Parallel Parsing
Processes Revisited

Michael Spivey
University of Oxford

=] Department of
il COMPUTER

UNIVERSITY OF

ae) i) OCIENCE

Copyright © 2018 J. M. Spivey

http://tinyurl.com/geomlife
http://tinyurl.com/geomlife

Thompson [1968]

Compiles regexps into NFAs represented as machine
code (for the IBM 7094).

Matching machine reads the input one character at a
time, and dynamically maintains two lists of
subroutine calls:

o« CLIST - alternatives for the current character
« NLIST - alternatives for the next character.

[Makes a great student project!]

[1] Ken Thompson, "Programming Techniques: Regular expression search
algorithm," CACM 11, 6 (June 1968), pp. 419--22.

(FeS%) UNIVERSITY OF Department of Michael Spivey
O CUOINDE ~)\/\PUTER SCIENCE 2

Translating regexps

For c: if char = c then add next to NLIST; goto FAIL
For €: if char = \ then goto SUCCESS else FAIL

For Eq E>: code for Eq; code for E;

For E1 | E2: add E; to CLIST; code for E;

For E1*: add { Eq; goto E1* } to CLIST; goto next

FAIL:
if CLIST =[] then pop and goto first element
else { advance char; CLIST = NLIST; NLIST=1[1]}

\y UNIVERSITY OF Department of Michael Spivey
A GG)\\PUTER SCIENCE 3

Thompson lite

match ::
Regexp — [Regexp] — [Regexp] — String — Bool

match (Seq (Lit c) ex) clist nlist s | (head s == ¢) =
resume clist (ex : nlist) s

match (Seq (Alt eq e3) ex) clist nlist s =
match (Seq e1 ex) (Seq e ek : clist) nlist s

resume (c:clist) nlists = match c clist nlist s

resume [] (n:nlist) s = match n nlist [] (tail s)

\y UNIVERSITY OF Department of Michael Spivey
A COMPUTER SCIENCE 4

Parser combinators

expr =
factor @
(do a « factor; eat '+'; b « expr; return (Plus a b))

factor =
(do x « ident; return (Var x)) @
(do eat'('; a « expr; eat')'’; return a)

eat x = (do y « scan; if x ==y then return () else fail)

« (Can be implemented with state and backtracking

e Or...

\y UNIVERSITY OF Department of Michael Spivey
ALY O\ \PUTER SCIENCE 5

Claessen [2004]

'Parallel’ parser combinators

data Parser a =

Scan (Token — Parser Q)
Result a (Parser a)

Fail

« A parser can: say it wants to know the next token
« or produce aresult (and provide alternatives)

» orjust fail.

[2] Koen Claessen, "Functional Pearl: Parallel parsing processes," JFP 14, 6 (2004),
pp. 741--57.

(e UNIVERSITY OF Department of Michael Spivey
== O)QAOINBE ()\\PUTER SCIENCE 6

Alternation — the vital idea

Fail ® g=q

(Resultxp’) ® g = Resultx (p' ® q)

(Scan g) ® Fail = Scan g

(Scan g) ® (Result x @) = Result x ((Scan g) ® g’)
(Scan g) @ (Scan h) =S5can Ax = gx ® hx)

« wedelay p ® g from looking at the next token
until both p and g are ready for it.

\y UNIVERSITY OF Department of Michael Spivey
S ASUONION O\ PUTER SCIENCE 7

It's a monad and more

return x = Result x fail

(Result x p) »=1f = Result x (p »=f)
(Scang) >»=f = Scan (Ax = gx >»>=f)
Fail »>=f = Fail

scan = Scan return
fail = Fail

« These are the operations (MonadPlus plus scan)
needed to write parsers.

\y UNIVERSITY OF Department of Michael Spivey
RIS OINDE COMPUTER SCIENCE 8

Driving a parser

The main program marries the parser state with the
stream of input tokens, looking for a result that
consumes the whole input.

parse :: Parser a = [Token] = a

parse (Scang) [] = error "unexpected EOF"

(
parse (Scang) (t:ts) = parse (gt) ts
parse (Resultxp) [] = X

parse (Resultx p) ts = parsep ts

parse Fail = error "syntax error"

« easy to track the latest token for error messages.

\y UNIVERSITY OF Department of Michael Spivey
RSSO DR OMPUTER SCIENCE 9

Benefits of PPP

No backtracking, so cleans up non-viable
alternatives early — simple grammars are usable
without transformation or annotation.

Reads the input token by token, so can be made
interactive without relying on lazy streames.
Example: prompting for each line of input.

Will report first token that is not part of any legal
sentence: one error message for free.

Fast enough to use in practice.

\y UNIVERSITY OF Department of Michael Spivey
RSSO DR OMPUTER SCIENCE 10

Using continuations

An alternative implementation: each parser take one,
two, three continuations.

type KParser a = VCont a = CCont = NCont — Answer
type VCont a=a — CCont = NCont = Answer
type CCont = NCont = Answer
type NCont = Token = CCont = Answer
type Answer = [Token] — Value
« newtype is needed all over the place.

