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Quality Assurance for Software by Program Analysis

Two approaches:
e Dynamic analysis:
Run the program on example inputs (testing).
+ goal: find errors
— requires good choice of test cases
— in general no guarantee for absence of errors

@ Static analysis:
Analyse the program text without actually running the program.
+ can prove (verify) correctness of the program
— important for safety-critical applications
— motivating example: first flight of Ariane 5 rocket in 1996
https://www.youtube.com/watch?v=PK_ygulLapgA
https://en.wikipedia.org/wiki/Ariane_5_Flight_501
— manual static analysis requires high effort and expertise

= for broad applicability:

Build automatic tools for static analysis!
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Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes".

What properties of programs do we want to analyse?

o Partial Correctness
— will my program always produce the right result?

@ Assertions by the programmer. assert x > 0
— will this always be true?

e Equivalence. Do two programs always produce the same result?
— correctness of refactoring

e Confluence. For languages with non-deterministic rules/commands:
Does my program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis '17]

— does the order of applying compiler optimisation rules matter?
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e Memory Safety
— are my memory accesses always legal?
intx x = NULL; #*x = 42;
— undefined behaviour!
— memory safety matters: Heartbleed (OpenSSL attack)
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Static analysis: the user's perspective (2/2)

e Memory Safety
— are my memory accesses always legal?
intx x = NULL; #*x = 42;
— undefined behaviour!
— memory safety matters: Heartbleed (OpenSSL attack)

e Termination
— will my program give an output for all inputs
in finitely many steps?
o (Quantitative) Resource Use aka Complexity
— how many steps will my program need in the worst case?
(runtime complexity)
— how large can my data become? (size complexity)

Note: All these properties are undecidable!
= use automatable sufficient criteria in practice
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Program analysis tool developed in Aachen, London, Innsbruck, ...

Fully automated, hundreds of techniques for termination, time

complexity bounds, ...

Highly configurable via strategy language

Proofs usually have many steps — construct proof tree

Founding tool of Termination Competition, since 2004

Initially: analyse termination of term rewrite systems (TRSs),

later also complexity bounds

Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)
© dedicated program analysis by symbolic execution and abstraction

@ extract constrained rewrite system (constraints in integer arithmetic)
© termination of constrained rewrite system = termination of program

‘ Complexity

Frontends Backend
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What is Static Program Analysis About?

Goal: (Automatically) prove whether a given program P has (un)desirable
property
Approach: Often in two phases
Front-End
@ Input: Program in Java, C, Prolog, Haskell, ...

@ Output: Mathematical representation amenable to automated analysis
(usually some kind of transition system)

o Often over-approximation, preserves the property of interest

Back-End
@ Performs the analysis of the desired property

= Result carries over to original program
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|. Termination Analysis
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Why Analyse Termination?
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Why Analyse Termination?

@ Program: produces result
@ Input handler: system reacts
© Mathematical proof: the induction is valid

© Biological process: reaches a stable state

Variations of the same problem:
@ special case of @
© can be interpreted as @
@ probabilistic version of @

2011: PHP and Java issues with floating-point number parser
@ http://www.exploringbinary.com/
php-hangs-on-numeric-value-2-2250738585072011e-308/
@ http://www.exploringbinary.com/

java-hangs-when-converting-2-2250738585072012e-308/
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The Bad News

Theorem (Turing 1936)

The question if a given program terminates on a fixed input is undecidable.

e We want to solve the (harder) question if a given program terminates
on all inputs.

@ That's not even semi-decidable!

o But, fear not ...
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Turing 1949

#Mnally the checker has to vorify that the prooe
Hore again he ahould be assisted by the programner g
ansortion to be verified,
asserted to deorease continu

ss comes to an end.
iving a further definite
This may take the romm or a gquantity which is
ally and vanlsh when ths muchine stopa.
“Finally the checker has to verify that the process comes to an end. [...]

This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

© Find ranking function f (“quantity”)

@ Prove f to have a lower bound (“vanish when the machine stops”)
© Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x=x—1
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Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like
b>0 A (4ab—T0">1 V 3a+c>0b%)

Answer:
@ ¢ satisfiable, model M (e.g., a=3,b=1,c=1):

= P terminating, M fills in the gaps in the termination proof
@ ¢ unsatisfiable:

= termination status of P unknown

= try a different template (proof technique)

In practice:
@ Encode only one proof step at a time
— try to prove only part of the program terminating

@ Repeat until the whole program is proved terminating
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The Rest of Today's Session

Termination proving in the back-end
@ Term Rewrite Systems (TRSs)
@ Imperative Programs (as Integer Transition Systems, ITSs)

© Both together! Logically Constrained Term Rewrite Systems

Processing practical programming languages in the front-end
Q Java
@ C (via LLVM)
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|.1 Termination Analysis of Term
Rewrite Systems
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What's Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

o first-order (usually)

no fixed evaluation strategy — non-determinism!

no fixed order of rules to apply (Haskell: top to bottom)
— non-determinism!

untyped (unless you really want types)
no pre-defined data structures (integers, arrays, ...)
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Represent natural numbers by terms (inductively defined data structure):

0, s(0), s(s(0)), ...

Example (A Term Rewrite System (TRS) for Division)

minus(z,0) — =
R = minus(s(x),s(y)) — minus(z,y)
quot(0,s(y)) — O
quot(s(z),s(y)) — s(quot(minus(z,y),s(y)))

Calculation:

minus(s(s(0)),s(0)) —x  minus(s(0),0) —r s(0)
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e Translate program P with inductive data structures (trees) to TRS,
represent data structures as terms

= Termination of TRS implies termination of P

e Logic programming: Prolog
[van Raamsdonk, ICLP '97; Schneider-Kamp et al, TOCL '09,
Giesl et al, PPDP '12]

o (Lazy) functional programming: Haskell [Giesl et al, TOPLAS '11]
o Object-oriented programming: Java [Otto et al, RTA '10]
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Example (Division)

minus(z,0) — =
o minus(s(z),s(y)) —  minus (z,y)
quot(0,s(y)) — O
quot(s(z),s(y)) — s(quot ( minus (z,y),s(y)))
mlnusu(s(x),s(y)) —  minus(z,y)
DP = quotf(s(z),s(y)) — minust(z,y)
quotf(s(z),s(y)) —  quotf(minus(z,y),s(y))

v

Dependency Pairs [Arts, Giesl, TCS '00]
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Example (Division)
minus(z, 0
minus(s(z), s(y)
quot(0,s(y)
quot(s(z),s(y)

{ minus®(s(z), s(y))

