UNIVERSITY OF

OXFORD

Relational Algebra by Way of Adjunctions

Jeremy Gibbons
(Joint work with Fritz Henglein, Ralf Hinze, Nicolas Wu)
S-REPLS#10, Sep 2018

1. Overview

e relational databases in terms of certain monads (sets, bags, lists)

e monads support comprehensions, providing a query notation:

customer :name; invoice:amount
j customer customers;invoice invoices;
customer:cid Invoice:customer; invoice:due < today

which are the essence of SQL queries:

SELECT name; amount
FROM customers; invoices
WHERE cid customer AND due < today

e monads have nice mathematical foundations via adjunctions
e monad structure explains aggregation, selection, projection

e less obvious how to explain join

2. Galois connections

Relating monotonic functions between two ordered sets:

A:; < ? B:wv meansf b<a (O bvwvga

\/

For example,

inj K
2 PR
R; r ? Z; 7 L < ? 7; <
~_ 7 ~_ 7
floor k

“Change of coordinates” can sometimes simplify reasoning.
Egrhsgivesn k<m O n<m Kk, and multiplication is easier to reason about
than rounding division.

3. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C; D, and functorsL:D ¥ Cand R:C ¥ D, adjunction

C ? D means b-c:CLX:Y D X:RY :d-e

The functional programmer’s favourite example is given by currying:

PR
Set ? Set with curry :Set X P;Y ~ Set X;YP :uncurry

~_ 7

- P

hence definitions and properties of apply uncurry idye :YP P 1Y,

4. Free commutative monoids

Free/forgetful adjunction:

Free

RN
CMon ~? Set with b-c : CMon Free A; M: :¢
\u/ > Set A;U M: e - d-e

Unit and counit:

single A DbidreeaC:A T U Free A
(M) didye :Free UM I M --for M M; ;e

whence, for h:Free A * Mandf:A T UM M,
h (M) Freef QO Uh singleA f

ie 1-to-1 correspondence between (i) homomorphisms from the
free commutative monoid (bags) and (ii) their behaviour on singletons.

5. Aggregation

Aggregations are bag homomorphisms:

aggregation | monoid action on singletons
count N; O; laj - 1
sum R; O; af , a
max Z[f 1g; 1;max laf , a
all B; True; ™ lal , a
Projection ; Bagi is a homomorphism—just functorial action.

Selection | is also a homomorphism, to bags, with action

guard: AT B ¥ BagA ¥ BagA
guard pa ifp athen]afelse ;

Projection and selection laws follow from homomorphism laws.

6. Monads

Finite bags form a monad Bag; union;single with

Bag U Free
union : Bag Bag A 1 Bag A
single : A ¥ Bag A

which justifies the use of comprehension notation
fabja x;b gaf

and its equational properties.
In fact, any adjunction La Ryieldsamonad T; ; on D, where
T R L

A RdidaeL: T TA T TA
A bidac AT TA

7. Maps

Database indexes are essentially maps Map KV VX, Maps - K from K form a
monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents follow from this adjunction (and from those for products
and coproducts):

Map O V 71

Map 1V Y

Map K;i; Ky V 2 MapKi; V. Map Ky V

Map K; Ky V 7 Map K; Map Ko V

Map K 1 -1

Map K Vi Vo 7 MapKV; MapK Vs:merge

8. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

J

/\
Rel ? Set where Jembeds, and ER: A ¥ SetB forR: A B.

~_ 7

E

Moreover, the correspondence remains valid for bags:
index:Bag K V 7~ MapK BagV
Together, index and merge give efficient relational joins:

Xt gy flatten Map K cp merge groupBy f x;groupBy gy

groupBy:EqQK) V ' K YT BagV Y Map K BagV
flatten :Map K BagV Y BagV

expressible also via comprehensive comprehensions.

9. FiIniteness

A catch:
e being finite is important, for aggregations
e begin a monad is important, for comprehensions
e finite bags form a monad (as above)
e maps form a monad

e finite maps do not form a monad: the unit
a k Ta :AY@MapKA

generally yields an infinite map.

How to reconcile finiteness of maps with being a monad?

10. Graded monads

Grading (indexing, parametrizing) a monad by a monoid:
an indexed family of endofunctors that collectively behave like a monad.

For monoid M M; ;e ,the M-graded monad T; ; s
a family T, of endofunctors indexed by m: M, with

X:Tm Th X T Th X
X: X TT.X

satisfying the usual laws. These too arise from adjunctions
(even though T itself is not an endofunctor!).
For example, think of finite vectors, indexed by length.

We use the monoid K ; ;hi of finite sequences of finite key types K.

Relational Algebra by Way of Adjunctions

11. Query transformations

These can now all be shown by equational reasoning:

i i --wheni j i

P i p -whenp 1 p

(M) Bagf (M) Bag f i

(M) Bagf o (M) Bag a Y ifpathenf aelsece

Xt gy Bagswap yg X

Xf gY gsnd hZ Bagassoc Xt gft Yg hZ

i] Xf gV iXfo g jy —whenfa gbQf’ia
p Xt gV gXf g rY -—whenp ab qga”™rb

for monoid M M: :e.

g jb

12

12. Summary

e monad comprehensions for database queries

e structure arising from adjunctions

e eguivalences from universal properties

e fitting in relational joins, via indexing and graded monads
e calculating query transformations

Paper to appear at ICFP 2018.

Thanks to EPSRC Unifying Theories of Generic Programming for funding.

