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1. Overview

• relational databases in terms of certain monads (sets, bags, lists)

• monads support comprehensions, providing a query notation:

� �customer:name; invoice:amount�
j customer  customers; invoice invoices;

customer:cid �� invoice:customer; invoice:due 6 today �

which are the essence of SQL queries:

SELECT name;amount
FROM customers; invoices
WHERE cid � customer AND due 6 today

• monads have nice mathematical foundations via adjunctions

• monad structure explains aggregation, selection, projection

• less obvious how to explain join
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2. Galois connections

Relating monotonic functions between two ordered sets:

�A;6�

g

99? �B;v�

f

yy
means f b 6 a () b v g a

For example,

�R;�R�

floor

99? �Z;�Z�

inj

yy
�Z;6�

�k

99? �Z;6�

�k

yy

“Change of coordinates” can sometimes simplify reasoning.
Eg rhs gives n� k 6 m() n 6 m� k, and multiplication is easier to reason about
than rounding division.
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3. Adjunctions

Adjunctions are the categorical generalisation of Galois connections.

Given categories C;D, and functors L : D! C and R : C! D, adjunction

C

R

??? D

L

~~
means� b-c : C�L X ;Y � ’ D�X ;R Y � : d-e

The functional programmer’s favourite example is given by currying:

Set

�-�P

<<? Set

-�P

||
with curry : Set�X � P;Y � ’ Set�X ;Y P� : uncurry

hence definitions and properties of apply � uncurry idY P : Y P � P ! Y .
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4. Free commutative monoids

Free/forgetful adjunction:

CMon

U

;;? Set

Free

zz
with b-c : CMon�Free A; �M ;
; ε��

’ Set�A;U �M ;
; ε�� : d-e

Unit and counit:

single A � bidFree Ac : A! U �Free A�
LMM � didMe : Free �U M�! M -- for M � �M ;
; ε�

whence, for h : Free A! M and f : A! U M � M ,

h � LMM � Free f () U h � single A � f

ie 1-to-1 correspondence between (i) homomorphisms from the
free commutative monoid (bags) and (ii) their behaviour on singletons.
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5. Aggregation

Aggregations are bag homomorphisms:

aggregation monoid action on singletons

count �N;0;�� *a+ , 1

sum �R;0;�� *a+ , a

max �Z[ f�1g;�1;max� *a+ , a

all �B;True;^� *a+ , a

Projection �i � Bag i is a homomorphism—just functorial action.
Selection �p is also a homomorphism, to bags, with action

guard : �A! B�! Bag A! Bag A

guard p a � if p a then *a+ else;

Projection and selection laws follow from homomorphism laws.
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6. Monads

Finite bags form a monad �Bag;union; single� with

Bag � U � Free

union : Bag �Bag A�! Bag A

single : A! Bag A

which justifies the use of comprehension notation

*f a b j a  x;b  g a+

and its equational properties.

In fact, any adjunction L a R yields a monad �T; �; �� on D, where

C

R

??? D

L

~~
T � R � L

� A � R didAe L : T �T A�! T A

� A � bidAc : A! T A
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7. Maps

Database indexes are essentially maps Map K V � V K . Maps �-�K from K form a
monad (the Reader monad in Haskell), so arise from an adjunction.

The laws of exponents follow from this adjunction (and from those for products
and coproducts):

Map 0 V ’ 1

Map 1 V ’ V

Map �K1 � K2� V ’ Map K1 V �Map K2 V

Map �K1 � K2� V ’ Map K1 �Map K2 V �
Map K 1 ’ 1

Map K �V1 � V2� ’ Map K V1 �Map K V2 : merge
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8. Indexing

Relations are in 1-to-1 correspondence with set-valued functions:

Rel

E

<<? Set

J

||
where J embeds, and E R : A! Set B for R : A � B.

Moreover, the correspondence remains valid for bags:

index : Bag �K � V � ’ Map K �Bag V �

Together, index and merge give efficient relational joins:

x fög y � flatten �Map K cp �merge �groupBy f x;groupBy g y���

groupBy : Eq K ) �V ! K�! Bag V ! Map K �Bag V �
flatten : Map K �Bag V �! Bag V

expressible also via comprehensive comprehensions.
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9. Finiteness

A catch:

• being finite is important, for aggregations

• begin a monad is important, for comprehensions

• finite bags form a monad (as above)

• maps form a monad

• finite maps do not form a monad: the unit

� a � ��k ! a� : A! Map K A

generally yields an infinite map.

How to reconcile finiteness of maps with being a monad?
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10. Graded monads

Grading (indexing, parametrizing) a monad by a monoid:
an indexed family of endofunctors that collectively behave like a monad.

For monoid M � �M ;
; ε�, the M-graded monad �T; �; �� is
a family Tm of endofunctors indexed by m : M , with

� X : Tm �Tn X �! Tm
n X

� X : X ! Tε X

satisfying the usual laws. These too arise from adjunctions
(even though T itself is not an endofunctor!).

For example, think of finite vectors, indexed by length.

We use the monoid �K�;��; h i� of finite sequences of finite key types K.
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11. Query transformations

These can now all be shown by equational reasoning:

�i ��j � �i -- when i � j � i

�p ��i � �i � �p -- when p � i � p

LMM � Bag f ��i � LMM � Bag �f � i�
LMM � Bag f � �p � LMM � Bag ��a ! if p a then f a else ε�
x fög y � Bag swap �y göf x�
�x fög y� �g�snd�öh z � Bag assoc �x fö�g�fst� �y göh z��
�i�j �x fög y� � �i x f 0ög0 �j y -- when f a � g b () f 0 �i a� � g0 �j b�
�p �x fög y� � �q x fög �r y -- when p �a;b� � q a ^ r b

for monoid M � �M ;
; ε�.
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12. Summary

• monad comprehensions for database queries

• structure arising from adjunctions

• equivalences from universal properties

• fitting in relational joins, via indexing and graded monads

• calculating query transformations

Paper to appear at ICFP 2018.

Thanks to EPSRC Unifying Theories of Generic Programming for funding.