R =

DP =

LY Y XY Y Y Y Y

minus(x, y)

0

s(quot(minus(z, ),
(2, y)
minusﬁ(x,y)
quotf(minus(z,y),s(y))

s(y)))

minus’

Dependency Pairs [Arts, Giesl, TCS '00]

@ For TRS R build dependency pairs DP
@ Show: No oo call sequence with DP (eval of DP’s args via R)
@ Dependency Pair Framework [Gies| et al, JAR '06] (simplified):

while DP #£ () :

(~ function calls)

o find well-founded order = with DPUR C =
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Example (Division)

minus(z,0) = =
R = minus(s(x),s(y)) 7 minus(z,y)
quot(0,s(y)) = 0
quot(s(z),s(y)) % s(quot(minus(z,y),s(y)))
minus®(s(z), s(y)) - minus?(z, y)
DP = { quoti(s(2),s(y) 5, minusi(z,y)
quot’(s(z),s(y)) =z, quot’(minus(z,y),s(y))
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@ For TRS R build dependency pairs DP (~ function calls)
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Example (Division)

minus(z,0) = =
R = minus(s(x),s(y)) 7 minus(z,y)
quot(0,s(y)) = 0
quot(s(z),s(y)) % s(quot(minus(z,y),s(y)))
minus®(s(z), s(y)) & minus?(z, y)
DP = { quot'(s(2),s(y) 5, minusi(z,y)
quot’(s(x),s(y)) (Z, quot’(minus(z,y),s(y))

Dependency Pairs [Arts, Giesl, TCS '00]
@ For TRS R build dependency pairs DP (~ function calls)
@ Show: No oo call sequence with DP (eval of DP's args via R)

@ Dependency Pair Framework [Gies| et al, JAR '06] (simplified):
while DP #£ () :
o find well-founded order > with DPUR C
o delete s — ¢ with s > t from DP

e Find > automatically and efficiently
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Polynomial Interpretations

Get > via polynomial interpretations [ -] over N [Lankford '75]

minus(s(x),s(y)) 2 minus(z,y)
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Polynomial Interpretations

Get > via polynomial interpretations [ -] over N [Lankford '75]

Ve,y. z+1 = [minus(s(z),s(y))] > [minus(z,y)] = =
Use [ -] with
@ [minus|(z1,x2) = 71
o [s|(x1) =a1+1

Extend to terms:
° [z]==x
o [f(t,....ta)] = [fI([ta], -, [ta])

> boils down to > over N
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Example (Constraints for Division)

. minus(z, 0)

R = mlnus(s(a:):s ;
)

)

)

)

o
(y)) = minus(z,y)
quot(0,s(y)) Z O
quot(s(z),s(y)) = s(quot(minus(z,y),s(y)))

R minus(z, y)

) 5 minus®(z, y)

) (%, quoti(minus(z,y),s(y))
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Example (Constraints for Division)

minus(z,0) = =
_ minus(s(z),s(y)) 2 minus(z,y)
®= awot0s) 5 0
quot(s(z),s(y)) & slauot(minus(z,y),5(y))

minus®(s(x),s(y)) > minust(z,y)
DP = quotf(s(z),s(y)) > minus’(z,y)
quot’(s(z),s(y)) > quot’(minus(zx,y),s(y))

Use interpretation [ - | over N with

[quotf](z1,20) = 2 [quot](z1,22) = =1+ o
[minus’](z1,22) = o [minus](z1,22) = =
[0] =0 [s(z1) = x1+1

~ order solves all constraints
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Example (Constraints for Division)

minus(z,0) = =z
o _ ) minus(s(a),s) % minus(e,y)
B quot(0,s(y)) = 0
quot(s(z),s(y)) = s(quot(minus(z,y),s(y)))
DP =
Use interpretation [ - | over N with
[quotf](z1,20) = 2 [quot](z1,22) = =1+ o
[minus’](z1,22) = o [minus](z1,22) = =
[0] =0 [s(z1) = x1+1
~ order solves all constraints
~DP =10
~ termination of division algorithm proved O
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Remark

Polynomial interpretations play several roles for program analysis:

Use interpretation [ - | over N with

[quotf](z1,20) = 2
[minus’](z1,22) = o
0] = 0

~ order solves all constraints
~DP =10
~ termination of division algorithm

[quot] (21, z2)
[minus](z1, z2)

proved

[s](x1)

T+ T2
T
x1+1

O
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e Ranking function: [quot?] and [minus’]

e Summary: [quot] and [minus]
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[quotf](z1,20) = 2 [quot](z1, z2)
[minus’](z1,22) = o [minus](z1, z2)
[0] = 0 [s](1)
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Remark

Polynomial interpretations play several roles for program analysis:
e Ranking function: [quot?] and [minus’]
e Summary: [quot] and [minus]

@ Abstraction (aka norm) for data structures: [0] and [s]

Use interpretation [ - | over N with

[quotf](z1,20) = 1 [quot](x1,z2) = x1+ 22
[minus’](z1,22) = o [minus](z1,22) = =
[0] =0 [s(z1) = x1+1
~ order solves all constraints
~DP =1
~ termination of division algorithm proved O
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Task: Solve minus(s(x),s(y)) 7 minus(z,y)
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© Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = am + bmx + cmy, [s](x) =as+ bsx
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© Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = am + bmx + cmy, [s](x) =as+ bsx
@ From term constraint to polynomial constraint:
szt~ [s] > [t

Here:  Vz,y. (asbm + ascm) + (bsbm — bm) .+ (bscm — cm)y > 0
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© Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = adm + bmz +cmy, [s](x) =as+ bsx
@ From term constraint to polynomial constraint:
szt~ [s] > [t
Here:  Vz,y. (asbm + ascm) + (bsbm — bm) .+ (bscm — cm)y > 0

© Eliminate Vx,y by absolute positiveness criterion
[Hong, Jakus, JAR '98]:

Here: asbm +ascm > 0 A bsbpy —bm > 0 A bscn —cm > 0
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Task: Solve minus(s(x),s(y)) 7 minus(z,y)

~

@ Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = adm + bm T+ cmy, [s](x) =as+ bsx
@ From term constraint to polynomial constraint:
st~ [s] > [t]
Here:  Vz,y. (asbm + ascm) + (bsbm —bm) z+ (bscm —cm)y > 0

© Eliminate Vz,y by absolute positiveness criterion
[Hong, Jakus, JAR '98]:
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@ Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = adm + bm T+ cmy, [s](x) =as+ bsx
@ From term constraint to polynomial constraint:
st~ [s] > [t]
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© Eliminate Vz,y by absolute positiveness criterion
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Task: Solve minus(s(x),s(y)) 7z minus(z,y)

© Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = adm + bmz +cmy, [s](x) =as+ bsx
@ From term constraint to polynomial constraint:
szt~ [s] > [t
Here:  Vz,y. (asbm + ascm) + (bsbm — bm) .+ (bscm — cm)y > 0

© Eliminate Vx,y by absolute positiveness criterion
[Hong, Jakus, JAR '98]:

Here: asbm +ascm > 0 A bsbpy —bm > 0 A bscn —cm > 0
Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N (— SMT solver!)