\y UNIVERSITY OF Department of Michael Spivey
RIS OINDE COMPUTER SCIENCE 11

A slew of one-liners

The same five operations now have direct definitions.
returnxk = kx

(p>»>=fk =pAx—fxk)

fail k ck = ck

(p@®qg)kck = (pk - gk) ck = pk (Ank = g kcknk)
scankcknk = ck (At = nkt - kt)

\y UNIVERSITY OF Department of Michael Spivey
SN COMPUTER SCIENCE 12

Where did that come from?

Define rep :: Parser a = KParser a by
rep (Scang) kcknk = ck (ANt = nkt - kt)
rep (Result x p) k ck nk = kx (rep p k ck) nk
rep Fail k ck nk = ck nk

Then all else follows!

M_u UNIVERSITY OF Department of Michael Spivey
SN COMPUTER SCIENCE 13

Deriving bind and plus

In particular, we can prove inductively that
rep (p »>=1fk = repp (\x = rep (f x) k)
and

rep (p ®q) kck = reppk (rep g k ck)

These justify the new definitions of »=and .

M_u UNIVERSITY OF Department of
x =2 H0) €308 ~()\\PUTER SCIENCE

Michael Spivey
14

Driving the new parser

kparse :: KParser Value — [Token] — Value

kparse p = p ko cko nko
where
koxcknkts =
if ts==[] then xelse cknkts

ckonk[] = error "unexpected EOF"
cko nk (t:ts) = nktckots

nko t ck = ck nkg

M_u UNIVERSITY OF Department of
x =2 H0) €308 ~()\\PUTER SCIENCE

Michael Spivey
15

Defunctionalising

"Looking for the lambdas’, we find that NConts are
created only by the expression

(Nt = nkt- kt)

(with k and nk as free variables) and CConts only by the
expression

(A nk — g k ck nk)
and by promoting NConts to CConts when scanning.

We can represent both by lists of (ordinary)
continuations, with a suitable resume function.

\y UNIVERSITY OF Department of Michael Spivey
A GG)\\PUTER SCIENCE 16

Concrete continuations

scan k clist nlistts =
resume clist (k (head ts) : nlist)

fail k clist nlist = resume clist nlist
(p @ g) kclistnlist = p k(g k : clist) nlist

resume (k : clist) nlist ts = k clist nlist ts
resume [1 nlist[] = error "unexpected EOF"
resume [] nlistts = resume (reverse nlist) [] (tail ts)

e The reverse is needed because sometimes we care
about the order of results.

\y UNIVERSITY OF Department of Michael Spivey
RIS OINDE COMPUTER SCIENCE 17

Focussing ...

type KParser a =
VCont a — [Cont] — [Cont] — [Token] — Value

scan k clist nlistts =
resume clist (k (head ts) : nlist) ts

(p ® qg) kclistnlist =
p k(g k: clist) nlist

resume (k : clist) nlistts = k clist nlist ts

resume [] (k: nlist) ts = k nlist [] (tail ts)

\y UNIVERSITY OF Department of Michael Spivey
RSSO DR OMPUTER SCIENCE 18

Comparing ...

match ::
Regexp — [Regexp] — [Regexp] — String — Bool

match (Seq (Lit c) ex) clist nlist s | (head s == ¢) =
resume clist (ex : nlist) s

match (Seq (Alt eq e3) ex) clist nlist s =
match (Seq e1 ex) (Seq e ek : clist) nlist s

resume (c: clist) nlists = match c clist nlist s

resume|[](n:nlist) s = match n nlist [] (tail s)

\y UNIVERSITY OF Department of Michael Spivey
RSSO DR OMPUTER SCIENCE 19

Remarks

Discovering this implementation seems to depend on
the insight that a normal form for the context of a
parser is

Scan (p1® ... op) ®@(?>»=9) ® (gm® ... ® q1)

-sothatps, ..., pkand gand gy, ..., gm correspond to
nlist and k and clist respectively.

Can this insight (in general) replaced by a formal
calculation? Why does the (more complicated) free
monad implementation seem easier to find?

\y UNIVERSITY OF Department of Michael Spivey
RSSO DR OMPUTER SCIENCE 20

A zoo of control constructs

Similar remarks apply to:

« Backtracking: [Spivey & Seres; Hinze; Wand &
Vaillancourt].

« Coroutine pipelines: [ICFP'17].

e ...and now parser combinators.

M_u UNIVERSITY OF Department of Michael Spivey
RIS OINDE COMPUTER SCIENCE 21

Some dreams

A symbolic reasoning tool that makes higher-
order calculations easier (like Mathematica or
Alpha), not harder (like any verification tool you
know).

An automated defunctionaliser that helps us to
control and visualise the results.

(FeS%) UNIVERSITY OF Department of Michael Spivey
O CUOINDE ~)\/\PUTER SCIENCE 22

