Automated Termination and Complexity Analysis of

Programs

Carsten Fuhs

Birkbeck, University of London

EuroProofNet Summer School on
Verification Technology, Systems & Applications 2022

Saarbriicken, Germany

5 & 7 September 2022

https://www.dcs.bbk.ac.uk/~carsten/vtsa2022/

https://www.dcs.bbk.ac.uk/~carsten/vtsa2022/

Quality Assurance for Software by Program Analysis

Two approaches:

2/173

https://www.youtube.com/watch?v=PK_yguLapgA
https://en.wikipedia.org/wiki/Ariane_5_Flight_501

Quality Assurance for Software by Program Analysis

Two approaches:
e Dynamic analysis:
Run the program on example inputs (testing).
+ goal: find errors
— requires good choice of test cases
— in general no guarantee for absence of errors

2/173

https://www.youtube.com/watch?v=PK_yguLapgA
https://en.wikipedia.org/wiki/Ariane_5_Flight_501

Quality Assurance for Software by Program Analysis

Two approaches:
e Dynamic analysis:
Run the program on example inputs (testing).
+ goal: find errors
— requires good choice of test cases
— in general no guarantee for absence of errors

@ Static analysis:
Analyse the program text without actually running the program.
+ can prove (verify) correctness of the program
— important for safety-critical applications
— motivating example: first flight of Ariane 5 rocket in 1996
https://www.youtube.com/watch?v=PK_ygulLapgA
https://en.wikipedia.org/wiki/Ariane_5_Flight_501
— manual static analysis requires high effort and expertise

= for broad applicability:

Build automatic tools for static analysis!
2/173

https://www.youtube.com/watch?v=PK_yguLapgA
https://en.wikipedia.org/wiki/Ariane_5_Flight_501

Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes".

3/173

Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes".

What properties of programs do we want to analyse?

3/173

Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes".

What properties of programs do we want to analyse?

o Partial Correctness
— will my program always produce the right result?

3/173

Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes".

What properties of programs do we want to analyse?

o Partial Correctness
— will my program always produce the right result?

@ Assertions by the programmer. assert x > 0
— will this always be true?

3/173

Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes".

What properties of programs do we want to analyse?

o Partial Correctness
— will my program always produce the right result?

@ Assertions by the programmer. assert x > 0
— will this always be true?

e Equivalence. Do two programs always produce the same result?
— correctness of refactoring

3/173

Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes".

What properties of programs do we want to analyse?

o Partial Correctness
— will my program always produce the right result?

@ Assertions by the programmer. assert x > 0
— will this always be true?

e Equivalence. Do two programs always produce the same result?
— correctness of refactoring

e Confluence. For languages with non-deterministic rules/commands:
Does my program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis '17]

— does the order of applying compiler optimisation rules matter?

3/173

Static analysis: the user's perspective (2/2)

e Memory Safety
— are my memory accesses always legal?
intx x = NULL; #*x = 42;
— undefined behaviour!
— memory safety matters: Heartbleed (OpenSSL attack)

4/173

Static analysis: the user's perspective (2/2)

e Memory Safety
— are my memory accesses always legal?
intx x = NULL; #*x = 42;
— undefined behaviour!
— memory safety matters: Heartbleed (OpenSSL attack)

e Termination
— will my program give an output for all inputs
in finitely many steps?

4/173

Static analysis: the user's perspective (2/2)

e Memory Safety
— are my memory accesses always legal?
intx x = NULL; #*x = 42;
— undefined behaviour!
— memory safety matters: Heartbleed (OpenSSL attack)

e Termination
— will my program give an output for all inputs
in finitely many steps?
o (Quantitative) Resource Use aka Complexity
— how many steps will my program need in the worst case?
(runtime complexity)
— how large can my data become? (size complexity)

4/173

Static analysis: the user's perspective (2/2)

e Memory Safety
— are my memory accesses always legal?
intx x = NULL; #*x = 42;
— undefined behaviour!
— memory safety matters: Heartbleed (OpenSSL attack)

e Termination
— will my program give an output for all inputs
in finitely many steps?
o (Quantitative) Resource Use aka Complexity
— how many steps will my program need in the worst case?
(runtime complexity)
— how large can my data become? (size complexity)

Note: All these properties are undecidable!
= use automatable sufficient criteria in practice

4/173

... since 2001

A

@ Program analysis tool developed in Aachen, London, Innsbruck, ...

5/173

... since 2001

@ Program analysis tool developed in Aachen, London, Innsbruck, ...
o Fully automated, hundreds of techniques for termination, time
complexity bounds, ...

Complexity

Non-Termination

5/173

A VE ... since 2001

@ Program analysis tool developed in Aachen, London, Innsbruck, ...

o Fully automated, hundreds of techniques for termination, time
complexity bounds, ...

e Highly configurable via strategy language

Complexity

Non-Termination

5/173

AVE ... since 2001

Program analysis tool developed in Aachen, London, Innsbruck, ...

Fully automated, hundreds of techniques for termination, time
complexity bounds, ...

Highly configurable via strategy language

Proofs usually have many steps — construct proof tree

Complexity

Non-Termination

5/173

A]\V’E: ... since 2001

Program analysis tool developed in Aachen, London, Innsbruck, ...
Fully automated, hundreds of techniques for termination, time
complexity bounds, ...

Highly configurable via strategy language

Proofs usually have many steps — construct proof tree

Founding tool of Termination Competition, since 2004

Initially: analyse termination of term rewrite systems (TRSs),
later also complexity bounds

\ Complexity

5/173

APRBYE .o

Program analysis tool developed in Aachen, London, Innsbruck, ...
Fully automated, hundreds of techniques for termination, time
complexity bounds, ...

Highly configurable via strategy language

Proofs usually have many steps — construct proof tree

Founding tool of Termination Competition, since 2004

Initially: analyse termination of term rewrite systems (TRSs),
later also complexity bounds

Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

\ Complexity

Haskell
Frontends Backend

5/173

A‘@@@Vlgi ... since 2001

Program analysis tool developed in Aachen, London, Innsbruck, ...
Fully automated, hundreds of techniques for termination, time
complexity bounds, ...

Highly configurable via strategy language

Proofs usually have many steps — construct proof tree

Founding tool of Termination Competition, since 2004

Initially: analyse termination of term rewrite systems (TRSs),
later also complexity bounds

Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

© dedicated program analysis by symbolic execution and abstraction

Termination

Complexity

Symbolic
Execution
Graph

Haskell

Prolog

Frontends Backend 5/173

A‘@@@Vlgi ... since 2001

Program analysis tool developed in Aachen, London, Innsbruck, ...
Fully automated, hundreds of techniques for termination, time
complexity bounds, ...

Highly configurable via strategy language

Proofs usually have many steps — construct proof tree

Founding tool of Termination Competition, since 2004

Initially: analyse termination of term rewrite systems (TRSs),
later also complexity bounds

Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

© dedicated program analysis by symbolic execution and abstraction
Q@ extract rewrite system

Termination

Complexity

Symbolic
Execution
Graph

Haskell

Prolog

Frontends Backend 5/173

A‘@@@Vlgi ... since 2001

Program analysis tool developed in Aachen, London, Innsbruck, ...

Fully automated, hundreds of techniques for termination, time

complexity bounds, ...

Highly configurable via strategy language

Proofs usually have many steps — construct proof tree

Founding tool of Termination Competition, since 2004

Initially: analyse termination of term rewrite systems (TRSs),

later also complexity bounds

Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)
© dedicated program analysis by symbolic execution and abstraction

Q@ extract rewrite system
© termination of rewrite system = termination of program

Termination

Complexity

Symbolic
Execution
Graph

Haskell

Prolog

Frontends Backend 5/173

A‘@@@Vlgi ... since 2001

Program analysis tool developed in Aachen, London, Innsbruck, ...

Fully automated, hundreds of techniques for termination, time

complexity bounds, ...

Highly configurable via strategy language

Proofs usually have many steps — construct proof tree

Founding tool of Termination Competition, since 2004

Initially: analyse termination of term rewrite systems (TRSs),

later also complexity bounds

Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)
© dedicated program analysis by symbolic execution and abstraction

@ extract constrained rewrite system (constraints in integer arithmetic)
© termination of constrained rewrite system = termination of program

‘ Complexity

Frontends Backend

Symbolic
Execution
Graph

(int-)TRS

Haskell

Prolog

5/173

What is Static Program Analysis About?

Goal: (Automatically) prove whether a given program P has (un)desirable

property
Approach: Often in two phases

6/173

What is Static Program Analysis About?

Goal: (Automatically) prove whether a given program P has (un)desirable
property
Approach: Often in two phases
Front-End
@ Input: Program in Java, C, Prolog, Haskell, ...

@ Output: Mathematical representation amenable to automated analysis
(usually some kind of transition system)

o Often over-approximation, preserves the property of interest

6/173

What is Static Program Analysis About?

Goal: (Automatically) prove whether a given program P has (un)desirable
property
Approach: Often in two phases
Front-End
@ Input: Program in Java, C, Prolog, Haskell, ...

@ Output: Mathematical representation amenable to automated analysis
(usually some kind of transition system)

o Often over-approximation, preserves the property of interest

Back-End
@ Performs the analysis of the desired property

= Result carries over to original program

6/173

|. Termination Analysis

7/173

Why Analyse Termination?

8/173

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Why Analyse Termination?

© Program: produces result

8/173

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Why Analyse Termination?

@ Program: produces result

@ Input handler: system reacts

8/173

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Why Analyse Termination?

@ Program: produces result
@ Input handler: system reacts

© Mathematical proof: the induction is valid

8/173

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Why Analyse Termination?

@ Program: produces result
@ Input handler: system reacts
© Mathematical proof: the induction is valid

© Biological process: reaches a stable state

8/173

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Why Analyse Termination?

@ Program: produces result
@ Input handler: system reacts
© Mathematical proof: the induction is valid

© Biological process: reaches a stable state

Variations of the same problem:
@ special case of @
© can be interpreted as @
@ probabilistic version of @

8/173

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Why Analyse Termination?

@ Program: produces result
@ Input handler: system reacts
© Mathematical proof: the induction is valid

© Biological process: reaches a stable state

Variations of the same problem:
@ special case of @
© can be interpreted as @
@ probabilistic version of @

2011: PHP and Java issues with floating-point number parser
@ http://www.exploringbinary.com/
php-hangs-on-numeric-value-2-2250738585072011e-308/
@ http://www.exploringbinary.com/

java-hangs-when-converting-2-2250738585072012e-308/
8/173

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

The Bad News

Theorem (Turing 1936)

The question if a given program terminates on a fixed input is undecidable.

9/173

The Bad News

Theorem (Turing 1936)

The question if a given program terminates on a fixed input is undecidable.

e We want to solve the (harder) question if a given program terminates
on all inputs.

9/173

The Bad News

Theorem (Turing 1936)

The question if a given program terminates on a fixed input is undecidable.

e We want to solve the (harder) question if a given program terminates
on all inputs.

@ That's not even semi-decidable!

9/173

The Bad News

Theorem (Turing 1936)

The question if a given program terminates on a fixed input is undecidable.

e We want to solve the (harder) question if a given program terminates
on all inputs.

@ That's not even semi-decidable!

o But, fear not ...

9/173

Termination Analysis, Classically

Turing 1949

#Mnally the checker has to vorify that the prooe
Here again he ahould be assis

ansortion to be verirfied,
asserted to deorease

ss comes to an end.

ted by the programner giving a further definite
This may take the romm or a gquantity which is
ocontinually and vanlsh when ths muchine stopa.

“Finally the checker has to verify that the process comes to an end. [...]

This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

10/173

Termination Analysis, Classically

Turing 1949

#Mnally the checker has to verify that the proocess comes to an end.

Here again he ahould be assisted by the programmer giving a I’u.'x"thor doﬁ.zito
ansortion to be verirfied, This may take the form of a quantity which 1s
pappserted to deorease continually and vanlsh when th8 machine stops.

‘Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

© Find ranking function f (“quantity”)

10/173

Termination Analysis, Classically

Turing 1949

#Mnally the checker has to verify that the proocess comes to an end.

Here again he ahould be assisted by the programmer giving a I’u.'x"thor doﬁ.zito
ansortion to be verirfied, This may take the form of a quantity which 1s
pappserted to deorease continually and vanlsh when th8 machine stops.

‘Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

© Find ranking function f (“quantity”)

@ Prove f to have a lower bound (“vanish when the machine stops”)

10/173

Termination Analysis, Classically

Turing 1949

#Mnally the checker has to vorify that the prooe
Hore again he ahould be assisted by the programner g
ansortion to be verified,
asserted to deorease continu

ss comes to an end.
iving a further definite
This may take the romm or a gquantity which is
ally and vanlsh when ths muchine stopa.
“Finally the checker has to verify that the process comes to an end. [...]

This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

© Find ranking function f (“quantity”)

@ Prove f to have a lower bound (“vanish when the machine stops”)
© Prove that f decreases over time

10/173

Termination Analysis, Classically

Turing 1949

#Mnally the checker has to vorify that the prooe
Hore again he ahould be assisted by the programner g
ansortion to be verified,
asserted to deorease continu

ss comes to an end.
iving a further definite
This may take the romm or a gquantity which is
ally and vanlsh when ths muchine stopa.
“Finally the checker has to verify that the process comes to an end. [...]

This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

© Find ranking function f (“quantity”)

@ Prove f to have a lower bound (“vanish when the machine stops”)
© Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x=x—1

10/173

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

11/173

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

11/173

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like
b>0 A (4ab—T0">1 V 3a+c>0b%)

11/173

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like
b>0 A (4ab—T0">1 V 3a+c>0b%)

Answer:

11/173

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like
b>0 A (4ab—T0">1 V 3a+c>0b%)

Answer:
@ ¢ satisfiable, model M (e.g., a=3,b=1,c=1):
= P terminating, M fills in the gaps in the termination proof

11/173

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like

b>0 A (4ab—T0">1 V 3a+c>0b%)

Answer:
@ ¢ satisfiable, model M (e.g., a=3,b=1,c=1):

= P terminating, M fills in the gaps in the termination proof
@ ¢ unsatisfiable:

= termination status of P unknown

= try a different template (proof technique)

11/173

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ¢,
ask SMT solver

— SMT = SATisfiability Modulo Theories, solve constraints like
b>0 A (4ab—T0">1 V 3a+c>0b%)

Answer:
@ ¢ satisfiable, model M (e.g., a=3,b=1,c=1):

= P terminating, M fills in the gaps in the termination proof
@ ¢ unsatisfiable:

= termination status of P unknown

= try a different template (proof technique)

In practice:
@ Encode only one proof step at a time
— try to prove only part of the program terminating

@ Repeat until the whole program is proved terminating
11/173

The Rest of Today's Session

Termination proving in the back-end
@ Term Rewrite Systems (TRSs)
@ Imperative Programs (as Integer Transition Systems, ITSs)

© Both together! Logically Constrained Term Rewrite Systems

12/173

The Rest of Today's Session

Termination proving in the back-end
@ Term Rewrite Systems (TRSs)
@ Imperative Programs (as Integer Transition Systems, ITSs)

© Both together! Logically Constrained Term Rewrite Systems

Processing practical programming languages in the front-end
Q Java
@ C (via LLVM)

12/173

|.1 Termination Analysis of Term
Rewrite Systems

What's Term Rewriting?