~ Prove termination of given term rewrite system
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Extensions of Polynomial Interpretations

@ Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC '07; Fuhs et al, SAT '07, RTA '08]
e can model behaviour of functions more closely:
[pred](z1) = max(zq — 1,0)
e automation via encoding to non-linear constraints, more complex
Boolean structure
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useful for deeply nested terms

automation: constraints with more complex atoms
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(SAT and) SMT Solving for Path Orders

Path orders: based on precedences on function symbols
e Knuth-Bendix Order [Knuth, Bendix, CPAA '70]

— polynomial time algorithm [Korovin, Voronkov, /C 03]
— SMT encoding [Zankl, Hirokawa, Middeldorp, JAR '09]
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— polynomial time algorithm [Korovin, Voronkov, /C 03]
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and Recursive Path Orders [Dershowitz, Manna, CACM ‘79,
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— SAT encoding [Codish et al, JAR '11]
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(SAT and) SMT Solving for Path Orders

Path orders: based on precedences on function symbols

e Knuth-Bendix Order [Knuth, Bendix, CPAA '70]
— polynomial time algorithm [Korovin, Voronkov, /C 03]
— SMT encoding [Zankl, Hirokawa, Middeldorp, JAR '09]

@ Lexicographic Path Orders [Kamin, Lévy, Unpublished Manuscript '80]
and Recursive Path Orders [Dershowitz, Manna, CACM ‘79,
Dershowitz, TCS '82]

— SAT encoding [Codish et al, JAR '11]

o Weighted Path Order [Yamada, Kusakari, Sakabe, SCP '15]
— SMT encoding
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Further Techniques and Settings for TRSs

@ Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS '05; Payet, TCS 08,
Zankl et al, SOFSEM '10; Emmes, Enger, Giesl, [JCAR '12; ...]
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Further Techniques and Settings for TRSs

@ Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS '05; Payet, TCS 08,
Zankl et al, SOFSEM '10; Emmes, Enger, Giesl, [JCAR '12; ...]

@ Specific rewrite strategies: innermost, outermost, context-sensitive
rewriting [Lucas, ACM Comput. Surv. '20], ...

@ Higher-order rewriting: functional variables, higher types,
B-reduction

map( /', Cons(z, zs)) — Cons(/'(x), map(/', xs))

[Kop, PhD thesis '12]

e Probabilistic term rewriting: Positive/Strong Almost Sure
Termination [Avanzini, Dal Lago, Yamada, SCP '20]

o Complexity analysis
[Hirokawa, Moser, IJCAR '08; Noschinski, Emmes, Giesl, JAR '13; ...]
Can re-use termination machinery to infer and prove statements like
“runtime complexity of this TRS is in O(n3)"

— more in Session 2!
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SMT Solvers from Termination Analysis

Annual SMT-COMP, division QF _NIA (Quantifier-Free Non-linear Integer
Arithmetic)

Year | Winner

2009 | Barcelogic-QF _NIA
2010 | MiniSmt

2011 | AProVE

2012 | no QF NIA

2013 | no SMT-COMP
2014 | AProVE

2015 | AProVE

2016 | Yices
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Year | Winner

2009 | Barcelogic-QF _NIA

2010 | MiniSmt (spin-off of TTy)
2011 | AProVE

2012 | no QF NIA
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2014 | AProVE
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= Termination provers can also be successful SMT solvers!
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SMT Solvers from Termination Analysis

Annual SMT-COMP, division QF _NIA (Quantifier-Free Non-linear Integer
Arithmetic)

Year | Winner

2009 | Barcelogic-QF _NIA

2010 | MiniSmt (spin-off of TTy)
2011 | AProVE

2012 | no QF NIA

2013 | no SMT-COMP

2014 | AProVE

2015 | AProVE

2016 | Yices

= Termination provers can also be successful SMT solvers!
(disclaimer: Z3 participated only hors concours)
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The Termination Competition (termCOMP) (2/3)

termCOMP 2022 participants:

AProVE (RWTH Aachen, Birkbeck U London, U Innsbruck, ...)
iRankFinder (UC Madrid)

LoAT (RWTH Aachen)

Matchbox (HTWK Leipzig)

Mu-Term (UP Valencia)

MultumNonMulta (BA Saarland)

NaTT (AIST Tokyo)

NTI+cTI (U Réunion)

SOL (Gunma U)

TcT (U Innsbruck, INRIA Sophia Antipolis)
T1T> (U Innsbruck)

Ultimate Automizer (U Freiburg)

Wanda (RU Nijmegen)
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The Termination Competition (termCOMP) (3/3)

e Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB
— 1000s of termination and complexity problems
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The Termination Competition (termCOMP) (3/3)

e Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB
— 1000s of termination and complexity problems

@ Timeout: 300 seconds
@ Run on StarExec platform [Stump, Sutcliffe, Tinelli, [JCAR '14]

e Categories for proving (non-)termination and for inferring upper/lower
complexity bounds for different programming languages

@ Part of the Olympic Games at the Federated Logic Conference
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Input for Automated Tools

Web interfaces available:
@ AProVE: https://aprove.informatik.rwth-aachen.de/interface
@ iRankFinder: http://irankfinder.loopkiller.com:8081/

@ Mu-Term:
http://zenon.dsic.upv.es/muterm/index.php/web-interface/

@ T7ly: http://colo6-c703.uibk.ac.at/ttt2/web/
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Input for Automated Tools

Web interfaces available:
@ AProVE: https://aprove.informatik.rwth-aachen.de/interface
@ iRankFinder: http://irankfinder.loopkiller.com:8081/
o Mu-Term:
http://zenon.dsic.upv.es/muterm/index.php/web-interface/

@ T7ly: http://colo6-c703.uibk.ac.at/ttt2/web/

Input format for termination of TRSs:
(VAR x y)
(RULES
plus(e, y) ->y
plus(s(x), y) —> s(plus(x, y))
)
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|.2 Termination Analysis of
Programs on Integers
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Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

ly: if (x>0) Does this program terminate?
/1 while (x # 0) (x ranges over 7Z)
l: X =x—1;

