reader coil to tag

Condonknowledgelab Far Field Coupling Backscatter is the radar principle electromagnetic waves are reflected by objects greater than ½ of the wavelength The reflection cross section (the signature of the object) can be modified by altering the load connected to the antenna of the tag switching the tag resistor on and off creates the data stream Effective range of reading is typically 3-4 meters Reader sensitivity one microwatt Tags benefit from Moore's law less energy needed to power up the tag

Indonknowledgelab Tag orientation effects Alignment of tag antenna is second most important factor in effectiveness (after distance) In either near field or far field systems tag must NOT be perpendicular to reader antenna Tag fails to be read (Partial) solution to this problem: Antenna design or many antennas with different alignments

- Multiple readers (but beware of reader collisions)

Birkbeck

Birkbeck

Influence of Objects and Environment Inductive systems Unaffected by dielectric or insulator materials e.g. paper, plastics, masonry, ceramics Metals weaken the field (depending how ferrous they are) May also detune tags if they work at a resonant frequency Electric Can penetrate dielectric material Water molecules absorb energy Metals reflect or scatter and can completely cloak tag Tag on tag effect are also very strong in higher densities

Indonknowledgelab Identifiers in a Gen2 tag Tag identification (TID) memory bank An 8-bit ISO 15963 allocation class identifier For EPCglobal Tags it is 0xE2 A 12-bit Tag mask-designer ID A 12-bit Tag model number. Manufacturers can also include other information if required e.g. tag serial number EPC in EPC memory bank User memory bank may contain additional

application specific IDs

Birkbeck

ISO 14443 IDs

- ISO 14443-A requires fixed Card Identifier (CID)
- CID uniquely related to tag chip
 - Application Family Identifier (AFI) defines separate spaces for CID
- Used by reader to address a specific card
 Also used in groups to keep specific cards in a particular state
- In ISO 14443-B can be pseudo –random number
- Application layer identifiers are contained in user data space
 - e.g. Oyster card customer number different from ISO ID

Object manufacturer well positioned to embed ID Object manufacturer well positioned to embed ID Has been done before at global scale Major perceived business benefits in the supply chain logistics, inventory, anti-counterfeiting, demand forecasting, shrinkage Possible consumer applications smart things, smart selves, product recalls Major technology investment

londonknowledgelab

Barcodes and the SG1 system

- UPC created in 1973 the first American 10-digit barcode standard (uniform and then Universal product code)
- European Article Numbering introduced in 1977 extended the scheme to the needs of a global market

 first to separate the data from the data carrier
- Two systems became interoperable in 2005 as EAN.UCC and later SG1 (One Global Standard)
- Under SG1 a variety of standardization activity including RFID within EPCglobal
 - ebXML, Global Data Synchronization Network, Global Standards Management Process, Global Product Classification

EPC Identifiers

- A global identifier scheme is needed
 Address allocation, coordination of address space, address semantics, resolution
- EPC is part of SG1 and so has to accommodate existing EAN and related identifiers
- Management of the scheme is via a SG1 subsidiary called EPCglobal Inc
- Protocols are developed in the Auto-ID network of research laboratories

[] londonknowledgelab

EPC structure

- EPC tag data standards define "pure identifiers" which are abstract object addresses
- Pure identifiers are stored following the related "physical realization" and "encoding" protocols on the tag
- *Header data* identifies the particular scheme employed in a specific EPC and thus the semantics of the digits
- Current schemes are specific to SG1 and DoD requirements and there is also a general ID

	donknowledgelab]		
	ode structure			
 version Top Level Domain code Class Code specifies the boundary betw Domain Code specifies the type of IC e.g. JAN, ISBN, EPC etc Identification Code is the actual object id Entropy Contents Length (bits)	een DC and IC entifier 4 16	4 variable	variable	
	ver TLC C	CC DC	IC	Total 128 bits
Dion	don knowledge lab]		
R	FID Directory			
 The role of networked services Directories and Lookup Object Naming Service operation ONS and DNS 				
BIRKDeck]		

	EPCglobal NR	londonknowledgelal FID architecture
	Object Naming Service (ONS)	Discovery of authoritative object manufacturer information
Discovery	EPC Discovery Service	Track-and trace chain information discovery (pointers to)
Storage	EPC Information Service	Store and retrieve item and class level usage information
Authentication	EPC Trusted Services	Authentication, authorization and access control
Birkbeck	Center	1

Map IDs to service locations e.g. map product ID to web service that can be queried for its expiration date does NOT include serial number

- It also maps EPC Manager IDs to EAN.UCC Company prefix
- Requirements: global directory on the internet
- Obvious candidate: Domain Name System

Birkbeck

DNS and X.500

- DNS maps IP numbers to names and vice versa
- In fact, it maintains general Resource Records
- Extensible using NAPTR records
- Well established API and tools
- Efficient lookups, global reach
- Decentralized: location, administration (hierarchical)
- X.500 (ITU) free search but less efficient
- White pages, yellow pages
- Update protocol, security

[]londonknowledgelab

ONS Result Set

- NAPTR fields:
 - Order And Pref show priority of this result within the set
 - Flags when set to "u" means regular expression containing URI
 - Service designates different types of services. The format of this field is EPC+service_name where service_name can be pml, html, xmlrpc, and ws
 - Regexp specifies a URI for the service being described (for ONS currently it is hostname and additional path information)
 - Replacement specifies the replacement portion of the rewrite expression (not used in ONS)

				ONS Result Set E	xample
Orders	Pref	Flags	Service	Regexp	Replacement
0	0	u	EPC+pml	I^ *\$Ihttp://www.epc.dcs.bbk.ac.uk/cgi-bin/epcpml.phpl	
0	0	u	EPC+html	1^.*\$lhttp://www.epc.dcs.bbk.ac.uk/epcpml.jspl	-
0	0	u	EPC+xmirpc	I^.*\$Ihttp://www.epc.dcs.bbk.ac.uk/exist/epcI	
0	0	u	EPC+epcis	1^.*\$ihttp://www.epc.dcs.bbk.ac.uk/epcl	
o Servi	io ce coo	les:	EPC+ws	In *\$ihtp://www.epc.dcs.bbk.ac.uk/ws/epc.wsdli	
0 Servie EPC+	jo ce coc ·pml: I	les: Produc	EPC+ws	I ^{e *} Sittp://www.epc.dcs.bbk.ac.uk/ws/epc.wsdli	****
0 Servio EPC+ EPC+	oe coo pml: I html:	les: Produc Web p	t Markup L	I ^{n *} Shtp://www.epc.dcs.bbk.ac.uk/welepc.wsdli anguage document ption	
© Servie EPC+ EPC+ EPC+	jo ce coc pml: l -html: -xmlrp	les: Produc Web p c: XML	t Markup L age descrij	II**Shtp://www.epc.dcs.bbk.ac.uk/weiepc.wnd8 anguage document ption Procedure Call interface	
Servia EPC+ EPC+ EPC+ EPC+	.pml: I pml: I html: xmlrp ws: V	les: Produc Web p c: XML /eb Se	t Markup L age descrij . Remote F rvice interfi	IP*Shtp://www.epc.dcs.bbk.ac.uk/weiepc.wnd8 anguage document brion Procedure Call interface ace (WSDL)	
Servia EPC+ EPC+ EPC+ EPC+	ce coo pml: I -html: -xmlrp -ws: V	les: Produc Web p c: XMI /eb Se	t Markup L age descrij Remote F rvice interfa	I ^{p+} Shttp://www.epc.dcs.bbk.ac.uk/wei/epc.wndli anguage document ption procedure Call interface ace (WSDL) C IS server	