14/173

What's Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

14/173

What's Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

14/173

What's Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

o first-order (usually)

no fixed evaluation strategy — non-determinism!

no fixed order of rules to apply (Haskell: top to bottom)
— non-determinism!

untyped (unless you really want types)
no pre-defined data structures (integers, arrays, ...)

14/173

Show Me an Example!

Represent natural numbers by terms (inductively defined data structure):

0, s(0), s(s(0)), ...

15/173

Show Me an Example!

Represent natural numbers by terms (inductively defined data structure):

0, s(0), s(s(0)), ...

Example (A Term Rewrite System (TRS) for Division)

minus(z,0) — =
R = minus(s(x),s(y)) — minus(z,y)
quot(0,s(y)) — O
quot(s(z),s(y)) — s(quot(minus(z,y),s(y)))

15/173

Show Me an Example!

Represent natural numbers by terms (inductively defined data structure):

0, s(0), s(s(0)), ...

Example (A Term Rewrite System (TRS) for Division)

minus(z,0) — =
R = minus(s(x),s(y)) — minus(z,y)
quot(0,s(y)) — O
quot(s(z),s(y)) — s(quot(minus(z,y),s(y)))

Calculation:

minus(s(s(0)),s(0)) —x minus(s(0),0) —r s(0)

15/173

Why Care about Termination of Term Rewriting?

@ Termination needed by theorem provers

16/173

Why Care about Termination of Term Rewriting?

@ Termination needed by theorem provers

e Translate program P with inductive data structures (trees) to TRS,
represent data structures as terms

= Termination of TRS implies termination of P

16/173

Why Care about Termination of Term Rewriting?

@ Termination needed by theorem provers

e Translate program P with inductive data structures (trees) to TRS,
represent data structures as terms

= Termination of TRS implies termination of P

e Logic programming: Prolog
[van Raamsdonk, ICLP '97; Schneider-Kamp et al, TOCL '09,
Giesl et al, PPDP '12]

16/173

Why Care about Termination of Term Rewriting?

@ Termination needed by theorem provers

e Translate program P with inductive data structures (trees) to TRS,
represent data structures as terms

= Termination of TRS implies termination of P

e Logic programming: Prolog
[van Raamsdonk, ICLP '97; Schneider-Kamp et al, TOCL '09,
Giesl et al, PPDP '12]

o (Lazy) functional programming: Haskell [Giesl et al, TOPLAS '11]

16/173

Why Care about Termination of Term Rewriting?

@ Termination needed by theorem provers

e Translate program P with inductive data structures (trees) to TRS,
represent data structures as terms

= Termination of TRS implies termination of P

e Logic programming: Prolog
[van Raamsdonk, ICLP '97; Schneider-Kamp et al, TOCL '09,
Giesl et al, PPDP '12]

o (Lazy) functional programming: Haskell [Giesl et al, TOPLAS '11]
o Object-oriented programming: Java [Otto et al, RTA '10]

16/173

Example (Division)

minus(z,0) —
R = minus(s(x),s(y)) — minus(z,y)
quot(0,s(y)) — O
quot(s(z),s(y)) — s(quot(minus(z,y),s(y)))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)),s(0)) —x minus(s(0),0) —x s(0)

17/173

Example (Division)

minus(z,0) — =
R = minus(s(z),s(y)) — minus(z,y)
quot(0,s(y)) — O
quot(s(z),s(y)) — s(quot(minus(z,y),s(y)))

Term rewriting: Evaluate terms by applying rules from R
minus(s(s(0)),s(0)) —x minus(s(0),0) —x s(0)

Termination: No infinite evaluation sequences t; —g to — g t3 —R ...

17/173

Example (Division)

minus(z,0) — =
R = minus(s(z),s(y)) — minus(z,y)
quot(0,s(y)) — O
quot(s(z),s(y)) — s(quot(minus(z,y),s(y)))

Term rewriting: Evaluate terms by applying rules from R
minus(s(s(0)),s(0)) —x minus(s(0),0) —x s(0)

Termination: No infinite evaluation sequences t; —g to — g t3 —R ...
Show termination using Dependency Pairs

17/173

Example (Division)

minus(z,0) —
o minus(s(x),s(y)) — minus (z,y)
quot(0,s(y)) — O
quot(s(x),s(y)) — s(quot ((minus (x,y),s(y)))

Dependency Pairs [Arts, Giesl, TCS '00]

17/173

Example (Division)

minus(z,0) — =
o minus(s(z),s(y)) — minus (z,y)
quot(0,s(y)) — O
quot(s(z),s(y)) — s(quot (minus (z,y),s(y)))
mlnusu(s(x),s(y)) — minus(z,y)
DP = quotf(s(z),s(y)) — minust(z,y)
quotf(s(z),s(y)) — quotf(minus(z,y),s(y))

v

Dependency Pairs [Arts, Giesl, TCS '00]
@ For TRS R build dependency pairs DP (~ function calls)
@ Show: No oo call sequence with DP (eval of DP’s args via R)

17/173

Example (Division)

minus(z,0) — =
R = minus(s(z),s(y)) — minus(z,y)
quot(0,s(y)) — O
quot(s(z),s(y)) — s(quot(minus(z,y),s(y)))
minus®(s(z),s(y)) — minus’(z,)
DP = { quott(s(x),s(y)) — minus*(z,v)
quot’(s(z),s(y)) — quoti(minus(z,y),s(y))

Dependency Pairs [Arts, Giesl, TCS '00]
e For TRS R build dependency pairs DP (~ function calls)
@ Show: No oo call sequence with DP (eval of DP's args via R)
@ Dependency Pair Framework [Giesl| et al, JAR '06] (simplified):

17/173

Example (Division)

minus(z,0) — =
R = minus(s(z),s(y)) — minus(z,y)
quot(0,s(y)) — O
quot(s(z),s(y)) — s(quot(minus(z,y),s(y)))
minus®(s(z),s(y)) — minus’(z,)
DP = { quott(s(x),s(y)) — minus*(z,v)
quot’(s(z),s(y)) — quoti(minus(z,y),s(y))

Dependency Pairs [Arts, Giesl, TCS '00]
e For TRS R build dependency pairs DP (~ function calls)
@ Show: No oo call sequence with DP (eval of DP's args via R)

@ Dependency Pair Framework [Giesl| et al, JAR '06] (simplified):
while DP #£ 0 :

17/173

Example (Division)
minus(z, 0
minus(s(z), s(y)
quot(0,s(y)
quot(s(z),s(y)

{ minus®(s(z), s(y))

R =

DP =

LY Y XY Y Y Y Y

minus(x, y)

0

s(quot(minus(z,),
(2, y)
minusﬁ(x,y)
quotf(minus(z,y),s(y))

s(y)))

minus’

Dependency Pairs [Arts, Giesl, TCS '00]

@ For TRS R build dependency pairs DP
@ Show: No oo call sequence with DP (eval of DP’s args via R)
@ Dependency Pair Framework [Gies| et al, JAR '06] (simplified):

while DP #£ () :

(~ function calls)

o find well-founded order = with DPUR C =

17/173

Example (Division)

minus(z,0) = =
R = minus(s(x),s(y)) 7 minus(z,y)
quot(0,s(y)) = 0
quot(s(z),s(y)) % s(quot(minus(z,y),s(y)))
minus®(s(z), s(y)) - minus?(z, y)
DP = { quoti(s(2),s(y) 5, minusi(z,y)
quot’(s(z),s(y)) =z, quot’(minus(z,y),s(y))

Dependency Pairs [Arts, Giesl, TCS '00]
@ For TRS R build dependency pairs DP (~ function calls)
@ Show: No oo call sequence with DP (eval of DP's args via R)

@ Dependency Pair Framework [Gies| et al, JAR '06] (simplified):
while DP #£ () :

o find well-founded order > with DPUR C
o delete s — t with s > t from DP

17/173

Example (Division)

minus(z,0) = =
R = minus(s(x),s(y)) 7 minus(z,y)
quot(0,s(y)) = 0
quot(s(z),s(y)) % s(quot(minus(z,y),s(y)))
minus®(s(z), s(y)) & minus?(z, y)
DP = { quot'(s(2),s(y) 5, minusi(z,y)
quot’(s(x),s(y)) (Z, quot’(minus(z,y),s(y))

Dependency Pairs [Arts, Giesl, TCS '00]
@ For TRS R build dependency pairs DP (~ function calls)
@ Show: No oo call sequence with DP (eval of DP's args via R)

@ Dependency Pair Framework [Gies| et al, JAR '06] (simplified):
while DP #£ () :
o find well-founded order > with DPUR C
o delete s — ¢ with s > t from DP

e Find > automatically and efficiently
17/173

Polynomial Interpretations

Get > via polynomial interpretations [-] over N [Lankford '75]

minus(s(x),s(y)) 2 minus(z,y)

18/173

Polynomial Interpretations

Get > via polynomial interpretations [-] over N [Lankford '75]

minus(s(x),s(y)) 2 minus(z,y)

Use [-] with
@ [minus|(z1,x2) = 71
o [s](xz1) =21+ 1

18/173

Polynomial Interpretations

Get > via polynomial interpretations [-] over N [Lankford '75]

Ve,y. z+1 = [minus(s(z),s(y))] > [minus(z,y)] = =
Use [-] with
@ [minus|(z1,x2) = 71
o [s|(x1) =a1+1

Extend to terms:
° [z]==x
o [f(t,....ta)] = [fI([ta], -, [ta])

> boils down to > over N

18/173

Example (Constraints for Division)

. minus(z, 0)

R = mlnus(s(a:):s ;
)

)

)

)

o
(y)) = minus(z,y)
quot(0,s(y)) Z O
quot(s(z),s(y)) = s(quot(minus(z,y),s(y)))

R minus(z, y)

) 5 minus®(z, y)

) (%, quoti(minus(z,y),s(y))

19/173

Example (Constraints for Division)

minus(z,0) = =
_ minus(s(z),s(y)) 2 minus(z,y)
®= awot0s) 5 0
quot(s(z),s(y)) & slauot(minus(z,y),5(y))

minus®(s(x),s(y)) > minust(z,y)
DP = quotf(s(z),s(y)) > minus’(z,y)
quot’(s(z),s(y)) > quot’(minus(zx,y),s(y))

Use interpretation [- | over N with

[quotf](z1,20) = 2 [quot](z1,22) = =1+ o
[minus’](z1,22) = o [minus](z1,22) = =
[0] =0 [s(z1) = x1+1

~ order solves all constraints

19/173

Example (Constraints for Division)

minus(z,0) = =z
o _) minus(s(a),s) % minus(e,y)
B quot(0,s(y)) = 0
quot(s(z),s(y)) = s(quot(minus(z,y),s(y)))
DP =
Use interpretation [- | over N with
[quotf](z1,20) = 2 [quot](z1,22) = =1+ o
[minus’](z1,22) = o [minus](z1,22) = =
[0] =0 [s(z1) = x1+1
~ order solves all constraints
~DP =10
~ termination of division algorithm proved O

19/173

Remark

Polynomial interpretations play several roles for program analysis:

Use interpretation [- | over N with

[quotf](z1,20) = 2
[minus’](z1,22) = o
0] = 0

~ order solves all constraints
~DP =10
~ termination of division algorithm

[quot] (21, z2)
[minus](z1, z2)

proved

[s](x1)

T+ T2
T
x1+1

O

19/173

Remark

Polynomial interpretations play several roles for program analysis:

e Ranking function: [quot?] and [minus’]

Use interpretation [- | over N with

[quotf](z1,20) = 2 [quot](z1, z2)
[minus’](z1,22) = o [minus](z1, z2)
[0] = 0 [s](1)

~ order solves all constraints
~DP =1
~ termination of division algorithm proved

T+ T2
T
x1+1

O

19/173

Remark

Polynomial interpretations play several roles for program analysis:

e Ranking function: [quot?] and [minus’]

e Summary: [quot] and [minus]

Use interpretation [- | over N with

[quotf](z1,20) = 2 [quot](z1, z2)
[minus’](z1,22) = o [minus](z1, z2)
[0] = 0 [s](1)

~ order solves all constraints
~DP =1
~ termination of division algorithm proved

T+ T2
T
x1+1

O

19/173

Remark

Polynomial interpretations play several roles for program analysis:
e Ranking function: [quot?] and [minus’]
e Summary: [quot] and [minus]

@ Abstraction (aka norm) for data structures: [0] and [s]

Use interpretation [- | over N with

[quotf](z1,20) = 1 [quot](x1,z2) = x1+ 22
[minus’](z1,22) = o [minus](z1,22) = =
[0] =0 [s(z1) = x1+1
~ order solves all constraints
~DP =1
~ termination of division algorithm proved O

19/173

Task: Solve minus(s(x),s(y)) 7 minus(z,y)

20/173

Task: Solve minus(s(x),s(y)) 7 minus(z,y)

© Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = am + bmx + cmy, [s](x) =as+ bsx

20/173

Task: Solve minus(s(x),s(y)) 7 minus(z,y)

© Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = am + bmx + cmy, [s](x) =as+ bsx
@ From term constraint to polynomial constraint:
szt~ [s] > [t

Here: Vz,y. (asbm + ascm) + (bsbm — bm) .+ (bscm — cm)y > 0

20/173

Task: Solve minus(s(x),s(y)) 7 minus(z,y)

© Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = adm + bmz +cmy, [s](x) =as+ bsx
@ From term constraint to polynomial constraint:
szt~ [s] > [t
Here: Vz,y. (asbm + ascm) + (bsbm — bm) .+ (bscm — cm)y > 0

© Eliminate Vx,y by absolute positiveness criterion
[Hong, Jakus, JAR '98]:

Here: asbm +ascm > 0 A bsbpy —bm > 0 A bscn —cm > 0

20/173

Task: Solve minus(s(x),s(y)) 7 minus(z,y)

~

@ Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = adm + bm T+ cmy, [s](x) =as+ bsx
@ From term constraint to polynomial constraint:
st~ [s] > [t]
Here: Vz,y. (asbm + ascm) + (bsbm —bm) z+ (bscm —cm)y > 0

© Eliminate Vz,y by absolute positiveness criterion
[Hong, Jakus, JAR '98]:

Here: Usbm +Fascm > 0 A bsbn —bmn > 0 A bscn —cm > 0

20/173

Task: Solve minus(s(x),s(y)) 7z minus(z,y)

~

@ Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = adm + bm T+ cmy, [s](x) =as+ bsx
@ From term constraint to polynomial constraint:
st~ [s] > [t]
Here: Vz,y. (asbm~+ascm)+ (bsbm — bm) + (bsCm —cm) y > 0

© Eliminate Vz,y by absolute positiveness criterion
[Hong, Jakus, JAR '98]:

Here: asbm +ascm > 0 A bsbpy —bm > 0 A bscm —cm > 0

20/173

Task: Solve minus(s(x),s(y)) 7 minus(z,y)

© Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = adm + bmz +cmy, [s](x) =as+ bsx
@ From term constraint to polynomial constraint:
szt~ [s] > [t
Here: Vz,y. (asbm + ascm) + (bsbm — bm) .+ (bscm — cm)y > 0

© Eliminate Vx,y by absolute positiveness criterion
[Hong, Jakus, JAR '98]:

Here: asbm +ascm > 0 A bsbpy —bm > 0 A bscn —cm > 0

Non-linear constraints, even for linear interpretations

20/173

Task: Solve minus(s(x),s(y)) 7z minus(z,y)

© Fix template polynomials with parametric coefficients,
get interpretation template:

[minus](z,y) = adm + bmz +cmy, [s](x) =as+ bsx
@ From term constraint to polynomial constraint:
szt~ [s] > [t
Here: Vz,y. (asbm + ascm) + (bsbm — bm) .+ (bscm — cm)y > 0

© Eliminate Vx,y by absolute positiveness criterion
[Hong, Jakus, JAR '98]:

Here: asbm +ascm > 0 A bsbpy —bm > 0 A bscn —cm > 0
Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N (— SMT solver!)