Example (Equivalent Translation to an Integer Transition System,

cf. [McCarthy, CACM '60])

b(z) — li(x) [z > 0]

lo(z) — Ll3(x) [z < 0]

l(z) — fla(x) [ £0Az > 0]

b(z) — li(z—1) [z >0]

li(z) — Ll3(x) [t=0Az >0 ]

Oh no! 61(—1) — 32(—1) — 51(—2) — 52(—2) — El(—?)) —

= Restrict initial states to /y(z) for z € Z

= Find invariant x > 0 at (1, (» (exercise)
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Proving Termination with Invariants

Example (Transition system with invariants)

lo(z) — li(z) [z > 0]
l(z) — fla(x) [x #0Az > 0]
b(z) — li(x—1) [z >0
fl(l‘) — 53(1,‘) [33 =0Ax > 0]

Prove termination by ranking function [ -] with [(o](x) = [(1](z) =--- ==z
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@) % 4@ |20
li(z) = () [x#A0Az >0
l(z) = li(z—1) [z>0]
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lo(x) = () [z > 0]
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l(z) = li(z—1) [z>0]
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Example (Transition system with invariants)

bo(z) — li(x) [z > 0]
li(z) —  la(z) [x 0Nz >0]
lhi(z) — G3(x) [t=0Az >0
Prove termination by ranking function [ -] with [(o](z) = [(1](z) =--- ==

Automate search using parametric ranking function:
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Constraints here:
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Termination prover needs to find invariants for programs on integers

@ Statically before the translation
[Otto et al, RTA '10; Stroder et al, JAR 17, ...]
— abstract interpretation [Cousot, Cousot, POPL '77]
— more about this in a few minutes!

@ By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ‘06, PLDI '06]
— prove termination of single program runs
— termination argument often generalises

@ ... also cooperating with removal of terminating rules (as for TRSs):
T2 [Brockschmidt, Cook, Fuhs, CAV '13; Brockschmidt et al,
TACAS '16]

@ Using Max-SMT
[Larraz, Oliveras, Rodriguez-Carbonell, Rubio, FMCAD '13]

Nowadays all SMT-based!
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Extensions

e Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL '08, Brockschmidt et al, FoVeOOS '11, Chen et
al, TACAS '14, Larraz et al, CAV '14, Cook et al, FMCAD 14, ...]
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Extensions

e Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL '08, Brockschmidt et al, FoVeOOS '11, Chen et
al, TACAS '14, Larraz et al, CAV '14, Cook et al, FMCAD 14, ...]

o Complexity bounds
[Alias et al, SAS '10, Hoffmann, Shao, JFP '15, Brockschmidt et al,
TOPLAS 16, .. .]

e CTL* model checking for infinite state systems based on termination
and non-termination provers
[Cook, Khlaaf, Piterman, JACM '17]

@ Beyond sequential programs on integers:

structs/classes [Berdine et al, CAV '06; Otto et al, RTA '10; .. .]
e arrays (pointer arithmetic) [Stroder et al, JAR 17, ...]

o multi-threaded programs [Cook et al, PLDI 07, . ..]
[}
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Why Care about Termination of Term Rewriting?

@ Termination needed by theorem provers

e Translate program P with inductive data structures (trees) to TRS,
represent data structures as terms

= Termination of TRS implies termination of P

e Logic programming: Prolog
[van Raamsdonk, ICLP '97, Schneider-Kamp et al, TOCL '09,
Giesl et al, PPDP '12]

o (Lazy) functional programming: Haskell [Giesl et al, TOPLAS '11]
o Object-oriented programming: Java [Otto et al, RTA '10]
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Beyond Classic TRSs for Program Analysis

So far, so good ...
but do we really want to represent 1000000 as s(s(s(...)))?!
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Beyond Classic TRSs for Program Analysis

So far, so good ...

but do we really want to represent 1000000 as s(s(s(...)))?!
Drawbacks:
@ throws away domain knowledge about built-in data types like integers

@ need to analyse recursive rules for minus, quot, ... over and over

@ does not benefit from dedicated constraint solvers
(e.g., SMT solvers) for arithmetic operations in programs

Solution: use constrained term rewriting
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@ no fixed order of rules to apply
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Constrained Term Rewriting, What's That?

Term rewriting "“with batteries included”
o first-order
no fixed evaluation strategy

°
@ no fixed order of rules to apply
e typed

°

with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories

@ rewrite rules with SMT constraints

= Term rewriting + SMT solving for automated reasoning

o General forms available, e.g., Logically Constrained TRSs
[Kop, Nishida, FroCoS '13]

@ For program termination: use term rewriting with integers
[Falke, Kapur, CADE '09; Fuhs et al, RTA '09; Giesl et al, JAR '17]
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Constrained Rewriting by Example

Example (Constrained Rewrite System)

lo(n,r) —  Ll1(n,r,Nil)
l(n,ryxs) —  l1(n—1,r+1,Cons(r,zs)) [n > 0]
li(n,ryzs)  — lo(xs) [n = 0]
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Example (Constrained Rewrite System)

lo(n,r) —  Ll1(n,r,Nil)
l(n,ryxs) —  l1(n—1,r+1,Cons(r,zs)) [n > 0]
li(n,ryzs)  — lo(xs) [n = 0]

Possible rewrite sequence:

(0(2,7)

s £1(2,7, Nil)

— (1(1, 8, Cons(7, Nil))

— £1(0, 9, Cons(8, Cons(7, Nil)))
(

— l>(Cons(8, Cons(7,Nil)))
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Constrained Rewriting by Example

Example (Constrained Rewrite System)

lo(n,r) —  Ll1(n,r,Nil)
l(n,ryxs) —  l1(n—1,r+1,Cons(r,zs)) [n > 0]
li(n,ryzs)  — lo(xs) [n = 0]

Possible rewrite sequence:
(0(2,7)

— (1(2,7,Nil)

— (1(1, 8, Cons(7, Nil))

— £1(0, 9, Cons(8, Cons(7, Nil)))

— £»(Cons(8, Cons(7, Nil)))

Here 7, 8, ... are predefined constants.
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Constrained Rewriting by Example

Example (Constrained Rewrite System)

lo(n,r) —  Ll1(n,r,Nil)
l(n,ryxs) —  l1(n—1,r+1,Cons(r,zs)) [n > 0]
li(n,ryzs)  — lo(xs) [n = 0]

Possible rewrite sequence:
(0(2,7)

— (1(2,7,Nil)

— (1(1, 8, Cons(7, Nil))

— £1(0, 9, Cons(8, Cons(7, Nil)))

— £»(Cons(8, Cons(7, Nil)))

Here 7, 8, ... are predefined constants.

