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Part I

Introduction



Pointer Analysis

Answers the following questions for indirect accesses:

Which data is read? x = ∗y

Which data is written? ∗x = y

Which procedure is called? p() or x → f ()

Computationally intensive analyses are ineffective with imprecise points-to
analysis, e.g., model checking, interprocedural analyses
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Pointer Analysis: Precision versus Scalability

Ideally, an analysis should be

Sound

Precise

Scalable
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Pointer Analysis: Precision versus Scalability

Ideally, an analysis should be

Sound

Precise

Scalable

The state of the art
points-to analyses
say that precision
and scalability do

not go hand-in-hand

Several
approximations

trade-off
precision for
scalability
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Pointer Analysis: Precision versus Scalability

Ideally, an analysis should be

Sound

Precise

Scalable

Main factors enhancing the precision of an analysis

Flow sensitivity

Context sensitivity
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Flow Sensitivity Vs. Flow Insensitivity

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Flow Sensitive

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

Flow Insensitive
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Flow Sensitivity Vs. Flow Insensitivity

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Flow Sensitive

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

Flow Insensitive

Assumption: Statements can be executed in

any order
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Flow Sensitivity Vs. Flow Insensitivity

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Flow Sensitive

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

Flow Insensitive

Arbitrary compositions of flow functions in any order

⇒ Flow insensitivity
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Context Sensitivity Vs. Context Insensitivity

Startr

Endr

Starts

a = &b

c = &e

Call r

z = c

Startt

c = &d

Call r

Endt

fr
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The Goal of My Ph.D. Work

Most approaches
begin with a

scalable method
and try to increase

the precision
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The Goal of My Ph.D. Work

Most approaches
begin with a

scalable method
and try to increase

the precision

My approach
begins with a
precise method

and tries to increase
the scalability

Improving the scalability of pointer analysis without losing precision
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The Goal of My Ph.D. Work

Improving the scalability of pointer analysis without losing precision

GPG-based approach hinges on the following observations:

Flow- and context-sensitive points-to information is small and sparse even
for large programs

The real killer of scalability in program analysis is not the amount of data
that an analysis computes but the amount of control flow that the data may
be subjected to in search of precision.

It is the control flow that has the effect of introducing an exponential
multiplier in the size of the data

If control flow can be minimized carefully, there is a good chance of scaling
a program analysis without compromising on precision
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Top-down Vs. Bottom-up Interprocedural Analysis

Top-down Analysis for Available Expressions Analysis

Startp Startp

a ∗ b

Call q

Endp Endp

Startq Startq

a = ...

b + c

Endq Endq

Startr Startr

c ∗ d

Call q

Endr Endr
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Top-down Vs. Bottom-up Interprocedural Analysis

Top-down Analysis for Available Expressions Analysis

Procedure q

needs to be
processed

multiple times

Startp Startp

a ∗ b

Call q

Endp Endp

Startq Startq

a = ...

b + c

Endq Endq

Startr Startr

c ∗ d

Call q

Endr Endr

Expression b + c is available in procedure p

Expression a ∗ b is not available in procedure p
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Top-down Vs. Bottom-up Interprocedural Analysis

Top-down Analysis for Available Expressions AnalysisBottom-Up Analysis for Available Expressions Analysis

Startp Startp

a ∗ b

Call q

Endp Endp

Startq Startq

a = ...

b + c

Endq Endq

Startr Startr

c ∗ d

Call q

Endr Endr
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Top-down Vs. Bottom-up Interprocedural Analysis

Top-down Analysis for Available Expressions AnalysisBottom-Up Analysis for Available Expressions Analysis

Call is
replaced by
procedure
summary

Startp Startp

a ∗ b

Gen:b + c

Kill:a ∗ b

Endp Endp

Startq Startq

a = ...

b + c

Endq Endq

Startr Startr

c ∗ d

Gen:b + c

Kill:a ∗ b

Endr Endr

Using procedure summary of g at call sites
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Top-down Analysis for Available Expressions AnalysisBottom-Up Analysis for Available Expressions Analysis