~ Prove termination of given term rewrite system
20/173

Extensions of Polynomial Interpretations

@ Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC '07; Fuhs et al, SAT '07, RTA '08]
e can model behaviour of functions more closely:
[pred](z1) = max(zq — 1,0)
e automation via encoding to non-linear constraints, more complex
Boolean structure

21/173

Extensions of Polynomial Interpretations

@ Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC '07; Fuhs et al, SAT '07, RTA '08]
e can model behaviour of functions more closely:
[pred](z1) = max(zq — 1,0)
e automation via encoding to non-linear constraints, more complex
Boolean structure

@ Polynomials over Q" and R [Lucas, RAIRO '05]
e non-integer coefficients increase proving power
o SMT-based automation [Fuhs et al, AISC '08; Zankl, Middeldorp,
LPAR '10; Borralleras et al, JAR '12]

21/173

Extensions of Polynomial Interpretations

@ Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC '07; Fuhs et al, SAT '07, RTA '08]
e can model behaviour of functions more closely:
[pred](z1) = max(zq — 1,0)
e automation via encoding to non-linear constraints, more complex
Boolean structure

@ Polynomials over Q" and R [Lucas, RAIRO '05]
e non-integer coefficients increase proving power
o SMT-based automation [Fuhs et al, AISC '08; Zankl, Middeldorp,
LPAR '10; Borralleras et al, JAR '12]

e Matrix interpretations [Endrullis, Waldmann, Zantema, JAR '08]
linear interpretation to vectors over N*, coefficients are matrices
useful for deeply nested terms

automation: constraints with more complex atoms

several flavours: plus-times-semiring, max-plus-semiring [Koprowski,
Waldmann, Acta Cyb. '09], ...

o generalisation to tuple interpretations [Yamada, JAR '22]

21/173

Extensions of Polynomial Interpretations

@ Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC '07; Fuhs et al, SAT '07, RTA '08]
e can model behaviour of functions more closely:
[pred](z1) = max(zq — 1,0)
e automation via encoding to non-linear constraints, more complex
Boolean structure

@ Polynomials over Q" and R [Lucas, RAIRO '05]
e non-integer coefficients increase proving power
o SMT-based automation [Fuhs et al, AISC '08; Zankl, Middeldorp,
LPAR '10; Borralleras et al, JAR '12]

e Matrix interpretations [Endrullis, Waldmann, Zantema, JAR '08]
linear interpretation to vectors over N*, coefficients are matrices
useful for deeply nested terms

automation: constraints with more complex atoms

several flavours: plus-times-semiring, max-plus-semiring [Koprowski,
Waldmann, Acta Cyb. '09], ...

o generalisation to tuple interpretations [Yamada, JAR '22]

21/173

(SAT and) SMT Solving for Path Orders

Path orders: based on precedences on function symbols
e Knuth-Bendix Order [Knuth, Bendix, CPAA '70]

— polynomial time algorithm [Korovin, Voronkov, /C 03]
— SMT encoding [Zankl, Hirokawa, Middeldorp, JAR '09]

22/173

(SAT and) SMT Solving for Path Orders

Path orders: based on precedences on function symbols

e Knuth-Bendix Order [Knuth, Bendix, CPAA '70]
— polynomial time algorithm [Korovin, Voronkov, /C 03]
— SMT encoding [Zankl, Hirokawa, Middeldorp, JAR '09]

@ Lexicographic Path Orders [Kamin, Lévy, Unpublished Manuscript '80]
and Recursive Path Orders [Dershowitz, Manna, CACM ‘79,
Dershowitz, TCS '82]

— SAT encoding [Codish et al, JAR '11]

22/173

(SAT and) SMT Solving for Path Orders

Path orders: based on precedences on function symbols

e Knuth-Bendix Order [Knuth, Bendix, CPAA '70]
— polynomial time algorithm [Korovin, Voronkov, /C 03]
— SMT encoding [Zankl, Hirokawa, Middeldorp, JAR '09]

@ Lexicographic Path Orders [Kamin, Lévy, Unpublished Manuscript '80]
and Recursive Path Orders [Dershowitz, Manna, CACM ‘79,
Dershowitz, TCS '82]

— SAT encoding [Codish et al, JAR '11]

o Weighted Path Order [Yamada, Kusakari, Sakabe, SCP '15]
— SMT encoding

22/173

Further Techniques and Settings for TRSs

@ Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS '05; Payet, TCS 08,
Zankl et al, SOFSEM '10; Emmes, Enger, Giesl, [JCAR '12; ...]

23/173

Further Techniques and Settings for TRSs

@ Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS '05; Payet, TCS 08,
Zankl et al, SOFSEM '10; Emmes, Enger, Giesl, [JCAR '12; ...]

@ Specific rewrite strategies: innermost, outermost, context-sensitive
rewriting [Lucas, ACM Comput. Surv. '20], ...

23/173

Further Techniques and Settings for TRSs

@ Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS '05; Payet, TCS 08,
Zankl et al, SOFSEM '10; Emmes, Enger, Giesl, [JCAR '12; ...]

@ Specific rewrite strategies: innermost, outermost, context-sensitive
rewriting [Lucas, ACM Comput. Surv. '20], ...

@ Higher-order rewriting: functional variables, higher types,
B-reduction

map(/', Cons(z, zs)) — Cons(/'(x), map(/', xs))
[Kop, PhD thesis '12]

23/173

Further Techniques and Settings for TRSs

@ Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS '05; Payet, TCS 08,
Zankl et al, SOFSEM '10; Emmes, Enger, Giesl, [JCAR '12; ...]

@ Specific rewrite strategies: innermost, outermost, context-sensitive
rewriting [Lucas, ACM Comput. Surv. '20], ...

@ Higher-order rewriting: functional variables, higher types,
B-reduction

map(/', Cons(z, zs)) — Cons(/'(x), map(/', xs))
[Kop, PhD thesis '12]

e Probabilistic term rewriting: Positive/Strong Almost Sure
Termination [Avanzini, Dal Lago, Yamada, SCP '20]

23/173

Further Techniques and Settings for TRSs

@ Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS '05; Payet, TCS 08,
Zankl et al, SOFSEM '10; Emmes, Enger, Giesl, [JCAR '12; ...]

@ Specific rewrite strategies: innermost, outermost, context-sensitive
rewriting [Lucas, ACM Comput. Surv. '20], ...

@ Higher-order rewriting: functional variables, higher types,
B-reduction

map(/', Cons(z, zs)) — Cons(/'(x), map(/', xs))

[Kop, PhD thesis '12]

e Probabilistic term rewriting: Positive/Strong Almost Sure
Termination [Avanzini, Dal Lago, Yamada, SCP '20]

o Complexity analysis
[Hirokawa, Moser, IJCAR '08; Noschinski, Emmes, Giesl, JAR '13; ...]
Can re-use termination machinery to infer and prove statements like
“runtime complexity of this TRS is in O(n3)"

— more in Session 2!
23/173

SMT Solvers from Termination Analysis

Annual SMT-COMP, division QF _NIA (Quantifier-Free Non-linear Integer
Arithmetic)

Year | Winner

2009 | Barcelogic-QF _NIA
2010 | MiniSmt

2011 | AProVE

2012 | no QF NIA

2013 | no SMT-COMP
2014 | AProVE

2015 | AProVE

2016 | Yices

24/173

SMT Solvers from Termination Analysis

Annual SMT-COMP, division QF _NIA (Quantifier-Free Non-linear Integer
Arithmetic)

Year | Winner

2009 | Barcelogic-QF _NIA

2010 | MiniSmt (spin-off of TTy)
2011 | AProVE

2012 | no QF NIA

2013 | no SMT-COMP

2014 | AProVE

2015 | AProVE

2016 | Yices

= Termination provers can also be successful SMT solvers!

24/173

SMT Solvers from Termination Analysis

Annual SMT-COMP, division QF _NIA (Quantifier-Free Non-linear Integer
Arithmetic)

Year | Winner

2009 | Barcelogic-QF _NIA

2010 | MiniSmt (spin-off of TTy)
2011 | AProVE

2012 | no QF NIA

2013 | no SMT-COMP

2014 | AProVE

2015 | AProVE

2016 | Yices

= Termination provers can also be successful SMT solvers!
(disclaimer: Z3 participated only hors concours)

24/173

The Termination Competition (termCOMP) (1/3)

Termination Com... » |+

% v| @ DuckDuckGo Q> =

€ & @i [https://termcomp.herokuapp.com/Y2022/

Termination Competition 2022 snow confiss ishow scoresi one columl

Competition-Wide Ranking

AProVE+LOAT(4.0811) MU-TERM(1.9331) TTT2+TcT(1.9082) NaTT(1.4268) Matchbox(1.3425) iRankFinder(1.2594) Ultimate(1.2079) MultumNonMulta(1.1930) NTI+cTI(0.9649) SOL(0.9180) Wanda(0.8975)
Advancing-the-State-of-the-Art Ranking

Matchbox(67) MultumNonMulta(as) AProVE+LoAT (31.25) SOL(16) NaTT(1) NTI+cTl(1) TTT2+TcT (0 375) iRankFinder(o) MU-TERM(0) Ultimate(0) Wanda(o)

Termination of Rewriting e,
TRS Standard 54 SRS Standard 2 TRS Relative 55 54 SRS Relative 521 54107 TRS Equational = 4
1. AProvE21 1. matchbox-2022-07-22 L] 1. NaTT 2.3.2 1 1. MnM3.19¢ 171. AProvE21
C=———mm /1.AProVE2{ === v1.matchbox-2022-07-22 - 2. AProVE21 ' 2 AProVE21 | [1. AProVE21
w2 NaTT 2.32 2. MnM3.49c V1. AProVER1 === 1. AProVE21 2. muterm 5.18
- 3. 1tt2-1.20 n 3. APIOVE21 == /2. 112-1.20 1 3.1i2-1.20 1 3.NaTT 2.32
[v2t2120 o 2. APrOVE21 = 3.112-1.20 = ¥2_12-1.20
- 4. muterm 6.0.3 1 4.1it2-1.20 4.NaTT 232
=== v3.NaTT 162 == 1431112120
- 5.NTI_22 5. NaTT 2.3.2
= v4 NaTT 162
'

6. muterm 6.0.3

TRS Conditional - Operational Termination TRS Context Sensitive = TRS Innermost ss20s 542 TRS Outermost ssx0e =42 HRS Union Beta
— . -TERM 6.1 471, muterm 5.18 171, AProVE21 — 1. AProVE21 1. SOL 2022
2. AProve21 12, AProVE21 | — 1. AProVE21 — 1. AProVE21 W W2 Wanda 223
2. muterm 6.0.3
Termination of Programs 00%, CPU Time: ime: 2 4:20:44

C Integer 5225 Integer Transition Systems =<2z Logic Programing =
X 1. Aprove22 1. ApIO 1. irankfinder v1.3.2 1. NTI+cT|_22
- 7 imatesomizerz0zzr w7 OateAomizer2022v7 2. LoAT TermComp 2021 2. AProVE21
s 3. irankfinder v1.3.2

CPU Time: 12

2:

Node Time:

Complexity Analysis .

Derivational Complexity: TRS = Derivational Complexity: TRS Innermost =
1. AProvE21 - 1. AProvE21
/1. tot-trs_v3.2.0_2020-06-28 1. tot-trs_v3.2.0_2020-06-28

Runtime Complexity: TRS s<2:z =
1. AProVE21.
2. tet-trs_v3.2.0_2020-06-28

— —

25/173

https://termination-portal.org/wiki/Termination_Competition

The Termination Competition (termCOMP) (1/3)

Termination Com... » |+

€ & @i [https://termcomp.herokuapp.com/Y2022/ || @ DuckDuckGo al() > =

Termination Competition 2022 snow confiss ishow scoresi one columl

Competition-Wide Ranking

AProVE+LOAT(4.0811) MU-TERM(1.9331) TTT2+TcT(1.9082) NaTT(1.4268) Matchbox(1.3425) iRankFinder(1.2594) Ultimate(1.2079) MultumNonMulta(1.1930) NTI+cTI(0.9649) SOL(0.9180) Wanda(0.8975)
Advancing-the-State-of-the-Art Ranking

Matchbox(67) MultumNonMulta(as) AProVE+LoAT (31.25) SOL(16) NaTT(1) NTI+cTl(1) TTT2+TcT (0 375) iRankFinder(o) MU-TERM(0) Ultimate(0) Wanda(o)

Termination of Rewriting .
TRS Standard 54 SRS Standard 2 TRS Relative 55 54 SRS Relative 521 54107 TRS Equational s+ 4
1. AProvE21 1. matchbox-2022-07-22 L] 1. NaTT 2.3.2 1 1. MnM3.19¢ 171. AProvE21
E=———mm /1.AProVE21 [——————umm v1.matchbox-2022-07-22 - 2. AProVE21 1 2 APrOVE2{ ESSS— /4. AProVE21
w2 NaTT 2.32 2. MnM3.49c V1. AProVER1 === 1. AProVE21 2. muterm 5.18
- 3. 1tt2-1.20 n 3. APIOVE21 == /2. 112-1.20 1 3.1i2-1.20 1 3.NaTT 2.32
= Vo120 | o 2. APrOVE21 = 3.112-1.20 = ¥2_12-1.20
- 4. muterm 6.0.3 1 4.1it2-1.20 4.NaTT232
— /3.NaTT 162 E==1 1431112120
- 5.NTI_22 ' 5. NaTT 2.3.2
= v4 NaTT 162
' 6. muterm 6.0.3
TRS Conditional - Operational Termination < TRS Context Sensitive == TRS Innermost sszos <z TRS Outermost :x0 =2 HRS Union Beta
- . MU-TERM 6.1 +°1. muterm 5.18 151, AProVE21 m— 1. APTOVE21 = 1.S0L 2022
2. APrOVE21 192 APrOVE! | [/1. APrOVE1 I /1. AProVE21 =02, Wanda 2.2a
2. muterm 6.0.3
Termination of Programs 4, CPU Time: ime: 2d 4:20:44
C Integer 5225 Integer Transition Systems =<2z Logic Programing =
X 1. Aprove22 w1, Aprove22-C 1. irankfinder v1.3.2 1. NTI+cT|_22
- 7 imatesomizerz0zzr s 2. UlmatoAutomizer2022v2 m— 2. LoAT TermComp 2021 2. AProVE21
s 3. irankfinder v1.3.2

2:

Node Time:

Complexity Analysis .