Termination proof: reuse techniques for TRSs and integer programs
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Conclusion: Termination Proving Back-Ends

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 20 years

@ Term rewriting: handles inductive data structures well

@ Imperative programs on integers: need to consider
reachability /safety and invariants
@ Since a few years cross-fertilisation
@ Constrained term rewriting: best of both worlds as back-end language
@ Proof search heavily relies on SMT solving for automation
@ Needs of termination analysis have also led to better SMT solvers
@ More information . ..

http://termination-portal.org

Behind (almost) every successful termination prover ...
. there is a powerful SAT / SMT solver!
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|.3 Termination Analysis of Java
programs

39/173



From Program to Constrained Term Rewriting, high-level

@ execute program symbolically from initial states of the program,
handle language peculiarities here (— Java: sharing, cyclicity analysis)

else

g: while ...
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From Program to Constrained Term Rewriting, high-level

@ execute program symbolically from initial states of the program,
handle language peculiarities here (— Java: sharing, cyclicity analysis)

@ use generalisation of program states, get over-approximation of all
possible program runs (& control-flow graph with extra info)

o closely related: Abstract Interpretation [Cousot and Cousot, POPL '77]

foif ... init(...)
. l
else f(...)
SN
g: while ... 8(5) =~ g(@) instance of g(3)

SN
0
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From Program to Constrained Term Rewriting, high-level

@ execute program symbolically from initial states of the program,
handle language peculiarities here (— Java: sharing, cyclicity analysis)

@ use generalisation of program states, get over-approximation of all
possible program runs (& control-flow graph with extra info)

o closely related: Abstract Interpretation [Cousot and Cousot, POPL '77]
@ extract TRS from cycles in the representation

foif ... init(...)
. il
else f(...)
L S
g: while ... /g(;j <<\‘\\ g(#) instance of g(3)
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From Program to Constrained Term Rewriting, high-level

@ execute program symbolically from initial states of the program,
handle language peculiarities here (— Java: sharing, cyclicity analysis)

@ use generalisation of program states, get over-approximation of all
possible program runs (& control-flow graph with extra info)

o closely related: Abstract Interpretation [Cousot and Cousot, POPL '77]

@ extract TRS from cycles in the representation

e if TRS terminates
= any concrete program execution can use cycles only finitely often
= the program must terminate

foif ... init(...)
. il
else f(...)
L S
g: while ... /g(;j <<\‘\\ g(#) instance of g(5)

g(?)
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Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

@ Decide on suitable symbolic representation of abstract program states
(abstract domain)
— here: what data objects can we represent as terms?

@ Execute program symbolically from its initial states

@ Use generalisation of program states to get closed finite
representation (symbolic execution graph, abstract interpretation)

@ Extract rewrite rules that “over-approximate’ program executions in
strongly-connected components of graph

@ Prove termination of these rewrite rules
= implies termination of program from initial states
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Java Challenges

Java: object-oriented imperative language
@ sharing and aliasing (several references to the same object)
o side effects
e cyclic data objects (e.g., list.next == list)
@ object-orientation with inheritance
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Java Example

public class MyInt {

// only wrap a primitive int
private int val;

// count "num” up to the value in "limit"
public static void count(MyInt num, MyInt limit) {
if (num == null || limit == null) {
return;
}
// introduce sharing
MyInt copy = num;
while (num.val < limit.val) {
copy.val++;
}
3
3
v

Does count terminate for all inputs? Why (not)?
(Assume that num and limit are not references to the same object.)
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Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA '10]
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Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA '10]

Back-end: From rewrite system to termination proof
o Constrained term rewriting with integers [Gies| et al, JAR '17]

@ Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system
@ Build symbolic execution graph that over-approximates all runs of
Java program (abstract interpretation)
@ Symbolic execution graph has invariants for integers and heap object
shape (trees?)
@ Extract rewrite system from symbolic execution graph

Implemented in the tool AProVE (— web interface)

http://aprove. informatik.rwth-aachen.de/
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Java: Source Code vs Bytecode

00: aload_0
01: ifnull 8
04: aload_1

. A ) 05: ifnonnull 9
[Otto et al, RTA '10] describe their technique for cor g. return

programs: Java Bytecode 09: aload_0
10: astore_2

@ desugared machine code for a (virtual) stack mac 11: aload_o
still has all the (relevant) information from sourc }: i‘ii;ge}d val
@ input for Java interpreter and for many program 16: getfield val
19: if_icmpge 35
@ somewhat inconvenient for presentation, though 22 aload_2
23: aload_2
24: getfield val
27: iconst_1
28: iadd
29: putfield val
32: goto 11
35: return
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Java: Source Code vs Bytecode

[Otto et al, RTA '10] describe their technique for compiled Java
programs: Java Bytecode

@ desugared machine code for a (virtual) stack machine,
still has all the (relevant) information from source code

@ input for Java interpreter and for many program analysis tools

@ somewhat inconvenient for presentation, though ...

Here: Java source code
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Ingredients for the Abstract Domain

@ program counter value (line number)

@ values of variables (treating int as 7Z)

© over-approximating info on possible variable values
o integers: use intervals, e.g. x € [4, 7] ory € [0, o)
e heap memory with objects, no sharing unless stated otherwise
e MyInt(?): maybe null, maybe a MyInt object

Heap predicates:

?
o Two references may be equal: 01 ="0>

03 \ num: o1, 1limit : o2
o1 : MyInt(?)

02 : MyInt(val =4;)

i1 : [4,80]
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Ingredients for the Abstract Domain

@ program counter value (line number)
@ values of variables (treating int as 7Z)
© over-approximating info on possible variable values
o integers: use intervals, e.g. x € [4, 7] ory € [0, o)
e heap memory with objects, no sharing unless stated otherwise
e MyInt(?): maybe null, maybe a MyInt object
Heap predicates:

?
o Two references may be equal: 01 ="02
e Two references may share: 01\/02

o Reference may have cycles: 0!

03 \ num: o1, 1limit : o2
o1 : MyInt(?)

