
Copyright © 2018 J. M. Spivey

Department of
COMPUTER
SCIENCE

Parallel Parsing
Processes Revisited

Michael Spivey
University of Oxford

1

http://tinyurl.com/geomlife
http://tinyurl.com/geomlife

Department of
COMPUTER SCIENCE

Michael Spivey

Thompson [1968]
Compiles regexps into NFAs represented as machine
code (for the IBM 7094).

Matching machine reads the input one character at a
time, and dynamically maintains two lists of
subroutine calls:

• CLIST – alternatives for the current character

• NLIST – alternatives for the next character.

[Makes a great student project!]
[1] Ken Thompson, "Programming Techniques: Regular expression search
algorithm," CACM 11, 6 (June 1968), pp. 419--22.

2

Department of
COMPUTER SCIENCE

Michael Spivey

Translating regexps
• For c: if char = c then add next to NLIST; goto FAIL

• For ε: if char = Λ then goto SUCCESS else FAIL

• For E1 E2: code for E1; code for E2

• For E1 | E2: add E2 to CLIST; code for E1

• For E1*: add { E1; goto E1* } to CLIST; goto next

FAIL:
 if CLIST != [] then pop and goto first element
 else { advance char; CLIST = NLIST; NLIST = [] }

3

Department of
COMPUTER SCIENCE

Michael Spivey

Thompson lite
match ::
 Regexp → [Regexp] → [Regexp] → String → Bool

match (Seq (Lit c) ek) clist nlist s | (head s == c) =
 resume clist (ek : nlist) s

match (Seq (Alt e1 e2) ek) clist nlist s =
 match (Seq e1 ek) (Seq e2 ek : clist) nlist s

…

resume (c:clist) nlist s = match c clist nlist s

resume [] (n:nlist) s = match n nlist [] (tail s)

4

Department of
COMPUTER SCIENCE

Michael Spivey

Parser combinators
expr =
 factor ⊕
 (do a ← factor; eat '+'; b ← expr; return (Plus a b))

factor =
 (do x ← ident; return (Var x)) ⊕
 (do eat '('; a ← expr; eat ')'; return a)

eat x = (do y ← scan; if x == y then return () else fail)

• Can be implemented with state and backtracking

• Or …

5

Department of
COMPUTER SCIENCE

Michael Spivey

Claessen [2004]
'Parallel' parser combinators

data Parser α =
 Scan (Token → Parser α)
 | Result α (Parser α)
 | Fail

• A parser can: say it wants to know the next token

• or produce a result (and provide alternatives)

• or just fail.
[2] Koen Claessen, "Functional Pearl: Parallel parsing processes," JFP 14, 6 (2004),
pp. 741--57.

6

Department of
COMPUTER SCIENCE

Michael Spivey

Alternation – the vital idea
Fail ⊕ q = q

(Result x p') ⊕ q = Result x (p' ⊕ q)

(Scan g) ⊕ Fail = Scan g

(Scan g) ⊕ (Result x q') = Result x ((Scan g) ⊕ q')

(Scan g) ⊕ (Scan h) = Scan (λ x → g x ⊕ h x)

• we delay p ⊕ q from looking at the next token
until both p and q are ready for it.

7

Department of
COMPUTER SCIENCE

Michael Spivey

return x = Result x fail

(Result x p) ≫= f = Result x (p ≫= f)
(Scan g) ≫= f = Scan (λ x → g x ≫= f)
Fail ≫= f = Fail

scan = Scan return

fail = Fail

• These are the operations (MonadPlus plus scan)
needed to write parsers.

8

It's a monad and more

Department of
COMPUTER SCIENCE

Michael Spivey

Driving a parser
The main program marries the parser state with the
stream of input tokens, looking for a result that
consumes the whole input.

parse :: Parser α → [Token] → α

parse (Scan g) [] = error "unexpected EOF"
parse (Scan g) (t : ts) = parse (g t) ts
parse (Result x p) [] = x
parse (Result x p) ts = parse p ts
parse Fail _ = error "syntax error"

• easy to track the latest token for error messages.

9

Department of
COMPUTER SCIENCE

Michael Spivey

Benefits of PPP
• No backtracking, so cleans up non-viable

alternatives early – simple grammars are usable
without transformation or annotation.

• Reads the input token by token, so can be made
interactive without relying on lazy streams.
Example: prompting for each line of input.

• Will report first token that is not part of any legal
sentence: one error message for free.

• Fast enough to use in practice.

10

Department of
COMPUTER SCIENCE

Michael Spivey

Using continuations
An alternative implementation: each parser take one,
two, three continuations.

type KParser α = VCont α → CCont → NCont → Answer

type VCont α = α → CCont → NCont → Answer

type CCont = NCont → Answer

type NCont = Token → CCont → Answer

type Answer = [Token] → Value

• newtype is needed all over the place.