%, CPU Time: 12

Derivational Complexity: TRS = a Derivational Complexity: TRS Innermost = Runtime Complexity: TRS s<2:z =
1. AProvE21 - 1. AProvE21 m— 1, APTOVE21
— v1.tct-trs_v3.2.0_2020-06-28 1 1. tot-trs_v3.2.0_2020-06-28 m— 2. {ct-trs_v3.2.0_2020-06-28 .

https://termination-portal.org/wiki/Termination_Competition 5/173

https://termination-portal.org/wiki/Termination_Competition

The Termination Competition (termCOMP) (2/3)

termCOMP 2022 participants:

AProVE (RWTH Aachen, Birkbeck U London, U Innsbruck, ...)
iRankFinder (UC Madrid)

LoAT (RWTH Aachen)

Matchbox (HTWK Leipzig)

Mu-Term (UP Valencia)

MultumNonMulta (BA Saarland)

NaTT (AIST Tokyo)

NTI+cTI (U Réunion)

SOL (Gunma U)

TcT (U Innsbruck, INRIA Sophia Antipolis)
T1T> (U Innsbruck)

Ultimate Automizer (U Freiburg)

Wanda (RU Nijmegen)

26/173

The Termination Competition (termCOMP) (3/3)

e Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB
— 1000s of termination and complexity problems

27/173

https://termination-portal.org/wiki/TPDB

The Termination Competition (termCOMP) (3/3)

e Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB
— 1000s of termination and complexity problems

@ Timeout: 300 seconds

27/173

https://termination-portal.org/wiki/TPDB

The Termination Competition (termCOMP) (3/3)

e Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB
— 1000s of termination and complexity problems

@ Timeout: 300 seconds
@ Run on StarExec platform [Stump, Sutcliffe, Tinelli, [JCAR '14]

27/173

https://termination-portal.org/wiki/TPDB

The Termination Competition (termCOMP) (3/3)

Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB

— 1000s of termination and complexity problems

Timeout: 300 seconds

Run on StarExec platform [Stump, Sutcliffe, Tinelli, [JCAR '14]

Categories for proving (non-)termination and for inferring upper/lower
complexity bounds for different programming languages

27/173

https://termination-portal.org/wiki/TPDB

The Termination Competition (termCOMP) (3/3)

e Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB
— 1000s of termination and complexity problems

@ Timeout: 300 seconds
@ Run on StarExec platform [Stump, Sutcliffe, Tinelli, [JCAR '14]

e Categories for proving (non-)termination and for inferring upper/lower
complexity bounds for different programming languages

@ Part of the Olympic Games at the Federated Logic Conference

27/173

https://termination-portal.org/wiki/TPDB

Input for Automated Tools

Web interfaces available:
@ AProVE: https://aprove.informatik.rwth-aachen.de/interface
@ iRankFinder: http://irankfinder.loopkiller.com:8081/

@ Mu-Term:
http://zenon.dsic.upv.es/muterm/index.php/web-interface/

@ T7ly: http://colo6-c703.uibk.ac.at/ttt2/web/

28/173

https://aprove.informatik.rwth-aachen.de/interface
http://irankfinder.loopkiller.com:8081/
http://zenon.dsic.upv.es/muterm/index.php/web-interface/
http://colo6-c703.uibk.ac.at/ttt2/web/

Input for Automated Tools

Web interfaces available:
@ AProVE: https://aprove.informatik.rwth-aachen.de/interface
@ iRankFinder: http://irankfinder.loopkiller.com:8081/
o Mu-Term:
http://zenon.dsic.upv.es/muterm/index.php/web-interface/

@ T7ly: http://colo6-c703.uibk.ac.at/ttt2/web/

Input format for termination of TRSs:
(VAR x y)
(RULES
plus(e, y) ->y
plus(s(x), y) —> s(plus(x, y))
)

28/173

https://aprove.informatik.rwth-aachen.de/interface
http://irankfinder.loopkiller.com:8081/
http://zenon.dsic.upv.es/muterm/index.php/web-interface/
http://colo6-c703.uibk.ac.at/ttt2/web/

|.2 Termination Analysis of
Programs on Integers

20/173

Papers on termination of imperative programs often about integers as data

30/173

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

if (x>0) Does this program terminate?
while (x # 0) (x ranges over Z)
x=x—1;

30/173

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

ly: if (x>0) Does this program terminate?
/1 while (x # 0) (x ranges over 7Z)
622 x =x—1;

Example (Equivalent Translation to an Integer Transition System,

cf.)

b(z) — li(x) [z >0

lo(z) — Ll3(x) [z < 0]

a@ — b @40

52(56) — 51 ((17 = 1)

li(z) — Ll3(x) [z = 0]]

30/173

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

ly: if (x>0) Does this program terminate?
/1 while (x # 0) (x ranges over 7Z)
622 x =x—1;

Example (Equivalent Translation to an Integer Transition System,

cf.

30/173

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

ly: if (x>0) Does this program terminate?
/1 while (x # 0) (x ranges over 7Z)
622 x =x—1;

Example (Equivalent Translation to an Integer Transition System,

cf. [McCarthy, CACM '60])

b(z) — li(x) [z >0

lo(z) — Ll3(x) [z < 0]

a@ — b @40

52(56) — 51 ((17 1)

li(z) — Ll3(x) [z = 0]]

Oh nol 61(—1) — 32(—1) — 51(—2) — 52(—2) — El(—?)) —
= Restrict initial states to /y(z) for z € Z

30/173

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

ly: if (x>0) Does this program terminate?
/1 while (x # 0) (x ranges over 7Z)
622 x =x—1;

Example (Equivalent Translation to an Integer Transition System,

cf. [McCarthy, CACM '60])

b(z) — li(x) [z >0

lo(z) — Ll3(x) [z < 0]

a@ — b @40

52(56) — 51 ((17 1)

li(z) — Ll3(x) [z = 0]]

Oh no! 61(—1) — 32(—1) — 51(—2) — 52(—2) — El(—?)) —

= Restrict initial states to /y(z) for z € Z

= Find invariant x > 0 at (1, (» (exercise)
30/173

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

ly: if (x>0) Does this program terminate?
/1 while (x # 0) (x ranges over 7Z)
l: X =x—1;

Example (Equivalent Translation to an Integer Transition System,

cf. [McCarthy, CACM '60])

b(z) — li(x) [z > 0]

lo(z) — Ll3(x) [z < 0]

l(z) — fla(x) [£0Az > 0]

b(z) — li(z—1) [z >0]

li(z) — Ll3(x) [t=0Az >0]

Oh no! 61(—1) — 32(—1) — 51(—2) — 52(—2) — El(—?)) —

= Restrict initial states to /y(z) for z € Z

= Find invariant x > 0 at (1, (» (exercise)
30/173

Proving Termination with Invariants

Example (Transition system with invariants)

lo(z) — li(z) [z > 0]
l(z) — fla(x) [x #0Az > 0]
b(z) — li(x—1) [z >0
fl(l‘) — 53(1,‘) [33 =0Ax > 0]

Prove termination by ranking function [-] with [(o](x) = [(1](z) =--- ==z

31/173

Proving Termination with Invariants

Example (Transition system with invariants)

@) % 4@ |20
li(z) = () [x#A0Az >0
l(z) = li(z—1) [z>0]
l(z) = 43(z) [t=0Az >0

Prove termination by ranking function [-] with [(o](x) = [(1](z) =--- ==

31/173

Proving Termination with Invariants

Example (Transition system with invariants)

lo(x) = () [z > 0]
li(z) = () [x#A0Az >0
l(z) = li(z—1) [z>0]
l(z) = 43(z) [t=0Az >0
Prove termination by ranking function [-] with [(o](x) = [(1](z) =--- ==

Automate search using parametric ranking function:

[lo](z) = ap+bo - =, [L](z)=a1+0b1 -z,

31/173

Proving Termination with Invariants

Example (Transition system with invariants)

lo(z) = hi(x) [z > 0]
lh(z) = la(x) [z #0Az >0
b(z) > li(z—1) [z>0]
l(z) = l3(x) [x=0Az>0]
Prove termination by ranking function [-] with [(o](z) = [(1](z) = --- ==

Automate search using parametric ranking function:
[lo](x) = ag + by -z, [1](x) =ai1+ b1 -,
Constraints here:

x>0 = ax+by-xz>a +b-(x—1) “decrease...
>0 = ags+by-x>0 “... against a bound”

31/173

Proving Termination with Invariants

Example (Transition system with invariants)

lo(z) = hi(x) [z > 0]
lh(z) = la(x) [z #0Az >0
b(z) > li(z—1) [z>0]
l(z) = l3(x) [x=0Az>0]
Prove termination by ranking function [-] with [(o](z) = [(1](z) = --- ==

Automate search using parametric ranking function:
[lo](x) = ag + by -z, [1](x) =ai1+ b1 -,
Constraints here:

x>0 = as+by-x>a+b-(x—1) “decrease...”
>0 = ags+by-x>0 “... against a bound”

Use Farkas' Lemma to eliminate Vzx, solver for linear constraints gives
model for a;, b;.

31/173

Proving Termination with Invariants

Example (Transition system with invariants)

lo(z) = hi(x) [z > 0]
lh(z) = la(x) [z #0Az >0
b(z) > li(z—1) [z>0]
l(z) = l3(x) [x=0Az>0]
Prove termination by ranking function [-] with [(o](z) = [(1](z) = --- ==

Automate search using parametric ranking function:
[lo](x) = ag + by -z, [1](x) =ai1+ b1 -,
Constraints here:

x>0 = as+by-x>a+b-(x—1) “decrease...”
>0 = ags+by-x>0 “... against a bound”

Use Farkas' Lemma to eliminate Vzx, solver for linear constraints gives
model for a;, b;.
More: [Podelski, Rybalchenko, VMCAI '04, Alias et al, SAS '10]

31/173

Proving Termination with Invariants

Example (Transition system with invariants)

bo(z) — li(x) [z > 0]
li(z) — la(z) [x 0Nz >0]
lhi(z) — G3(x) [t=0Az >0
Prove termination by ranking function [-] with [(o](z) = [(1](z) =--- ==

Automate search using parametric ranking function:
[lo](z) = a0+ bo -z, [G](z) = a1+ b1 -,
Constraints here:

x>0 = ay+by-xz>a;+b-(x—1) “decrease...”
x>0 = ay+by-x>0 ... against a bound”

Use Farkas' Lemma to eliminate Vz, solver for linear constraints gives
model for a;, b;.
More: [Podelski, Rybalchenko, VMCAI ‘04, Alias et al, SAS '10]

31/173

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

32/173

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

@ Statically before the translation
[Otto et al, RTA '10; Stroder et al, JAR 17, ...]
— abstract interpretation [Cousot, Cousot, POPL '77]
— more about this in a few minutes!

32/173

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

@ Statically before the translation
[Otto et al, RTA '10; Stroder et al, JAR 17, ...]
— abstract interpretation [Cousot, Cousot, POPL '77]
— more about this in a few minutes!

@ By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ‘06, PLDI '06]
— prove termination of single program runs
— termination argument often generalises

32/173

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

@ Statically before the translation
[Otto et al, RTA '10; Stroder et al, JAR 17, ...]
— abstract interpretation [Cousot, Cousot, POPL '77]
— more about this in a few minutes!

@ By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ‘06, PLDI '06]
— prove termination of single program runs
— termination argument often generalises

@ ... also cooperating with removal of terminating rules (as for TRSs):
T2 [Brockschmidt, Cook, Fuhs, CAV '13; Brockschmidt et al,
TACAS '16]

32/173

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

@ Statically before the translation
[Otto et al, RTA '10; Stroder et al, JAR 17, ...]
— abstract interpretation [Cousot, Cousot, POPL '77]
— more about this in a few minutes!

@ By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ‘06, PLDI '06]
— prove termination of single program runs
— termination argument often generalises

@ ... also cooperating with removal of terminating rules (as for TRSs):
T2 [Brockschmidt, Cook, Fuhs, CAV '13; Brockschmidt et al,
TACAS '16]

@ Using Max-SMT
[Larraz, Oliveras, Rodriguez-Carbonell, Rubio, FMCAD '13]

32/173

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

@ Statically before the translation
[Otto et al, RTA '10; Stroder et al, JAR 17, ...]
— abstract interpretation [Cousot, Cousot, POPL '77]
— more about this in a few minutes!

@ By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ‘06, PLDI '06]
— prove termination of single program runs
— termination argument often generalises

@ ... also cooperating with removal of terminating rules (as for TRSs):
T2 [Brockschmidt, Cook, Fuhs, CAV '13; Brockschmidt et al,
TACAS '16]

@ Using Max-SMT
[Larraz, Oliveras, Rodriguez-Carbonell, Rubio, FMCAD '13]

Nowadays all SMT-based!

32/173

Extensions

e Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL '08, Brockschmidt et al, FoVeOOS '11, Chen et
al, TACAS '14, Larraz et al, CAV '14, Cook et al, FMCAD 14, ...]

33/173

Extensions

e Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL '08, Brockschmidt et al, FoVeOOS '11, Chen et
al, TACAS '14, Larraz et al, CAV '14, Cook et al, FMCAD 14, ...]

o Complexity bounds
[Alias et al, SAS '10, Hoffmann, Shao, JFP '15, Brockschmidt et al,
TOPLAS 16, .. .]