02 : MyInt(val =4;)

i1 : [4,80]
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Building the Symbolic Execution Graph

N O oA w N =

public class MyInt {
private int val;
static void count(MyInt num,
MyInt limit) {
if (num == null
|| limit == null)
return;
MyInt copy = num;
while (num.val < limit.val)
copy.val++;

33

A

1| num: o1, limit: o2

01 : MyInt(?)
02 : MyInt(?)
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Building the Symbolic Execution Graph

public class MyInt { A 01 = null B
private int val; 1 num: o1, limit: oz | =3[ 3] num:oq,limit: oo
static void count(MyInt num, 01 : MyInt(?) 01 : null

MyInt limit) { 02 : MyInt(?) 02 : MyInt(?)
1: if (num == null
2: [l limit == null) o1 # ”“11‘C
38 return; 2 [ num: o1, limit : oo
4: MyInt copy = num; 01 : MyInt(val = 41)
5: while (num.val < limit.val) 02 : MyInt(?)
6: copy.val++; i1 1 (—00,00)
7: } )
w
cond
K e Y

means: refine X with cond, then evaluate to Y; here combined for brevity
(narrowing)
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Building the Symbolic Execution Graph

public class MyInt { A 01 = null B
pr1V§te 1|'.1t val; 1| num:op,limit: oo |—=3m| 3| num:or,limit: oo
static void count(MyInt num, 01 : MyInt(?) 01 : null
MyInt limit) { 02 : MyInt(?) 02 : MyInt(?)
1: if (num == null
gE [l limit == null) o1 # ““11‘(: s — null D
3: return; 2 [ num: o1, limit : oo 3 [ num: o1, limit : oo
4: MyInt copy = num; o1 : MyInt(val =41) o1 : MyInt(val =11)
Bk while (num.val < limit.val) 02 : MyInt(?) 02 : null
6: copy.val++; i1 1 (—00,00) i1 : (—00,00)
7: } }
« 02 # null E
4 | num: o1, limit : oo
o1 : MyInt(val =41)
02 : MyInt(val = i)
i1 : (—00,00)
ig : (—00, 00)

cond
X=—3>Y
means: refine X with cond, then evaluate to Y; here combined for brevity
(narrowing)
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Building the Symbolic Execution Graph

N O oA w N =

public class MyInt {
private int val;

static void count(MyInt num,

MyInt limit) {
if (num == null

|| 1imit == null)

return;
MyInt copy = num;

while (num.val < limit.val)

copy.val++;

33

X—Y

means: evaluate X to Y

<

A 01 = null B
1| num:or,limit: o |—=3m| 3| num:or,limit: oo
01 : MyInt(?) 01 : null
02 : MyInt(?) 02 : MyInt(?)
null
7 ‘ c 02 = null P
2 | num: o1, limit : o2 3 | num: oq,limit : o2
o1 : MyInt(val =41) - o1 : MyInt(val =41)
02 : MyInt(?) 09 : null
i1 : (—00,00) i1 : (—00,00)

og#null‘ E

4 | num: o1,limit : oo

o1 : MyInt(val =41)
02 : MyInt(val = i)
i1 : (—00,00)
ig : (—00, 00)

N

F

5 | num: o1, limit : oz, copy : 01

o1 : MyIn
02 : MyIn

t(val = i)
t(val = ig)

i1 : (—00,00)
g 1 (—00,00)
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Building the Symbolic Execution Graph

N O oA w N =

public class MyInt {
private int val;
static void count(MyInt num,
MyInt limit) {
if (num == null
|| limit ==
return;
MyInt copy = num;
while (num.val < limit.val)
copy.val++;

null)

33

H

<

A 01 = null B
1| num:or,limit: o |—=3m| 3| num:or,limit: oo
01 : MyInt(?) 01 : null
02 : MyInt(?) 02 : MyInt(?)
null
7 ‘ c 02 = null P
2 | num: o1, limit : o2 — 3 | num: oq,limit : o2
o1 : MyInt(val =41) o1 : MyInt(val =41)
02 : MyInt(?) 09 : null
i1 : (—00,00) i1 : (—00,00)

og#null‘ E

4 | num: o1,limit : oo

o1 : MyInt(val =41)
02 : MyInt(val = i)
i1 : (—00,00)
ig : (—00, 00)

G

7| num:oq,...

N

6 | num: o1, limit : oz, copy : 01

F ‘71 > 2

i1 : (—00,00)
ig : (—00,00)

01 : MyInt(val =47)
02 : MyInt(val = i3)

5 | num: o1, limit : oz, copy : 01

i1 < ig

o1 : MyInt(val =41)
02 : MyInt(val = i2)
i1 : (—00,00)
g 1 (—00,00)
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Building the Symbolic Execution Graph

public class MyInt { A 01 = null B
private int val; 1| num:or,limit: o |—=3m| 3| num:or,limit: oo
static void count(MyInt num, 01 : MyInt(?) 01 : null
MyInt limit) { 09 : MyInt(?) 02 : MyInt(?)
1: if (num == null
2 Il limit == null) o1 7 null ‘ c s — null D
3: return; 2 [ num: o1, limit : oo 3 [ num: o1, limit : oo
4: MyInt copy = num; o1 : MyInt(val =41) o1 : MyInt(val =11)
Bk while (num.val < limit.val) 02 : MyInt(?) 02 1 null
6: copy.val++; i1 : (—00,00) i1 : (—00,00)
7: } }
« 02 # null E

|
5| num: o1, limit : 02, copy : o1
01 : MyInt(val = i3)
02 : MyInt(val = i)

4 | num: o1,limit : oo
o1 : MyInt(val =41) C
02 : MyInt(val = i)

; i1 @ (—o0, 00) 7| num:oq,...
i3 : (—00,00) iz : (—00,00)

ig : (—o0, 00) :

s=i1+1 N H \ F Tilzig

6 | num: o1, limit : oz, copy : 01 5 | num: o1, limit : oz, copy : 01
01 : MyInt(val =47) o1 : MyInt(val =41)

02 : MyInt(val = iz) €——— | 02 : MyInt(val =i2)

i1 : (—00,00) 11 <12 | j;:(—o0,00)

ig : (—00,00) g 1 (—00,00)
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Building the Symbolic Execution Graph

public class MyInt { A 01 = null B
private int val; 1| num:or,limit: o |—=3m| 3| num:or,limit: oo
static void count(MyInt num, 01 : MyInt(?) 01 : null
MyInt limit) { 02 : MyInt(?) 02 : MyInt(?)
1: if (num == null
2: [l limit == null) o1 # null ‘ C s — ull D
3: return; 2 [ num: o1,limit : o2 3 [ num:o1,limit : o2
4: MyInt copy = num; o1 : MyInt(val =41) o1 : MyInt(val =11)
Bk while (num.val < limit.val) 02 : MyInt(?) 02 1 null
6: copy.val++; i1 : (—00,00) i1 : (—00,00)
7: } }
« 02 # null E
I semmmmmm=eaY
__ d 4| num: o1, Timit : 0o
5| num: o1, limit : 02, copy : o1 o1 - MyInt(val = ik
01 : MyInt(val = i3) —a) G
‘3 02 : MyInt(val =id2) ¥
0z MyInt(val = i) i1t (—00,00) AN 7 [ num:oq,...
i : (—00,00) i9 1 (—00,00) .