11

Department of
COMPUTER SCIENCE

Michael Spivey

A slew of one-liners
The same five operations now have direct definitions.

return x k = k x

(p ≫= f) k = p (λ x → f x k)

fail k ck = ck

(p ⊕ q) k ck = (p k ⋅ q k) ck = p k (λ nk → q k ck nk)

scan k ck nk = ck (λ t → nk t ⋅ k t)

12

Department of
COMPUTER SCIENCE

Michael Spivey

Where did that come from?
Define rep :: Parser α → KParser α by

rep (Scan g) k ck nk = ck (λ t → nk t ⋅ k t)

rep (Result x p) k ck nk = k x (rep p k ck) nk

rep Fail k ck nk = ck nk

Then all else follows!

13

Department of
COMPUTER SCIENCE

Michael Spivey

Deriving bind and plus
In particular, we can prove inductively that

rep (p ≫= f) k = rep p (λ x → rep (f x) k)

and

rep (p ⊕ q) k ck = rep p k (rep q k ck)

These justify the new definitions of ≫= and ⊕.

14

Department of
COMPUTER SCIENCE

Michael Spivey

Driving the new parser
kparse :: KParser Value → [Token] → Value

kparse p = p k0 ck0 nk0

 where
 k0 x ck nk ts =
 if ts == [] then x else ck nk ts

 ck0 nk [] = error "unexpected EOF"
 ck0 nk (t:ts) = nk t ck0 ts

 nk0 t ck = ck nk0

15

Department of
COMPUTER SCIENCE

Michael Spivey

Defunctionalising
"Looking for the lambdas", we find that NConts are
created only by the expression

 (λ t → nk t ⋅ k t)

(with k and nk as free variables) and CConts only by the
expression

 (λ nk → q k ck nk)

and by promoting NConts to CConts when scanning.

We can represent both by lists of (ordinary)
continuations, with a suitable resume function.

16

Department of
COMPUTER SCIENCE

Michael Spivey

Concrete continuations
scan k clist nlist ts =
 resume clist (k (head ts) : nlist)

fail k clist nlist = resume clist nlist

(p ⊕ q) k clist nlist = p k (q k : clist) nlist

resume (k : clist) nlist ts = k clist nlist ts
resume [] nlist [] = error "unexpected EOF"
resume [] nlist ts = resume (reverse nlist) [] (tail ts)

• The reverse is needed because sometimes we care
about the order of results.

17

Department of
COMPUTER SCIENCE

Michael Spivey

Focussing …
type KParser α =
 VCont α → [Cont] → [Cont] → [Token] → Value

scan k clist nlist ts =
 resume clist (k (head ts) : nlist) ts

(p ⊕ q) k clist nlist =
 p k (q k : clist) nlist

resume (k : clist) nlist ts = k clist nlist ts

resume [] (k : nlist) ts = k nlist [] (tail ts)

18

Department of
COMPUTER SCIENCE

Michael Spivey

Comparing …
match ::
 Regexp → [Regexp] → [Regexp] → String → Bool

match (Seq (Lit c) ek) clist nlist s | (head s == c) =
 resume clist (ek : nlist) s

match (Seq (Alt e1 e2) ek) clist nlist s =
 match (Seq e1 ek) (Seq e2 ek : clist) nlist s

resume (c : clist) nlist s = match c clist nlist s

resume [] (n : nlist) s = match n nlist [] (tail s)

19

Department of
COMPUTER SCIENCE

Michael Spivey

Remarks
Discovering this implementation seems to depend on
the insight that a normal form for the context of a
parser is

Scan (p1 ⊕ … ⊕ pk) ⊕ (? ≫= g) ⊕ (qm ⊕ … ⊕ q1)

– so that p1, …, pk and g and q1, …, qm correspond to
nlist and k and clist respectively.

Can this insight (in general) replaced by a formal
calculation? Why does the (more complicated) free
monad implementation seem easier to find?

20

Department of
COMPUTER SCIENCE

Michael Spivey

A zoo of control constructs
Similar remarks apply to:

• Backtracking: [Spivey & Seres; Hinze; Wand &
Vaillancourt].

• Coroutine pipelines: [ICFP'17].

• … and now parser combinators.

21

Department of
COMPUTER SCIENCE

Michael Spivey

Some dreams
• A symbolic reasoning tool that makes higher-

order calculations easier (like Mathematica or
Alpha), not harder (like any verification tool you
know).

• An automated defunctionaliser that helps us to
control and visualise the results.

22