33/173

Extensions

e Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL '08, Brockschmidt et al, FoVeOOS '11, Chen et
al, TACAS '14, Larraz et al, CAV '14, Cook et al, FMCAD 14, ...]

o Complexity bounds
[Alias et al, SAS '10, Hoffmann, Shao, JFP '15, Brockschmidt et al,
TOPLAS 16, .. .]

e CTL* model checking for infinite state systems based on termination

and non-termination provers
[Cook, Khlaaf, Piterman, JACM '17]

33/173

Extensions

e Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL '08, Brockschmidt et al, FoVeOOS '11, Chen et
al, TACAS '14, Larraz et al, CAV '14, Cook et al, FMCAD 14, ...]

o Complexity bounds
[Alias et al, SAS '10, Hoffmann, Shao, JFP '15, Brockschmidt et al,
TOPLAS 16, .. .]

e CTL* model checking for infinite state systems based on termination
and non-termination provers
[Cook, Khlaaf, Piterman, JACM '17]

@ Beyond sequential programs on integers:

structs/classes [Berdine et al, CAV '06; Otto et al, RTA '10; .. .]
e arrays (pointer arithmetic) [Stroder et al, JAR 17, ...]

o multi-threaded programs [Cook et al, PLDI 07, . ..]
[}

33/173

Why Care about Termination of Term Rewriting?

@ Termination needed by theorem provers

e Translate program P with inductive data structures (trees) to TRS,
represent data structures as terms

= Termination of TRS implies termination of P

e Logic programming: Prolog
[van Raamsdonk, ICLP '97, Schneider-Kamp et al, TOCL '09,
Giesl et al, PPDP '12]

o (Lazy) functional programming: Haskell [Giesl et al, TOPLAS '11]
o Object-oriented programming: Java [Otto et al, RTA '10]

34/173

Beyond Classic TRSs for Program Analysis

So far, so good ...
but do we really want to represent 1000000 as s(s(s(...)))?!

35/173

Beyond Classic TRSs for Program Analysis

So far, so good ...

but do we really want to represent 1000000 as s(s(s(...)))?!

Drawbacks:

35/173

Beyond Classic TRSs for Program Analysis

So far, so good ...

but do we really want to represent 1000000 as s(s(s(...)))?!
Drawbacks:

@ throws away domain knowledge about built-in data types like integers

35/173

Beyond Classic TRSs for Program Analysis

So far, so good ...

but do we really want to represent 1000000 as s(s(s(...)))?!
Drawbacks:

@ throws away domain knowledge about built-in data types like integers

@ need to analyse recursive rules for minus, quot, ... over and over

35/173

Beyond Classic TRSs for Program Analysis

So far, so good ...

but do we really want to represent 1000000 as s(s(s(...)))?!
Drawbacks:

@ throws away domain knowledge about built-in data types like integers

@ need to analyse recursive rules for minus, quot, ... over and over

@ does not benefit from dedicated constraint solvers
(e.g., SMT solvers) for arithmetic operations in programs

35/173

Beyond Classic TRSs for Program Analysis

So far, so good ...

but do we really want to represent 1000000 as s(s(s(...)))?!
Drawbacks:
@ throws away domain knowledge about built-in data types like integers

@ need to analyse recursive rules for minus, quot, ... over and over

@ does not benefit from dedicated constraint solvers
(e.g., SMT solvers) for arithmetic operations in programs

Solution: use constrained term rewriting

35/173

Constrained Term Rewriting, What's That?

Term rewriting "“with batteries included”
o first-order
@ no fixed evaluation strategy

@ no fixed order of rules to apply

36/173

Constrained Term Rewriting, What's That?

Term rewriting "“with batteries included”
o first-order
@ no fixed evaluation strategy
@ no fixed order of rules to apply

e typed

36/173

Constrained Term Rewriting, What's That?

Term rewriting "“with batteries included”
o first-order

no fixed evaluation strategy

°
@ no fixed order of rules to apply
e typed

°

with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories

36/173

Constrained Term Rewriting, What's That?

Term rewriting "“with batteries included”

first-order

no fixed evaluation strategy
no fixed order of rules to apply
typed

with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories

rewrite rules with SMT constraints

36/173

Constrained Term Rewriting, What's That?

Term rewriting "“with batteries included”
o first-order
no fixed evaluation strategy

°
@ no fixed order of rules to apply
e typed

°

with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories

@ rewrite rules with SMT constraints

= Term rewriting + SMT solving for automated reasoning

36/173

Constrained Term Rewriting, What's That?

Term rewriting "“with batteries included”
o first-order
no fixed evaluation strategy

°
@ no fixed order of rules to apply
e typed

°

with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories

@ rewrite rules with SMT constraints

= Term rewriting + SMT solving for automated reasoning

o General forms available, e.g., Logically Constrained TRSs
[Kop, Nishida, FroCoS '13]

36/173

Constrained Term Rewriting, What's That?

Term rewriting "“with batteries included”
o first-order
no fixed evaluation strategy

°
@ no fixed order of rules to apply
e typed

°

with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories

@ rewrite rules with SMT constraints

= Term rewriting + SMT solving for automated reasoning

o General forms available, e.g., Logically Constrained TRSs
[Kop, Nishida, FroCoS '13]

@ For program termination: use term rewriting with integers
[Falke, Kapur, CADE '09; Fuhs et al, RTA '09; Giesl et al, JAR '17]

36/173

Constrained Rewriting by Example

Example (Constrained Rewrite System)

lo(n,r) — Ll1(n,r,Nil)
l(n,ryxs) — l1(n—1,r+1,Cons(r,zs)) [n > 0]
li(n,ryzs) — lo(xs) [n = 0]

37/173

Constrained Rewriting by Example

Example (Constrained Rewrite System)

lo(n,r) — Ll1(n,r,Nil)
l(n,ryxs) — l1(n—1,r+1,Cons(r,zs)) [n > 0]
li(n,ryzs) — lo(xs) [n = 0]

Possible rewrite sequence:

00(2,7)

37/173

Constrained Rewriting by Example

Example (Constrained Rewrite System)

lo(n,r) — Ll1(n,r,Nil)
l(n,ryxs) — l1(n—1,r+1,Cons(r,zs)) [n > 0]
li(n,ryzs) — lo(xs) [n = 0]

Possible rewrite sequence:
60(27 7)
— (1(2,7,Nil)

37/173

Constrained Rewriting by Example

Example (Constrained Rewrite System)

lo(n,r) — Ll1(n,r,Nil)
l(n,ryxs) — l1(n—1,r+1,Cons(r,zs)) [n > 0]
li(n,ryzs) — lo(xs) [n = 0]

Possible rewrite sequence:
o(2,7)
— (1(2,7,Nil)
— (1(1, 8, Cons(7, Nil))

37/173

Constrained Rewriting by Example

Example (Constrained Rewrite System)

lo(n,r) — Ll1(n,r,Nil)
l(n,ryxs) — l1(n—1,r+1,Cons(r,zs)) [n > 0]
li(n,ryzs) — lo(xs) [n = 0]

Possible rewrite sequence:
(0(2,7)

— (1(2,7,Nil)

— (1(1, 8, Cons(7, Nil))

— £1(0, 9, Cons(8, Cons(7, Nil)))

37/173

Constrained Rewriting by Example

Example (Constrained Rewrite System)

lo(n,r) — Ll1(n,r,Nil)
l(n,ryxs) — l1(n—1,r+1,Cons(r,zs)) [n > 0]
li(n,ryzs) — lo(xs) [n = 0]

Possible rewrite sequence:

(0(2,7)

s £1(2,7, Nil)

— (1(1, 8, Cons(7, Nil))

— £1(0, 9, Cons(8, Cons(7, Nil)))
(

— l>(Cons(8, Cons(7,Nil)))

37/173

Constrained Rewriting by Example

Example (Constrained Rewrite System)

lo(n,r) — Ll1(n,r,Nil)
l(n,ryxs) — l1(n—1,r+1,Cons(r,zs)) [n > 0]
li(n,ryzs) — lo(xs) [n = 0]

Possible rewrite sequence:
(0(2,7)

— (1(2,7,Nil)

— (1(1, 8, Cons(7, Nil))

— £1(0, 9, Cons(8, Cons(7, Nil)))

— £»(Cons(8, Cons(7, Nil)))

Here 7, 8, ... are predefined constants.

37/173

Constrained Rewriting by Example

Example (Constrained Rewrite System)

lo(n,r) — Ll1(n,r,Nil)
l(n,ryxs) — l1(n—1,r+1,Cons(r,zs)) [n > 0]
li(n,ryzs) — lo(xs) [n = 0]

Possible rewrite sequence:
(0(2,7)

— (1(2,7,Nil)

— (1(1, 8, Cons(7, Nil))

— £1(0, 9, Cons(8, Cons(7, Nil)))

— £»(Cons(8, Cons(7, Nil)))

Here 7, 8, ... are predefined constants.

Termination proof: reuse techniques for TRSs and integer programs
37/173

Conclusion: Termination Proving Back-Ends

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 20 years

38/173

Conclusion: Termination Proving Back-Ends

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 20 years

@ Term rewriting: handles inductive data structures well

38/173

Conclusion: Termination Proving Back-Ends

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 20 years

@ Term rewriting: handles inductive data structures well

@ Imperative programs on integers: need to consider
reachability /safety and invariants

38/173

Conclusion: Termination Proving Back-Ends

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 20 years

@ Term rewriting: handles inductive data structures well

@ Imperative programs on integers: need to consider
reachability /safety and invariants

@ Since a few years cross-fertilisation

38/173

Conclusion: Termination Proving Back-Ends

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 20 years

Term rewriting: handles inductive data structures well

Imperative programs on integers: need to consider
reachability /safety and invariants

Since a few years cross-fertilisation

Constrained term rewriting: best of both worlds as back-end language

38/173

Conclusion: Termination Proving Back-Ends

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 20 years

@ Term rewriting: handles inductive data structures well

@ Imperative programs on integers: need to consider
reachability /safety and invariants

@ Since a few years cross-fertilisation
@ Constrained term rewriting: best of both worlds as back-end language

@ Proof search heavily relies on SMT solving for automation

38/173

Conclusion: Termination Proving Back-Ends

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 20 years

@ Term rewriting: handles inductive data structures well

Imperative programs on integers: need to consider
reachability /safety and invariants

Since a few years cross-fertilisation
Constrained term rewriting: best of both worlds as back-end language

Proof search heavily relies on SMT solving for automation

Needs of termination analysis have also led to better SMT solvers

38/173

Conclusion: Termination Proving Back-Ends

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 20 years

@ Term rewriting: handles inductive data structures well

@ Imperative programs on integers: need to consider
reachability /safety and invariants
@ Since a few years cross-fertilisation
@ Constrained term rewriting: best of both worlds as back-end language
@ Proof search heavily relies on SMT solving for automation
@ Needs of termination analysis have also led to better SMT solvers
@ More information . ..

http://termination-portal.org

38/173

Conclusion: Termination Proving Back-Ends

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 20 years

@ Term rewriting: handles inductive data structures well

@ Imperative programs on integers: need to consider
reachability /safety and invariants
@ Since a few years cross-fertilisation
@ Constrained term rewriting: best of both worlds as back-end language
@ Proof search heavily relies on SMT solving for automation
@ Needs of termination analysis have also led to better SMT solvers
@ More information . ..

http://termination-portal.org

Behind (almost) every successful termination prover ...

38/173

Conclusion: Termination Proving Back-Ends

@ Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ~ 20 years

@ Term rewriting: handles inductive data structures well

@ Imperative programs on integers: need to consider
reachability /safety and invariants
@ Since a few years cross-fertilisation
@ Constrained term rewriting: best of both worlds as back-end language
@ Proof search heavily relies on SMT solving for automation
@ Needs of termination analysis have also led to better SMT solvers
@ More information . ..

http://termination-portal.org

Behind (almost) every successful termination prover ...
. there is a powerful SAT / SMT solver!

38/173

|.3 Termination Analysis of Java
programs

39/173

From Program to Constrained Term Rewriting, high-level

@ execute program symbolically from initial states of the program,
handle language peculiarities here (— Java: sharing, cyclicity analysis)

else

g: while ...

40/173

From Program to Constrained Term Rewriting, high-level

@ execute program symbolically from initial states of the program,
handle language peculiarities here (— Java: sharing, cyclicity analysis)

foif ... init(...)
else

g: while ...

40/173

From Program to Constrained Term Rewriting, high-level

@ execute program symbolically from initial states of the program,
handle language peculiarities here (— Java: sharing, cyclicity analysis)

foif ... init(...)
else f(..))

g: while ...

40/173

From Program to Constrained Term Rewriting, high-level

@ execute program symbolically from initial states of the program,
handle language peculiarities here (— Java: sharing, cyclicity analysis)

f.if init(...)
.. l
else f(...)
SN
g: while ... g(5)

40/173

From Program to Constrained Term Rewriting, high-level

@ execute program symbolically from initial states of the program,
handle language peculiarities here (— Java: sharing, cyclicity analysis)

f.if init(...)
.. l
else f(...)
SN
g: while ... g(5)

40/173

From Program to Constrained Term Rewriting, high-level

@ execute program symbolically from initial states of the program,
handle language peculiarities here (— Java: sharing, cyclicity analysis)

@ use generalisation of program states, get over-approximation of all
possible program runs (& control-flow graph with extra info)

o closely related: Abstract Interpretation [Cousot and Cousot, POPL '77]

foif ... init(...)
. l
else f(...)
SN
g: while ... 8(5) =~ g(@) instance of g(3)

SN
0

40/173

From Program to Constrained Term Rewriting, high-level

@ execute program symbolically from initial states of the program,
handle language peculiarities here (— Java: sharing, cyclicity analysis)

@ use generalisation of program states, get over-approximation of all
possible program runs (& control-flow graph with extra info)

o closely related: Abstract Interpretation [Cousot and Cousot, POPL '77]
@ extract TRS from cycles in the representation

foif ... init(...)
. il
else f(...)
L S
g: while ... /g(;j <<\‘\\ g(#) instance of g(3)

g()

40/173

From Program to Constrained Term Rewriting, high-level

@ execute program symbolically from initial states of the program,
handle language peculiarities here (— Java: sharing, cyclicity analysis)

@ use generalisation of program states, get over-approximation of all
possible program runs (& control-flow graph with extra info)

o closely related: Abstract Interpretation [Cousot and Cousot, POPL '77]

@ extract TRS from cycles in the representation

e if TRS terminates
= any concrete program execution can use cycles only finitely often
= the program must terminate

foif ... init(...)
. il
else f(...)
L S
g: while ... /g(;j <<\‘\\ g(#) instance of g(5)

g(?)

40/173

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

41/173

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

@ Decide on suitable symbolic representation of abstract program states
(abstract domain)
— here: what data objects can we represent as terms?

41/173

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

@ Decide on suitable symbolic representation of abstract program states
(abstract domain)
— here: what data objects can we represent as terms?