Call is
replaced by
procedure
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Startp Startp

a ∗ b

Gen:b + c

Kill:a ∗ b

Endp Endp

Startq Startq

a = ...

b + c

Endq Endq

Startr Startr

c ∗ d

Gen:b + c

Kill:a ∗ b

Endr Endr

Expression b + c is available in procedure p

Expression a ∗ b is not available in procedure p
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Top-down Vs. Bottom-up Interprocedural Analysis

Top-down Analysis for Available Expressions AnalysisBottom-Up Analysis for Available Expressions Analysis

Startp Startp

a ∗ b

Gen:b + c

Kill:a ∗ b

Endp Endp

Startq Startq

a = ...

b + c

Endq Endq

Startr Startr

c ∗ d

Gen:b + c

Kill:a ∗ b

Endr Endr

A good procedure summary should be

Precise

Compact

Amenable to efficient application

Reusable
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Interprocedural Pointer Analysis

Interprocedural Analysis

Top-down Approaches

over the
call graph

Bottom-up Approaches

Pros:
Caller’s information
available to callee

Cons:
Procedure is analyzed
multiple times

Reusable procedure summary
is constructed

Problems representing indirect
accesses of pointees
defined in callers
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Interprocedural Analysis

Top-down Approaches

over the
call graph

Bottom-up Approaches

Pros:
Caller’s information
available to callee

Cons:
Procedure is analyzed
multiple times

Reusable procedure summary
is constructed

Problems representing indirect
accesses of pointees
defined in callers

We focus on bottom-up approaches and propose a compact
representation of procedure summary for pointer analysis
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Interprocedural Pointer Analysis

Interprocedural Analysis

Top-down Approaches

over the
call graph

Bottom-up Approaches

Pros:
Caller’s information
available to callee

Cons:
Procedure is analyzed
multiple times

Reusable procedure summary
is constructed

Problems representing indirect
accesses of pointees
defined in callers

We focus on bottom-up approaches and propose a compact
representation of procedure summary for pointer analysis

Our language model is C. In this presentation,
we focus only on pointers to scalars
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Summarizing a Procedure for Points-to Analysis

A flow-sensitive analysis requires control flow to be recorded between
memory updates that share data dependence
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Summarizing a Procedure for Points-to Analysis

A flow-sensitive analysis requires control flow to be recorded between
memory updates that share data dependence

1. x = &a;
2. y = x ;

Data dependence exists ⇒

Can be eliminated and the

Control flow between the updates would be redundant
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Summarizing a Procedure for Points-to Analysis

A flow-sensitive analysis requires control flow to be recorded between
memory updates that share data dependence

1. x = &a;
2. y = x ;

⇓

x = &a;
y = &a;

Data dependence exists ⇒

Can be eliminated and the

Control flow between the updates would be redundant
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Summarizing a Procedure for Points-to Analysis

A flow-sensitive analysis requires control flow to be recorded between
memory updates that share data dependence

1. x = &a;
2. y = &b;
3. x = &b;

Data dependence exists ⇒

Can be eliminated and the

Control flow between the updates would be redundant

Data dependence does not exist ⇒

Redundant memory updates can be eliminated
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Summarizing a Procedure for Points-to Analysis

A flow-sensitive analysis requires control flow to be recorded between
memory updates that share data dependence

1. x = &a;
2. y = &b;
3. x = &b;

⇓

y = &b;
x = &b;

Data dependence exists ⇒

Can be eliminated and the

Control flow between the updates would be redundant

Data dependence does not exist ⇒

Redundant memory updates can be eliminated
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Summarizing a Procedure for Points-to Analysis

A flow-sensitive analysis requires control flow to be recorded between
memory updates that share data dependence

1. y = &b;
2. ∗x = &a;

Data dependence exists ⇒

Can be eliminated and the

Control flow between the updates would be redundant

Data dependence does not exist ⇒

Redundant memory updates can be eliminated

Data dependence is unknown ⇒

More information is required

Available when inlined at call sites
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Summarizing a Procedure for Points-to Analysis