ig : (—o0, 00)

-
.
A
N L
iz =i1+1 N\ H \ 4 F THEZQ

X >V - 6 | num: o1, limit : oz, copy : 01 5 | num: o1, limit : oz, copy : 01
. 01 : MyInt(val =47) o1 : MyInt(val =41)
(S : =1 : MyI 1=1
X is instance of Y | 02 MWiInt(val =12) €| o2:Mint(val =iz)
i1 : (—00,00) 12 | 41 :(—00,00)
ig : (—00,00) g 1 (—00,00)
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From Java to Symbolic Execution Graphs

Symbolic Execution Graphs

@ symbolic over-approximation of all computations
(abstract interpretation)

@ expand nodes until all leaves correspond to program ends

@ by suitable generalisation steps (widening),
one can always get a finite symbolic execution graph

@ state s7 is instance of state so
if all concrete states described by s; are also described by s
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From Java to Symbolic Execution Graphs

Symbolic Execution Graphs

@ symbolic over-approximation of all computations
(abstract interpretation)

@ expand nodes until all leaves correspond to program ends

@ by suitable generalisation steps (widening),
one can always get a finite symbolic execution graph

@ state s7 is instance of state so
if all concrete states described by s; are also described by s

Using Symbolic Execution Graphs for Termination Proofs

@ every concrete Java computation corresponds to a computation path
in the symbolic execution graph

@ symbolic execution graph is called terminating
iff it has no infinite computation path
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Transformation of Objects to Terms (1/2)

16 | num: o1, limit : 09, X : 03,y : 04,2 : 03
o1 : MyInt(?)

09 : MyInt(val = i)

03 : null

04 : MyList(?)

04!

il . [7, OO)

i9 1 (—00,00)

For every class C with n fields, introduce an n-ary function symbol C
e term for 01: 01

term for o2: Mylnt(iz)

term for o3: null

term for o4: x (new variable)

term for 71: i1 with side constraint i1 > 7

(add invariant i; > 7 to constrained rewrite rules from state Q)
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Transformation of Objects to Terms (2/2)

public class A {
int a;

3

public class B extends A {
int b;

¥

A x = new AQ);
x.a = 1;

B y = new B();
y.a = 2;

y.b = 3;

Dealing with subclasses:
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Transformation of Objects to Terms (2/2)

Dealing with subclasses:
public class A {

int a; o for every class C with n fields,
¥ introduce (n + 1)-ary function symbol C
public class B extends A { @ first argument: part of the object
int b; .
) corresponding to subclasses of C
e term for x: A(eoc, 1)
A x = new AQ); — eoc for end of class
.a=1;
e o term for y: A(B(eoc, 3),2)
B y = new B();
y.a = 2;
y.b = 3;
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Transformation of Objects to Terms (2/2)

public class A {
int a;

3

public class B extends A {
int b;

¥

A x = new AQ);
x.a = 1;

B y = new B();
y.a = 2;

y.b = 3;

Dealing with subclasses:

o for every class C with n fields,
introduce (n + 1)-ary function symbol C

@ first argument: part of the object
corresponding to subclasses of C

e term for x: jIO(A(eoc, 1))

— eoc for end of class
e term for y: jIO(A(B(eoc, 3),2))
@ every class extends Object!

(— jIO = java.lang.0Object)
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From the Symbolic Execution Graph to Terms and Rules

5 | num: o1, limit : 02, copy : o1

01 : MyInt(val = i3)
02 : MyInt(val = ip)
i3 : (—00,00)
ig : (—00, 00)

i3 =41 + 1
H

6 | num: o1,limit : o2, copy : o1

:MyInt(val =41)

o1

02 : MyInt(val = i3)
i1 : (—o0, 00)

ip : (—00, 00)

i1 < i2

§ F

5| num: o1,limit : o2, copy : 01

o1 : MyInt(val = 1)
02 : MyInt(val = ig)
i1 : (—00,00)
g : (—00,00)
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6 | num: o1,limit : o2, copy : o1

01 : MyInt(val = 1)
02 : MyInt(val = i3)
i1 : (—o0, 00)
ip : (—00, 00)

i1 < i2

5| num: o1,limit : o2, copy : 01

o1 : MyInt(val = 1)
02 : MyInt(val = ig)
i1 : (—00,00)
g : (—00,00)

o State F:  /¢( jIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,is)) )
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.
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o State F:  /¢( jIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,is)) )
H
State H:  {y( jlIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,iz)) ) [i1 < io]

@ State H:  /y( jIO(Mylnt(eoc,i1)), jIO(Mylnt(eoc,is)) )
State I (¢( jlIO(Mylnt(eoc,i; + 1)), jIO(Mylnt(eoc,iz)) )
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i3 =11 +1 >
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H qy F
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01 : MyInt(val = 1) o1 : MyInt(val = 1)
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ip : (—00, 00) g : (—00,00)

o State F:  /¢( jIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,is)) )
H
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H
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From the Symbolic Execution Graph to Terms and Rules

5 | num: o1, limit : 02, copy : o1
01 : MyInt(val = i3)
02 : MyInt(val = ip) “eal

i3 : (—00, 00) Sel
ig : (—00, 00) AN
-
Al
ig=i1+1 %
A )
H * F

6 | num: o1,limit : o2, copy : o1 5| num: o1,limit : o2, copy : 01
01 : MyInt(val = 1) o1 : MyInt(val = 1)
02 : MyInt(val = i3) € | 02 : MyInt(val =i2)
i1 1 (—00,00) 1 <12 i1 1 (—00,00)
ip : (—00, 00) g : (—00,00)

o State F:  /¢( jIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,is)) )
H
State H:  {y( jlIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,iz)) ) [i1 < io]
@ State H:  /y( jIO(Mylnt(eoc,i1)), jIO(Mylnt(eoc,is)) )
H
State I (¢( jIO(Mylnt(eoc,i; + 1)), jIO(Mylnt(eoc,iz)) )