@ Execute program symbolically from its initial states

41/173

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

@ Decide on suitable symbolic representation of abstract program states
(abstract domain)
— here: what data objects can we represent as terms?

@ Execute program symbolically from its initial states

@ Use generalisation of program states to get closed finite
representation (symbolic execution graph, abstract interpretation)

41/173

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

@ Decide on suitable symbolic representation of abstract program states
(abstract domain)
— here: what data objects can we represent as terms?

@ Execute program symbolically from its initial states

@ Use generalisation of program states to get closed finite
representation (symbolic execution graph, abstract interpretation)

@ Extract rewrite rules that “over-approximate’ program executions in
strongly-connected components of graph

41/173

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

@ Decide on suitable symbolic representation of abstract program states
(abstract domain)
— here: what data objects can we represent as terms?

@ Execute program symbolically from its initial states

@ Use generalisation of program states to get closed finite
representation (symbolic execution graph, abstract interpretation)

@ Extract rewrite rules that “over-approximate’ program executions in
strongly-connected components of graph

@ Prove termination of these rewrite rules
= implies termination of program from initial states

41/173

Java Challenges

Java: object-oriented imperative language
@ sharing and aliasing (several references to the same object)
o side effects
e cyclic data objects (e.g., list.next == list)
@ object-orientation with inheritance

42/173

Java Example

public class MyInt {

// only wrap a primitive int
private int val;

// count "num” up to the value in "limit"
public static void count(MyInt num, MyInt limit) {
if (num == null || limit == null) {
return;
}
// introduce sharing
MyInt copy = num;
while (num.val < limit.val) {
copy.val++;
}
3
3
v

Does count terminate for all inputs? Why (not)?
(Assume that num and limit are not references to the same object.)

43/173

Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA '10]

44/173

http://aprove.informatik.rwth-aachen.de/

Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA '10]

Back-end: From rewrite system to termination proof
o Constrained term rewriting with integers [Gies| et al, JAR '17]

@ Termination techniques for rewriting and for integers can be integrated

44/173

http://aprove.informatik.rwth-aachen.de/

Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA '10]

Back-end: From rewrite system to termination proof
o Constrained term rewriting with integers [Gies| et al, JAR '17]
@ Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system
@ Build symbolic execution graph that over-approximates all runs of
Java program (abstract interpretation)
@ Symbolic execution graph has invariants for integers and heap object
shape (trees?)
@ Extract rewrite system from symbolic execution graph

44/173

http://aprove.informatik.rwth-aachen.de/

Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA '10]

Back-end: From rewrite system to termination proof
o Constrained term rewriting with integers [Gies| et al, JAR '17]

@ Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system
@ Build symbolic execution graph that over-approximates all runs of
Java program (abstract interpretation)
@ Symbolic execution graph has invariants for integers and heap object
shape (trees?)
@ Extract rewrite system from symbolic execution graph

Implemented in the tool AProVE (— web interface)

http://aprove. informatik.rwth-aachen.de/

44/173

http://aprove.informatik.rwth-aachen.de/

Java: Source Code vs Bytecode

[Otto et al, RTA '10] describe their technique for compiled Java
programs: Java Bytecode

45/173

Java: Source Code vs Bytecode

[Otto et al, RTA '10] describe their technique for compiled Java
programs: Java Bytecode

@ desugared machine code for a (virtual) stack machine,
still has all the (relevant) information from source code

@ input for Java interpreter and for many program analysis tools

@ somewhat inconvenient for presentation, though ...

45/173

Java: Source Code vs Bytecode

00: aload_0
01: ifnull 8
04: aload_1

. A) 05: ifnonnull 9
[Otto et al, RTA '10] describe their technique for cor g. return

programs: Java Bytecode 09: aload_0
10: astore_2

@ desugared machine code for a (virtual) stack mac 11: aload_o
still has all the (relevant) information from sourc }: i‘ii;ge}d val
@ input for Java interpreter and for many program 16: getfield val
19: if_icmpge 35
@ somewhat inconvenient for presentation, though 22 aload_2
23: aload_2
24: getfield val
27: iconst_1
28: iadd
29: putfield val
32: goto 11
35: return

45/173

Java: Source Code vs Bytecode

[Otto et al, RTA '10] describe their technique for compiled Java
programs: Java Bytecode

@ desugared machine code for a (virtual) stack machine,
still has all the (relevant) information from source code

@ input for Java interpreter and for many program analysis tools

@ somewhat inconvenient for presentation, though ...

Here: Java source code

45/173

Ingredients for the Abstract Domain

@ program counter value (line number)

@ values of variables (treating int as 7Z)

© over-approximating info on possible variable values
o integers: use intervals, e.g. x € [4, 7] ory € [0, o)
e heap memory with objects, no sharing unless stated otherwise
e MyInt(?): maybe null, maybe a MyInt object

Heap predicates:

?
o Two references may be equal: 01 ="0>

03 \ num: o1, 1limit : o2
o1 : MyInt(?)

02 : MyInt(val =4;)

i1 : [4,80]

46/173

Ingredients for the Abstract Domain

@ program counter value (line number)
@ values of variables (treating int as 7Z)
© over-approximating info on possible variable values
o integers: use intervals, e.g. x € [4, 7] ory € [0, o)
e heap memory with objects, no sharing unless stated otherwise
e MyInt(?): maybe null, maybe a MyInt object
Heap predicates:

?
o Two references may be equal: 01 ="02
e Two references may share: 01\ /02

03 \ num: o1, 1limit : o2
o1 : MyInt(?)

02 : MyInt(val =4;)

i1 : [4,80]

46/173

Ingredients for the Abstract Domain

@ program counter value (line number)
@ values of variables (treating int as 7Z)
© over-approximating info on possible variable values
o integers: use intervals, e.g. x € [4, 7] ory € [0, o)
e heap memory with objects, no sharing unless stated otherwise
e MyInt(?): maybe null, maybe a MyInt object
Heap predicates:

?
o Two references may be equal: 01 ="02
e Two references may share: 01\/02

o Reference may have cycles: 0!

03 \ num: o1, 1limit : o2
o1 : MyInt(?)

02 : MyInt(val =4;)

i1 : [4,80]

46/173

Building the Symbolic Execution Graph

N O oA w N =

public class MyInt {
private int val;
static void count(MyInt num,
MyInt limit) {
if (num == null
|| limit == null)
return;
MyInt copy = num;
while (num.val < limit.val)
copy.val++;

33

A

1| num: o1, limit: o2

01 : MyInt(?)
02 : MyInt(?)

47/173

Building the Symbolic Execution Graph

public class MyInt { A 01 = null B
private int val; 1 num: o1, limit: oz | =3[3] num:oq,limit: oo
static void count(MyInt num, 01 : MyInt(?) 01 : null

MyInt limit) { 02 : MyInt(?) 02 : MyInt(?)
1: if (num == null
2: [l limit == null) o1 # ”“11‘C
38 return; 2 [num: o1, limit : oo
4: MyInt copy = num; 01 : MyInt(val = 41)
5: while (num.val < limit.val) 02 : MyInt(?)
6: copy.val++; i1 1 (—00,00)
7: })
w
cond
K e Y

means: refine X with cond, then evaluate to Y; here combined for brevity
(narrowing)
47/173

Building the Symbolic Execution Graph

public class MyInt { A 01 = null B
pr1V§te 1|'.1t val; 1| num:op,limit: oo |—=3m| 3| num:or,limit: oo
static void count(MyInt num, 01 : MyInt(?) 01 : null
MyInt limit) { 02 : MyInt(?) 02 : MyInt(?)
1: if (num == null
gE [l limit == null) o1 # ““11‘(: s — null D
3: return; 2 [num: o1, limit : oo 3 [num: o1, limit : oo
4: MyInt copy = num; o1 : MyInt(val =41) o1 : MyInt(val =11)
Bk while (num.val < limit.val) 02 : MyInt(?) 02 : null
6: copy.val++; i1 1 (—00,00) i1 : (—00,00)
7: } }
« 02 # null E
4 | num: o1, limit : oo
o1 : MyInt(val =41)
02 : MyInt(val = i)
i1 : (—00,00)
ig : (—00, 00)

cond
X=—3>Y
means: refine X with cond, then evaluate to Y; here combined for brevity
(narrowing)
47/173

Building the Symbolic Execution Graph

N O oA w N =

public class MyInt {
private int val;

static void count(MyInt num,

MyInt limit) {
if (num == null

|| 1imit == null)

return;
MyInt copy = num;

while (num.val < limit.val)

copy.val++;

33

X—Y

means: evaluate X to Y

<

A 01 = null B
1| num:or,limit: o |—=3m| 3| num:or,limit: oo
01 : MyInt(?) 01 : null
02 : MyInt(?) 02 : MyInt(?)
null
7 ‘ c 02 = null P
2 | num: o1, limit : o2 3 | num: oq,limit : o2
o1 : MyInt(val =41) - o1 : MyInt(val =41)
02 : MyInt(?) 09 : null
i1 : (—00,00) i1 : (—00,00)

og#null‘ E

4 | num: o1,limit : oo

o1 : MyInt(val =41)
02 : MyInt(val = i)
i1 : (—00,00)
ig : (—00, 00)

N

F

5 | num: o1, limit : oz, copy : 01

o1 : MyIn
02 : MyIn

t(val = i)
t(val = ig)

i1 : (—00,00)
g 1 (—00,00)

47/173

Building the Symbolic Execution Graph

N O oA w N =

public class MyInt {
private int val;
static void count(MyInt num,
MyInt limit) {
if (num == null
|| limit ==
return;
MyInt copy = num;
while (num.val < limit.val)
copy.val++;

null)

33

H

<

A 01 = null B
1| num:or,limit: o |—=3m| 3| num:or,limit: oo
01 : MyInt(?) 01 : null
02 : MyInt(?) 02 : MyInt(?)
null
7 ‘ c 02 = null P
2 | num: o1, limit : o2 — 3 | num: oq,limit : o2
o1 : MyInt(val =41) o1 : MyInt(val =41)
02 : MyInt(?) 09 : null
i1 : (—00,00) i1 : (—00,00)

og#null‘ E

4 | num: o1,limit : oo

o1 : MyInt(val =41)
02 : MyInt(val = i)
i1 : (—00,00)
ig : (—00, 00)

G

7| num:oq,...

N

6 | num: o1, limit : oz, copy : 01

F ‘71 > 2

i1 : (—00,00)
ig : (—00,00)

01 : MyInt(val =47)
02 : MyInt(val = i3)

5 | num: o1, limit : oz, copy : 01

i1 < ig

o1 : MyInt(val =41)
02 : MyInt(val = i2)
i1 : (—00,00)
g 1 (—00,00)

47/173

Building the Symbolic Execution Graph

public class MyInt { A 01 = null B
private int val; 1| num:or,limit: o |—=3m| 3| num:or,limit: oo
static void count(MyInt num, 01 : MyInt(?) 01 : null
MyInt limit) { 09 : MyInt(?) 02 : MyInt(?)
1: if (num == null
2 Il limit == null) o1 7 null ‘ c s — null D
3: return; 2 [num: o1, limit : oo 3 [num: o1, limit : oo
4: MyInt copy = num; o1 : MyInt(val =41) o1 : MyInt(val =11)
Bk while (num.val < limit.val) 02 : MyInt(?) 02 1 null
6: copy.val++; i1 : (—00,00) i1 : (—00,00)
7: } }
« 02 # null E

|
5| num: o1, limit : 02, copy : o1
01 : MyInt(val = i3)
02 : MyInt(val = i)

4 | num: o1,limit : oo
o1 : MyInt(val =41) C
02 : MyInt(val = i)

; i1 @ (—o0, 00) 7| num:oq,...
i3 : (—00,00) iz : (—00,00)

ig : (—o0, 00) :

s=i1+1 N H \ F Tilzig

6 | num: o1, limit : oz, copy : 01 5 | num: o1, limit : oz, copy : 01
01 : MyInt(val =47) o1 : MyInt(val =41)

02 : MyInt(val = iz) €——— | 02 : MyInt(val =i2)

i1 : (—00,00) 11 <12 | j;:(—o0,00)

ig : (—00,00) g 1 (—00,00)

47/173

Building the Symbolic Execution Graph

public class MyInt { A 01 = null B
private int val; 1| num:or,limit: o |—=3m| 3| num:or,limit: oo
static void count(MyInt num, 01 : MyInt(?) 01 : null
MyInt limit) { 02 : MyInt(?) 02 : MyInt(?)
1: if (num == null
2: [l limit == null) o1 # null ‘ C s — ull D
3: return; 2 [num: o1,limit : o2 3 [num:o1,limit : o2
4: MyInt copy = num; o1 : MyInt(val =41) o1 : MyInt(val =11)
Bk while (num.val < limit.val) 02 : MyInt(?) 02 1 null
6: copy.val++; i1 : (—00,00) i1 : (—00,00)
7: } }
« 02 # null E
I semmmmmm=eaY
__ d 4| num: o1, Timit : 0o
5| num: o1, limit : 02, copy : o1 o1 - MyInt(val = ik
01 : MyInt(val = i3) —a) G
‘3 02 : MyInt(val =id2) ¥
0z MyInt(val = i) i1t (—00,00) AN 7 [num:oq,...
i : (—00,00) i9 1 (—00,00) .

ig : (—o0, 00)

-
.
A
N L
iz =i1+1 N\ H \ 4 F THEZQ

X >V - 6 | num: o1, limit : oz, copy : 01 5 | num: o1, limit : oz, copy : 01
. 01 : MyInt(val =47) o1 : MyInt(val =41)
(S : =1 : MyI 1=1
X is instance of Y | 02 MWiInt(val =12) €| o2:Mint(val =iz)
i1 : (—00,00) 12 | 41 :(—00,00)
ig : (—00,00) g 1 (—00,00)

47/173

From Java to Symbolic Execution Graphs

Symbolic Execution Graphs

@ symbolic over-approximation of all computations
(abstract interpretation)

@ expand nodes until all leaves correspond to program ends

@ by suitable generalisation steps (widening),
one can always get a finite symbolic execution graph

@ state s7 is instance of state so
if all concrete states described by s; are also described by s

48/173

From Java to Symbolic Execution Graphs

Symbolic Execution Graphs

@ symbolic over-approximation of all computations
(abstract interpretation)

@ expand nodes until all leaves correspond to program ends

@ by suitable generalisation steps (widening),
one can always get a finite symbolic execution graph

@ state s7 is instance of state so
if all concrete states described by s; are also described by s

Using Symbolic Execution Graphs for Termination Proofs

@ every concrete Java computation corresponds to a computation path
in the symbolic execution graph

@ symbolic execution graph is called terminating
iff it has no infinite computation path

48/173

Transformation of Objects to Terms (1/2)

16 | num: o1, limit : 09, X : 03,y : 04,2 : 03
o1 : MyInt(?)