A flow-sensitive analysis requires control flow to be recorded between
memory updates that share data dependence

1. y = &b;
2. ∗x = &a;

Data dependence exists ⇒

Can be eliminated and the

Control flow between the updates would be redundant

Data dependence does not exist ⇒

Redundant memory updates can be eliminated

Data dependence is unknown ⇒

More information is required

Available when inlined at call sites

◮ Control flow between the updates required

◮ Some accesses of pointees have definitions in the callers
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Summarizing a Procedure for Points-to Analysis

A flow-sensitive analysis requires control flow to be recorded between
memory updates that share data dependence

1. y = &b;
2. ∗x = &a;
3. z = y ;

Data dependence exists ⇒

Can be eliminated and the

Control flow between the updates would be redundant

Data dependence does not exist ⇒

Redundant memory updates can be eliminated

Data dependence is unknown ⇒

More information is required

Available when inlined at call sites

◮ Control flow between the updates required

◮ Some accesses of pointees have definitions in the callers

◮ Some optimizations need to be postponed
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Memory and Memory Transformer

a

Memory in absence
of pointers

b

c

x

Memory in presence
of pointers

y

z

x

Memory Transformer

φ1 a
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Memory and Memory Transformer

a

Memory in absence
of pointers

b

c

x

Memory in presence
of pointers

y

z

x

Memory Transformer

φ1 a

For memory transformer,

◮ Blue edges ⇒ information generated

◮ Black edges ⇒ carried forward input information
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Memory and Memory Transformer

a

Memory in absence
of pointers

b

c

x

Memory in presence
of pointers

y

z

x

Memory Transformer

φ1 a

Input Memory

x y

z

Output Memory

x y

z

a

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 13 / 50



Part II

Motivation



Bottom-up Approaches: The State of the Art

Accesses of pointees that are defined in the callers are represented using placeholders
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e.g., x = y ⇒
x

φ1
y

φ1 is a placeholder
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Bottom-up Approaches: The State of the Art

Accesses of pointees that are defined in the callers are represented using placeholders

e.g., x = y ⇒
x

φ1
y

φ1 is a placeholder

Context based analysis [Zhang-PLDI-14, Wilson-PLDI-95]

◮ Use aliases present in the caller

◮ Construct a collection of partial transfer functions (PTFs)
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Bottom-up Approaches: The State of the Art

Accesses of pointees that are defined in the callers are represented using placeholders

e.g., x = y ⇒
x

φ1
y

φ1 is a placeholder

Context based analysis [Zhang-PLDI-14, Wilson-PLDI-95]

◮ Use aliases present in the caller

◮ Construct a collection of partial transfer functions (PTFs)

Context independent analysis [Sălcianu-VMCAI-05, Madhavan-SAS-12]

◮ No aliases assumed in the calling contexts

◮ Construct a single procedure summary

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 15 / 50



Limitation of Placeholders

Placeholders explicate the pointees defined in callers

(Low level abstraction of memory)
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Limitation of Placeholders

Placeholders explicate the pointees defined in callers

(Low level abstraction of memory)

This results in

◮ either multiple call-specific procedure summaries, or

Reuse of a placeholder
for a flow sensitive

summary flow function
depends on the aliases
in the calling contexts
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Limitation of Placeholders

Placeholders explicate the pointees defined in callers

(Low level abstraction of memory)

This results in

◮ either multiple call-specific procedure summaries, or

◮ large number of placeholders
Reuse of a placeholder
for a flow sensitive

summary flow function
depends on the aliases
in the calling contexts

In absence of aliases
from the calling contexts,
every access is represented
by a separate placeholder.
Control flow is also required

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 16 / 50



Part III

Generalized Points-to Graphs



Representing Basic Pointer Assignments using the

Generalized Points-to Updates

General Case Specific Examples

GPU x
i |j
−→s y

x

y

i−1

j

Pointer
GPU

Relevant memory graph
assignment after the assignment

s : x = &y x
1|0
−−→s y x y

s : x = y x
1|1
−−→s y x y

s : x = ∗y x
1|2
−−→s y x y

s : ∗x = y x
2|1
−−→s y x y
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Representing Basic Pointer Assignments using the