@ Termination easy to show (intuitively: io — 41 decreases against bound 0)
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Extensions

e modular termination proofs and recursion
[Brockschmidt et al, RTA '11]
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Extensions

e modular termination proofs and recursion
[Brockschmidt et al, RTA '11]

@ proving reachability and non-termination (uses only symbolic
execution graph) [Brockschmidt et al, FoVeOOS '11]

@ proving termination with cyclic data objects (preprocessing in
symbolic execution graph) [Brockschmidt et al, CAV '12]

@ proving upper bounds for time complexity (abstracts terms to
numbers) [Frohn and Giesl, iFM '17]
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@ So far: Java as a memory-safe object-oriented language
— out-of-bounds memory accesses in Java: well-defined exceptions
@ Now: C as a systems programming language with pointer arithmetic
and no guarantees of memory safety
— out-of-bounds memory accesses in C: undefined behaviour

replacing all files on the computer with cat GIFs
information leaks (Heartbleed)
non-termination

o
o
o
o
= C programs must be memory safe as a precondition for termination!

@ Use case: programs on strings represented as char arrays whose last
element has 0 as entry (“O-terminated strings”)

@ Tailor two-stage approach to C [Stroder et al, JAR '17]
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Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(++s));
return s-str;
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while(x(++s));
return s-str;
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Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? No!
(violation of memory safety)

int strlen(char* str) {
charx s = str;
while(x(++s));
return s-str;

str

4
ol [ []
/I\
s
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Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while((*s)++);
return s-str;
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Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while((*s)++);
return s-str;

str
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Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? No!
(non-terminating )

int strlen(char* str) {
charx s = str;
while((*s)++);
return s-str;

str

4
Bl [ o]
/I\
s

54/173



Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? No!
(non-terminating — for unbounded integers)

int strlen(char* str) {
charx s = str;
while((*s)++);
return s-str;

str

4
Bl [ o]
/I\
s
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Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(s++));
return s-str;
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Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? Yes! But. ..

int strlen(char* str) {
charx s = str;
while(x(s++));
return s-str;

n -
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Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? Yes!

int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;
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Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? Yes!

int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;

str

4
L[ o
/I\
s

Bugs w.r.t. pointers are hard to recognise!
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Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? Yes!
How to prove this automatically?

int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;

str

4
L[ o
/I\
s

Bugs w.r.t. pointers are hard to recognise!
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From Program to Symbolic Execution Graph (1/2)

@ over-approximate operations
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From Program to Symbolic Execution Graph (1/2)

@ over-approximate operations

@ inference rules for each instruction
o refinement

@ generalisation

@ reduce reasoning to SMT
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From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;

}
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From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) {
charx s = str; 4 4
while(xs) s++; T ] .. o
return s-str;

str Uend

}
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From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) {

str Uend
charx s = str; + +
while(*s) s++; | || | |0|
return s-str;
} str Uend
4 e
| [ o]
Reﬁnemﬁ;i/// >
str Uend l str Uend
v L L +
0 0 #0 0
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& s
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From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) { ?ir Uj?d
charx s = str; | ¢0|| | — |0|
while(*s) s++;
return s-str; s

}
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From Program to Symbolic Execution Graph (2/2)
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From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) { str Uend
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From Program to Symbolic Execution Graph (2/2)
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From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) { str Uend
char* s = str; 4’0 S+
while(*s) s++; |5‘é || | o |0|
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} 1
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From Symb. Exec. Graph to Integer Transition Systems (1/3)

@ Non-termination ~ infinite run through graph
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From Symb. Exec. Graph to Integer Transition Systems (1/3)

@ Non-termination ~ infinite run through graph

@ Express graph traversal (SCCs)

by Integer Transition System (ITS)

@ ITS terminating = C program terminating
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From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states
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From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

@ Arguments: variables occurring in states

str Uend
4 4
A || #0 0
x
S
1
str Uend
4 4
B [#of [ [ ... [o]
/r
S
s<Uend

Ia(strytieng,s) —  Ig(str,uenq, s+ 1)
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From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):
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From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

<y
lz,y) — l(z+1y)

<_
oK<

Automatic termination proof by any termination prover
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Implementation: Analysis on LLVM Level

@ So far: assume that LLVM bitcode is essentially “the same” as C code
@ But: LLVM bitcode is much closer to assembly than C

@ Let's look at the details of the actual analysis
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original program is memory-safe and terminating
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prove termination
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safety
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The Low-Level Virtual Machine Framework

@ LLVM used for compiler optimisation and verification
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The Low-Level Virtual Machine Framework

LLVM used for compiler optimisation and verification

Close to assembly language

Still structured: functions, data structures, type safety

Single Static Assignment (SSA)

Caveat: user-defined data structures (structs) in LLVM are still work
in progress for AProVE
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From C to LLVM

Example C Program

int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;
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entry:

@: c@ = load i8* str

1: cOzero = icmp eq i8 c0@, @

2: br i1 c@zero, label done, label loop
Example C Program

loop:
0: olds = phi i8x [str,entry],[s,loop]
int strlen(char* str) { 1: s = getelementptr i8x olds, 132 1
char* s = str; 2: ¢ = load i8% s
while(*s) s++; 3: czero = icmp eq i8 c, @
return s-str; 4: br i1 czero, label done, label loop
} done:
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From C to LLVM

LLVM Code (simplified)
define 132 strlen(i8* str) {
entry:

@: c@ = load i8* str

1: cOzero = icmp eq i8 c0@, @

2: br i1 c@zero, label done, label loop
Example C Program

loop:
0: olds = phi i8x [str,entry],[s,loop]
int strlen(char* str) { 1: s = getelementptr i8x olds, 132 1
char* s = str; 2: ¢ = load i8% s
while(*s) s++; 3: czero = icmp eq i8 c, @
return s-str; 4: br i1 czero, label done, label loop
} done:

0: sfin = phi i8x [str,entry],[s,loop]
sfinint = ptrtoint i8* sfin to i32
strint = ptrtoint i8% str to i32
size = sub i32 sfinint, strint

2w N =

ret i32 size
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original program is memory-safe and terminating
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From LLVM to Symbolic Execution Graph

Abstract domain:
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Abstract domain:
@ represent system configurations as states
@ represent operations as edges
@ abstract states stand for sets of configurations

e program position pos: previous block, current block, line number

o allocation list AL Initial State:
pos = (g,entry, 0)
AL = {alloc(str,uenq)}

e points to map PT

69/173



From LLVM to Symbolic Execution Graph

Abstract domain:
@ represent system configurations as 