09 : MyInt(val = i)

03 : null

04 : MyList(?)

04!

il . [7, OO)

i9 1 (—00,00)

For every class C with n fields, introduce an n-ary function symbol C
e term for 01: 01

term for o2: Mylnt(iz)

term for o3: null

term for o4: x (new variable)

term for 71: i1 with side constraint i1 > 7

(add invariant i; > 7 to constrained rewrite rules from state Q)
49/173

Transformation of Objects to Terms (2/2)

public class A {
int a;

3

public class B extends A {
int b;

¥

A x = new AQ);
x.a = 1;

B y = new B();
y.a = 2;

y.b = 3;

Dealing with subclasses:

50/173

Transformation of Objects to Terms (2/2)

Dealing with subclasses:
public class A {

int a; o for every class C with n fields,
¥ introduce (n + 1)-ary function symbol C
public class B extends A { @ first argument: part of the object
int b; .
) corresponding to subclasses of C
e term for x: A(eoc, 1)
A x = new AQ); — eoc for end of class
.a=1;
e o term for y: A(B(eoc, 3),2)
B y = new B();
y.a = 2;
y.b = 3;

50/173

Transformation of Objects to Terms (2/2)

public class A {
int a;

3

public class B extends A {
int b;

¥

A x = new AQ);
x.a = 1;

B y = new B();
y.a = 2;

y.b = 3;

Dealing with subclasses:

o for every class C with n fields,
introduce (n + 1)-ary function symbol C

@ first argument: part of the object
corresponding to subclasses of C

e term for x: jIO(A(eoc, 1))

— eoc for end of class
e term for y: jIO(A(B(eoc, 3),2))
@ every class extends Object!

(— jIO = java.lang.0Object)

50/173

From the Symbolic Execution Graph to Terms and Rules

5 | num: o1, limit : 02, copy : o1

01 : MyInt(val = i3)
02 : MyInt(val = ip)
i3 : (—00,00)
ig : (—00, 00)

i3 =41 + 1
H

6 | num: o1,limit : o2, copy : o1

:MyInt(val =41)

o1

02 : MyInt(val = i3)
i1 : (—o0, 00)

ip : (—00, 00)

i1 < i2

§ F

5| num: o1,limit : o2, copy : 01

o1 : MyInt(val = 1)
02 : MyInt(val = ig)
i1 : (—00,00)
g : (—00,00)

51/173

From the Symbolic Execution Graph to Terms and Rules

5 | num: o1, limit : 02, copy : o1

01 : MyInt(val = i3)
02 : MyInt(val = ip)
i3 : (—00,00)
ig : (—00, 00)

i3 =41 + 1
H

6 | num: o1,limit : o2, copy : o1

01 : MyInt(val = 1)
02 : MyInt(val = i3)
i1 : (—o0, 00)
ip : (—00, 00)

i1 < i2

5| num: o1,limit : o2, copy : 01

o1 : MyInt(val = 1)
02 : MyInt(val = ig)
i1 : (—00,00)
g : (—00,00)

o State F: /¢(jIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,is)))

State H: ¢y (jIO(Mylnt(eoc,i1)), jIO(Mylnt(eoc,is)))

51/173

From the Symbolic Execution Graph to Terms and Rules

5 | num: o1, limit : 02, copy : o1
o1 : MyInt(val = i3)

02 : MyInt(val = ip) “eal
i3 : (—00, 00) .
ig : (—00, 00) N

.
i3 =11 +1 “
Y

H * F

6 | num: o1,limit : o2, copy : o1 5| num: o1,limit : o2, copy : 01
01 : MyInt(val = 1) o1 : MyInt(val = 1)

02 : MyInt(val = i3) € | 02 : MyInt(val =i2)

i1 1 (—00,00) 1 <12 i1 1 (—00,00)

ip : (—00, 00) g : (—00,00)

o State F: /¢(jIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,is)))
H
State H: {y(jlIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,iz))) [i1 < io]

51/173

From the Symbolic Execution Graph to Terms and Rules

5 | num: o1, limit : 02, copy : o1
01 : MyInt(val = i3)
02 : MyInt(val = ip) “eal

i3 : (—00, 00) Sel
ig : (—00, 00) AN
-
Al
i3 =11 +1 >
A)
H qy F

6 | num: o1,limit : o2, copy : o1 5| num: o1,limit : o2, copy : 01
01 : MyInt(val = 1) o1 : MyInt(val = 1)
02 : MyInt(val = i3) € | 02 : MyInt(val =i2)
i1 1 (—00,00) 1 <12 i1 1 (—00,00)
ip : (—00, 00) g : (—00,00)

o State F: /¢(jIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,is)))
H
State H: {y(jlIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,iz))) [i1 < io]

@ State H: /y(jIO(Mylnt(eoc,i1)), jIO(Mylnt(eoc,is)))
State I (¢(jlIO(Mylnt(eoc,i; + 1)), jIO(Mylnt(eoc,iz)))

51/173

From the Symbolic Execution Graph to Terms and Rules

5 | num: o1, limit : 02, copy : o1
01 : MyInt(val = i3)
02 : MyInt(val = ip) “eal

i3 : (—00, 00) Sel
ig : (—00, 00) AN
-
Al
i3 =11 +1 >
A)
H qy F

6 | num: o1,limit : o2, copy : o1 5| num: o1,limit : o2, copy : 01
01 : MyInt(val = 1) o1 : MyInt(val = 1)
02 : MyInt(val = i3) € | 02 : MyInt(val =i2)
i1 1 (—00,00) 1 <12 i1 1 (—00,00)
ip : (—00, 00) g : (—00,00)

o State F: /¢(jIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,is)))
H
State H: {y(jlIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,iz))) [i1 < io]
@ State H: /y(jIO(Mylnt(eoc,i1)), jIO(Mylnt(eoc,is)))
H
State I (¢(jIO(Mylnt(eoc,i; + 1)), jIO(Mylnt(eoc,iz)))

51/173

From the Symbolic Execution Graph to Terms and Rules

5 | num: o1, limit : 02, copy : o1
01 : MyInt(val = i3)
02 : MyInt(val = ip) “eal

i3 : (—00, 00) Sel
ig : (—00, 00) AN
-
Al
ig=i1+1 %
A)
H * F

6 | num: o1,limit : o2, copy : o1 5| num: o1,limit : o2, copy : 01
01 : MyInt(val = 1) o1 : MyInt(val = 1)
02 : MyInt(val = i3) € | 02 : MyInt(val =i2)
i1 1 (—00,00) 1 <12 i1 1 (—00,00)
ip : (—00, 00) g : (—00,00)

o State F: /¢(jIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,is)))
H
State H: {y(jlIO(Mylnt(eoc, 1)), jIO(Mylnt(eoc,iz))) [i1 < io]
@ State H: /y(jIO(Mylnt(eoc,i1)), jIO(Mylnt(eoc,is)))
H
State I (¢(jIO(Mylnt(eoc,i; + 1)), jIO(Mylnt(eoc,iz)))

@ Termination easy to show (intuitively: io — 41 decreases against bound 0)
51/173

Extensions

e modular termination proofs and recursion
[Brockschmidt et al, RTA '11]

52/173

Extensions

e modular termination proofs and recursion
[Brockschmidt et al, RTA '11]

@ proving reachability and non-termination (uses only symbolic
execution graph) [Brockschmidt et al, FoVeOOS '11]

52/173

Extensions

e modular termination proofs and recursion
[Brockschmidt et al, RTA '11]

@ proving reachability and non-termination (uses only symbolic
execution graph) [Brockschmidt et al, FoVeOOS '11]

@ proving termination with cyclic data objects (preprocessing in
symbolic execution graph) [Brockschmidt et al, CAV '12]

52/173

Extensions

e modular termination proofs and recursion
[Brockschmidt et al, RTA '11]

@ proving reachability and non-termination (uses only symbolic
execution graph) [Brockschmidt et al, FoVeOOS '11]

@ proving termination with cyclic data objects (preprocessing in
symbolic execution graph) [Brockschmidt et al, CAV '12]

@ proving upper bounds for time complexity (abstracts terms to
numbers) [Frohn and Giesl, iFM '17]

52/173

@ So far: Java as a memory-safe object-oriented language
— out-of-bounds memory accesses in Java: well-defined exceptions

53/173

@ So far: Java as a memory-safe object-oriented language
— out-of-bounds memory accesses in Java: well-defined exceptions
@ Now: C as a systems programming language with pointer arithmetic
and no guarantees of memory safety
— out-of-bounds memory accesses in C: undefined behaviour

53/173

@ So far: Java as a memory-safe object-oriented language
— out-of-bounds memory accesses in Java: well-defined exceptions

@ Now: C as a systems programming language with pointer arithmetic
and no guarantees of memory safety
— out-of-bounds memory accesses in C: undefined behaviour
e replacing all files on the computer with cat GIFs

53/173

@ So far: Java as a memory-safe object-oriented language
— out-of-bounds memory accesses in Java: well-defined exceptions

@ Now: C as a systems programming language with pointer arithmetic
and no guarantees of memory safety
— out-of-bounds memory accesses in C: undefined behaviour

e replacing all files on the computer with cat GIFs
o information leaks (Heartbleed)

53/173

@ So far: Java as a memory-safe object-oriented language
— out-of-bounds memory accesses in Java: well-defined exceptions

@ Now: C as a systems programming language with pointer arithmetic
and no guarantees of memory safety
— out-of-bounds memory accesses in C: undefined behaviour

e replacing all files on the computer with cat GIFs
o information leaks (Heartbleed)
e non-termination

53/173

@ So far: Java as a memory-safe object-oriented language
— out-of-bounds memory accesses in Java: well-defined exceptions

@ Now: C as a systems programming language with pointer arithmetic
and no guarantees of memory safety
— out-of-bounds memory accesses in C: undefined behaviour

replacing all files on the computer with cat GIFs
information leaks (Heartbleed)

]
]
e non-termination
o

53/173

@ So far: Java as a memory-safe object-oriented language
— out-of-bounds memory accesses in Java: well-defined exceptions

@ Now: C as a systems programming language with pointer arithmetic
and no guarantees of memory safety
— out-of-bounds memory accesses in C: undefined behaviour

e replacing all files on the computer with cat GIFs
o information leaks (Heartbleed)

e non-termination
o

= C programs must be memory safe as a precondition for termination!

53/173

@ So far: Java as a memory-safe object-oriented language
— out-of-bounds memory accesses in Java: well-defined exceptions

@ Now: C as a systems programming language with pointer arithmetic
and no guarantees of memory safety
— out-of-bounds memory accesses in C: undefined behaviour

replacing all files on the computer with cat GIFs
information leaks (Heartbleed)

]
]
e non-termination
o

= C programs must be memory safe as a precondition for termination!

@ Use case: programs on strings represented as char arrays whose last
element has 0 as entry (“O-terminated strings”)

53/173

@ So far: Java as a memory-safe object-oriented language
— out-of-bounds memory accesses in Java: well-defined exceptions
@ Now: C as a systems programming language with pointer arithmetic
and no guarantees of memory safety
— out-of-bounds memory accesses in C: undefined behaviour

replacing all files on the computer with cat GIFs
information leaks (Heartbleed)
non-termination

o
o
o
o
= C programs must be memory safe as a precondition for termination!

@ Use case: programs on strings represented as char arrays whose last
element has 0 as entry (“O-terminated strings”)

@ Tailor two-stage approach to C [Stroder et al, JAR '17]

53/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(++s));
return s-str;

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(++s));
return s-str;

No memory access outside allocated memory!

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(++s));
return s-str;

No memory access outside allocated memory!

(precondition for termination)

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(++s));
return s-str;

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(++s));
return s-str;

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(++s));
return s-str;

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(++s));
return s-str;

str

4
ol [[]
/I\
s

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? No!
(violation of memory safety)

int strlen(char* str) {
charx s = str;
while(x(++s));
return s-str;

str

4
ol [[]
/I\
s

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while((*s)++);
return s-str;

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while((*s)++);
return s-str;

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while((*s)++);
return s-str;

str

4
ol [o]
/I\
s

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while((*s)++);
return s-str;

str

4
2] [.. [o]
/I\
s

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while((*s)++);
return s-str;

str

4
Bl [o]
/I\
s

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? No!
(non-terminating)

int strlen(char* str) {
charx s = str;
while((*s)++);
return s-str;

str

4
Bl [o]
/I\
s

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? No!
(non-terminating — for unbounded integers)

int strlen(char* str) {
charx s = str;
while((*s)++);
return s-str;

str

4
Bl [o]
/I\
s

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(s++));
return s-str;

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(s++));
return s-str;

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(s++));
return s-str;

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(s++));
return s-str;

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating?

int strlen(char* str) {
charx s = str;
while(x(s++));
return s-str;

n -

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? Yes! But. ..

int strlen(char* str) {
charx s = str;
while(x(s++));
return s-str;

n -

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? Yes!

int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? Yes!

int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;

str

4
L[o
/I\
s

Bugs w.r.t. pointers are hard to recognise!

54/173

Precondition: str points to allocated O-terminated string

Is this program memory-safe and terminating? Yes!
How to prove this automatically?

int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;

str

4
L[o
/I\
s

Bugs w.r.t. pointers are hard to recognise!

54/173

|IIiilIE!HIIHl%IlIII

‘E\)

55/173

|IIiilIE!HIIHl%IlIII

,“E\)

compilel

4

COMPILER INFRASTRUCTURE

55/173

|IIiilIE!HIIHl%IlIII

‘E\)

compilel

4

Symbolic
Execution

Graph

—

COMPILER INFRASTRUCTURE

prove
memory
safety

55/173

|IIiilIE!HIIHl%IlIII

‘E\)

compilel

4

Symbolic Integer

—) Execution —) Transition

Graph System

COMPILER INFRASTRUCTURE

prove
memory
safety

synthesise

55/173

|IIiilIE!HIIHl%IlIII

prove termination

‘E\)

compilel

4

Symbolic Integer

—) Execution —) Transition

Graph System

COMPILER INFRASTRUCTURE

prove
memory
safety

synthesise

55/173

|IIiilIE!HIIHl%IlIII

original program is memory-safe and terminating

.y,
-
L]
~
~

-
e=="
-
-
-

. s
~

e
~

prove termination

Symbolic Integer
Execution =~ ———) Transition
Graph System

COMPILER INFRASTRUCTURE

prove
memory
safety

synthesise

55/173

|IIiilIE!HIIHl%IlIII

original program is memory-safe and terminating

.y,
-
L]
~
~

-
e=="
-
-
-

. s
~

e
~

prove termination

Symbolic Integer
Execution) Transition
Graph System

COMPILER INFRASTRUCTURE

prove
memory
safety

synthesise

56/173

|IIiilIE!HIIHl%IlIII

original program is memory-safe and terminating
“"_--- -......

. ~
. “a

K° .

prove termination

Symbolic Integer
Execution) Transition
Graph System

COMPILER INFRASTRUCTURE

prove
memory
safety

synthesise

57/173

From Program to Symbolic Execution Graph (1/2)

@ over-approximate operations

58/173

From Program to Symbolic Execution Graph (1/2)

@ over-approximate operations

@ inference rules for each instruction

58/173

From Program to Symbolic Execution Graph (1/2)

@ over-approximate operations
@ inference rules for each instruction

o refinement

58/173

From Program to Symbolic Execution Graph (1/2)

over-approximate operations
inference rules for each instruction
refinement

generalisation

58/173

From Program to Symbolic Execution Graph (1/2)

@ over-approximate operations

@ inference rules for each instruction
o refinement

@ generalisation

@ reduce reasoning to SMT

58/173

From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;

}

59/173

From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) {
charx s = str;
while(xs) s++; [T] .. o
return s-str;

}

59/173

From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) {
charx s = str; 4 4
while(xs) s++; T] .. o
return s-str;

str Uend

}

59/173

From Program to Symbolic Execution Graph (2/2)

int strlen(charx str) { str Uend
char* s = str; v 82
while(xs) s++; [T 1. o]

return s-str; \L
} str Uend
< 4
| - o]

s

59/173

From Program to Symbolic Execution Graph (2/2)

int strlen(charx str) { str Uend
charx s = str; v 82
while(xs) s++; [T 1. o]
return s-str; \L
} str Uend
<
) [o]
s

59/173

From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) {

str Uend
charx s = str; + +
while(*s) s++; | || | |0|
return s-str;
} str Uend
4 e
| [o]
Reﬁnemﬁ;i/// >
str Uend l str Uend
v L L +
0 0 #0 0
S +
& s

59/173

From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) { ?ir Uj?d
charx s = str; | ¢0|| | — |0|
while(*s) s++;
return s-str; s

}

59/173

From Program to Symbolic Execution Graph (2/2)

int strlen(charx str) { Si'” “jild
charx s = str; | 20 || | |0|
while(*s) s++;
return s-str; S
¥ 1
str Uend
N2 N2
#0 0

w

59/173

From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) { str Uend
char* s = str; |:0 || | |‘(I)’|
while(*s) s++;
return s-str; S
})
str Uend
+ +
#0 0
x
S
-
str Uend
4
zof#o] 1. Jo
T
s

59/173

From Program to Symbolic Execution Graph (2/2)

int strlen(charx str) { str Uend
char* s = str; 4’0 +
while(*s) s++; |5‘é || | o |0|
return s-str; S
} 1
str Uend
¥ 4
#0 0
JI\
S
Generalisatjon/ i
-
str Uend str Uend
4
20| . o] «=——[#o] o] | ...]o]
0 0
S s

59/173

From Program to Symbolic Execution Graph (2/2)

int strlen(char* str) { str Uend
char* s = str; 4’0 S+
while(*s) s++; |5‘é || | o |0|
return s-str; S
} 1
str Uend
+ +
#0 0
JI\
s
JPEEREE . Generalisatjon/ i
, > e
' str Uend str Uend
\\\ \L
ERREEEEE |7é0|... |0|< |7é0|7éo| || |0|
0 0
s s

59/173

|IIiilIE!HIIHl%IlIII

original program is memory-safe and terminating

mEm ey
'-‘- ..-.

- -
.® e
. ~

~
e
~

prove termination

Symbolic Integer
Execution Transition
Graph System

COMPILER INFRASTRUCTURE

prove
memory
safety

synthesise

60/173

From Symb. Exec. Graph to Integer Transition Systems (1/3)

@ Non-termination ~ infinite run through graph

61/173

From Symb. Exec. Graph to Integer Transition Systems (1/3)

@ Non-termination ~ infinite run through graph

@ Express graph traversal (SCCs)

61/173

From Symb. Exec. Graph to Integer Transition Systems (1/3)

@ Non-termination ~ infinite run through graph

@ Express graph traversal (SCCs)

by Integer Transition System (ITS)

61/173

From Symb. Exec. Graph to Integer Transition Systems (1/3)

@ Non-termination ~ infinite run through graph

@ Express graph traversal (SCCs)

by Integer Transition System (ITS)

@ ITS terminating = C program terminating

61/173

From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

62/173

From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

@ Arguments: variables occurring in states

62/173

From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

@ Arguments: variables occurring in states

str Uend
4 4
A || #0 0
Jr
S
1
str Uend
4 4
B [#of [[... [o]
/r
S

62/173

From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

@ Arguments: variables occurring in states

str Uend
4 4
A |l #0 0
Jr
S
1
str Uend
4 4
B [#of [[... [o]
/r
S

Ca()

62/173

From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

@ Arguments: variables occurring in states

str Uend
4 4
A || #0 0
Jr
S
1
str Uend
4 4
B [#of [[... [o]
/r
S

KA(str)

62/173

From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

@ Arguments: variables occurring in states

str
4

£0

g
o K3
ISH

ES
S

4

str
4

S

5 2] [
T

Ia(stryteng

)

62/173

From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

@ Arguments: variables occurring in states

str Uend
4 4
A || #0 0
Jr
S
1
str Uend
4 4
B [#of [[... [o]
/r
S

Ia(strytend,s)

62/173

From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

@ Arguments: variables occurring in states

str Uend
4 4
A || #0 0
Jr
S
1
str Uend
4 4
B [2of [[.. [o]
/r
S

EA(Str)uendas) — EB()

62/173

From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

@ Arguments: variables occurring in states

str Uend
4 4
A || #0 0
Jr
S
1
str Uend
4 4
B [#of [[... [o]
/r
S

EA(Str)uendas) — EB(Str)

62/173

From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

@ Arguments: variables occurring in states

str Uend
¥ ¥
A || #0 0
JI\
s
1
str Uend
¥ ¥
Bllzof []. fo]
/I\
s
Ia(strytend,s) — Ua(stryueng)

62/173

From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

@ Arguments: variables occurring in states

str Uend
4 4
A || #0 0
Jr
S
1
str Uend
4 4
B [#of [[... [o]
/r
S

Ia(strytieng,s) — Ig(str,uenq, s+ 1)

62/173

From Symb. Exec. Graph to Integer Transition Systems (2/3)

@ Function symbols: abstract states

@ Arguments: variables occurring in states

str Uend
4 4
A || #0 0
x
S
1
str Uend
4 4
B [#of [[... [o]
/r
S
s<Uend

Ia(strytieng,s) — Ig(str,uenq, s+ 1)

62/173

From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

63/173

From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

<y
lz,y) — l(z+1y)

63/173

From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

<y
lz,y) — l(z+1y)

<_
oK<

63/173

From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

<y
lz,y) — l(z+1y)

<_
oK<

Automatic termination proof by any termination prover

63/173

Implementation: Analysis on LLVM Level

@ So far: assume that LLVM bitcode is essentially “the same” as C code
@ But: LLVM bitcode is much closer to assembly than C

@ Let's look at the details of the actual analysis

64/173

|IIiilIE!HIIHl%IlIII

original program is memory-safe and terminating

.y,
-
L]
~
~

-
e=="
-
-
-

. s
~

e
~

prove termination

Symbolic Integer
Execution) Transition
Graph System

COMPILER INFRASTRUCTURE

prove
memory
safety

synthesise

65/173

The Low-Level Virtual Machine Framework

@ LLVM used for compiler optimisation and verification

66/173

The Low-Level Virtual Machine Framework

@ LLVM used for compiler optimisation and verification

@ Close to assembly language

66/173

The Low-Level Virtual Machine Framework

@ LLVM used for compiler optimisation and verification
@ Close to assembly language

o Still structured: functions, data structures, type safety

66/173

The Low-Level Virtual Machine Framework

LLVM used for compiler optimisation and verification

Close to assembly language

Still structured: functions, data structures, type safety

Single Static Assignment (SSA)

66/173

The Low-Level Virtual Machine Framework

LLVM used for compiler optimisation and verification

Close to assembly language

Still structured: functions, data structures, type safety

Single Static Assignment (SSA)

Caveat: user-defined data structures (structs) in LLVM are still work
in progress for AProVE

66/173

From C to LLVM

Example C Program

int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;

67/173

From C to LLVM

LLVM Code (simplified)
define 132 strlen(i8* str) {

Example C Program

int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;

67/173

From C to LLVM

LLVM Code (simplified)
define 132 strlen(i8* str) {
entry:

@: c@ = load i8* str

Example C Program
int strlen(char* str) {
charx s = str;

while(*s) s++;
return s-str;

67/173

From C to LLVM

LLVM Code (simplified)
define 132 strlen(i8* str) {
entry:

@: c@ = load i8* str

1: cOzero = icmp eq i8 c0@, @

Example C Program

int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;

67/173

From C to LLVM

LLVM Code (simplified)
define 132 strlen(i8* str) {
entry:

@: c@ = load i8* str

1: cOzero = icmp eq i8 c0@, @

2: br i1 c@zero, label done, label loop
Example C Program

loop:
int strlen(char* str) {
charx s = str;
while(*s) s++;
return s-str;
} done:
}

67/173

From C to LLVM

LLVM Code (simplified)
define 132 strlen(i8* str) {
entry:

@: c@ = load i8* str

1: cOzero = icmp eq i8 c0@, @

2: br i1 c@zero, label done, label loop
Example C Program
loop:

0: olds = phi i8x [str,entry],[s,loop]
int strlen(char* str) {

charx s = str;
while(*s) s++;

return s-str;
} done:

67/173

From C to LLVM

LLVM Code (simplified)
define 132 strlen(i8* str) {
entry:

@: c@ = load i8* str

1: cOzero = icmp eq i8 c0@, @

2: br i1 c@zero, label done, label loop
Example C Program
loop:

0: olds = phi i8x [str,entry],[s,loop]
int strlen(char* str) { 1: s = getelementptr i8x olds, 132 1
charx s = str;
while(*s) s++;
return s-str;
} done:

67/173

From C to LLVM

LLVM Code (simplified)
define 132 strlen(i8* str) {
entry:

@: c@ = load i8* str

1: cOzero = icmp eq i8 c0@, @

2: br i1 c@zero, label done, label loop
Example C Program

loop:
0: olds = phi i8x [str,entry],[s,loop]
int strlen(char* str) { 1: s = getelementptr i8x olds, 132 1
char* s = str; 2: ¢ = load i8% s

while(*s) s++;

return s-str;
} done:

67/173

From C to LLVM

LLVM Code (simplified)
define 132 strlen(i8* str) {
entry:

@: c@ = load i8* str

1: cOzero = icmp eq i8 c0@, @

2: br i1 c@zero, label done, label loop
Example C Program
loop:

0: olds = phi i8x [str,entry],[s,loop]
int strlen(char* str) { 1: s = getelementptr i8x olds, 132 1
char* s = str; 2: ¢ = load i8% s
while(*s) s++; 3: czero = icmp eq i8 c, @
return s-str;
} done:

67/173

From C to LLVM

LLVM Code (simplified)
define 132 strlen(i8* str) {
entry:

@: c@ = load i8* str

1: cOzero = icmp eq i8 c0@, @

2: br i1 c@zero, label done, label loop
Example C Program

loop:
0: olds = phi i8x [str,entry],[s,loop]
int strlen(char* str) { 1: s = getelementptr i8x olds, 132 1
char* s = str; 2: ¢ = load i8% s
while(*s) s++; 3: czero = icmp eq i8 c, @
return s-str; 4: br i1 czero, label done, label loop
} done:
3

67/173

From C to LLVM

LLVM Code (simplified)
define 132 strlen(i8* str) {
entry:

@: c@ = load i8* str

1: cOzero = icmp eq i8 c0@, @

2: br i1 c@zero, label done, label loop
Example C Program

loop:
0: olds = phi i8x [str,entry],[s,loop]
int strlen(char* str) { 1: s = getelementptr i8x olds, 132 1
char* s = str; 2: ¢ = load i8% s
while(*s) s++; 3: czero = icmp eq i8 c, @
return s-str; 4: br i1 czero, label done, label loop
} done:

0: sfin = phi i8x [str,entry],[s,loop]
sfinint = ptrtoint i8* sfin to i32
strint = ptrtoint i8% str to i32
size = sub i32 sfinint, strint

2w N =

ret i32 size

67/173

|IIiilIE!HIIHl%IlIII

original program is memory-safe and terminating
“"_--- -......

. ~
. “a

K° .

prove termination

Symbolic Integer
Execution) Transition
Graph System

COMPILER INFRASTRUCTURE

prove
memory
safety

synthesise

68/173

From LLVM to Symbolic Execution Graph

Abstract domain:

69/173

From LLVM to Symbolic Execution Graph

Abstract domain:

@ represent system configurations as states

69/173

From LLVM to Symbolic Execution Graph

Abstract domain:
@ represent system configurations as states

@ represent operations as edges

69/173

From LLVM to Symbolic Execution Graph

Abstract domain:
@ represent system configurations as states
@ represent operations as edges

@ abstract states stand for sets of configurations

69/173

From LLVM to Symbolic Execution Graph

Abstract domain:
@ represent system configurations as states
@ represent operations as edges

@ abstract states stand for sets of configurations

Initial State:

69/173

From LLVM to Symbolic Execution Graph

Abstract domain:
@ represent system configurations as states
@ represent operations as edges
@ abstract states stand for sets of configurations

e program position pos: previous block, current block, line number

Initial State:

69/173

From LLVM to Symbolic Execution Graph

Abstract domain:
@ represent system configurations as states
@ represent operations as edges
@ abstract states stand for sets of configurations

e program position pos: previous block, current block, line number

Initial State:
pos = (g,entry,0)

69/173

From LLVM to Symbolic Execution Graph

Abstract domain:
@ represent system configurations as states
@ represent operations as edges
@ abstract states stand for sets of configurations

e program position pos: previous block, current block, line number

o allocation list AL Initial State:
pos = (g,entry,0)

69/173

From LLVM to Symbolic Execution Graph

Abstract domain:
@ represent system configurations as states
@ represent operations as edges
@ abstract states stand for sets of configurations

e program position pos: previous block, current block, line number

o allocation list AL Initial State:
pos = (g,entry,0)
AL = {alloc(str,uenq)}

69/173

From LLVM to Symbolic Execution Graph

Abstract domain:
@ represent system configurations as states
@ represent operations as edges
@ abstract states stand for sets of configurations

e program position pos: previous block, current block, line number

o allocation list AL Initial State:
pos = (g,entry, 0)
AL = {alloc(str,uenq)}

e points to map PT

69/173

From LLVM to Symbolic Execution Graph

Abstract domain:
@ represent system configurations as