Generalized Points-to Updates

General Case Specific Examples

GPU x
i |j
−→s y

x

y

i−1

j

Pointer
GPU

Relevant memory graph
assignment after the assignment

s : x = &y x
1|0
−−→s y x y

s : x = y x
1|1
−−→s y x y

s : x = ∗y x
1|2
−−→s y x y

s : ∗x = y x
2|1
−−→s y x y

The direction in a GPU is to distinguish between what is being defined to
what is being read

For pointer analysis, case i = 0 does not exist

classical points-to update is a special case of generalized points-to update
with i = 1 and j = 0
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Representing Basic Pointer Assignments using the

Generalized Points-to Updates

General Case Specific Examples

GPU x
i |j
−→s y

x

y

i−1

j

Pointer
GPU

Relevant memory graph
assignment after the assignment

s : x = &y x
1|0
−−→s y x y

s : x = y x
1|1
−−→s y x y

s : x = ∗y x
1|2
−−→s y x y

s : ∗x = y x
2|1
−−→s y x y

The direction in a GPU is to distinguish between what is being defined to
what is being read

For pointer analysis, case i = 0 does not exist

classical points-to update is a special case of generalized points-to update
with i = 1 and j = 0

GPU represents
both memory and

memory transformer
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Classical Points-to Updates: A Low Level

Abstraction of Memory for Points-to Analysis

All variables are global

Red nodes are known named locations

x

y

f()

{

*x = y

}
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φ1 φ2
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All variables are global

Red nodes are known named locations

Blue nodes are placeholders denoting unknown locations

x

y

f()

{

*x = y

}

φ1 φ2

a

Information
from callers
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Classical Points-to Updates: A Low Level

Abstraction of Memory for Points-to Analysis

All variables are global

Red nodes are known named locations

Blue nodes are placeholders denoting unknown locations

x

y

f()

{

*x = y

}

φ1 φ2a

bb

φ2
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Classical Points-to Updates: A Low Level

Abstraction of Memory for Points-to Analysis

All variables are global

Red nodes are known named locations

Blue nodes are placeholders denoting unknown locations

x

y

f()

{

*x = y

}

φ1 φ2a b
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Generalized Points-to Updates: A High Level

Abstraction of Memory for Points-to Analysis

Blue arrows are low level view of memory in terms of classical points-to facts

x

y

f()

{

*x = y

}

φ1 φ2
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Generalized Points-to Updates: A High Level

Abstraction of Memory for Points-to Analysis

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2

2|1
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Generalized Points-to Updates: A High Level

Abstraction of Memory for Points-to Analysis

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2

2|1

a
1|0
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Generalized Points-to Updates: A High Level

Abstraction of Memory for Points-to Analysis

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts
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y
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}

φ1 φ2
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a
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Generalized Points-to Updates: A High Level

Abstraction of Memory for Points-to Analysis

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2a
1|0

1|1
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Generalized Points-to Updates: A High Level

Abstraction of Memory for Points-to Analysis

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2a
1|0

1|1

b

1|0

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 20 / 50



Generalized Points-to Updates: A High Level

Abstraction of Memory for Points-to Analysis

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2a
1|0

1|1

b

1|0

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 20 / 50



Generalized Points-to Updates: A High Level

Abstraction of Memory for Points-to Analysis

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2a
1|0

b

1|0

1|0

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 20 / 50



Generalized Points-to Updates: A High Level

Abstraction of Memory for Points-to Analysis

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts
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This abstraction does not introduce any imprecision over the classical points-to
graph
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GPU Composition

Represented by c ◦ p; performed only when they share a common
node called the pivot
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GPU Composition

Represented by c ◦ p; performed only when they share a common
node called the pivot
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GPU Composition

Represented by c ◦ p; performed only when they share a common
node called the pivot

Reduces the indlev of c by using information from p

◮ Eliminating pivot and creating a reduced GPU r between other
two nodes by using pivot as a bridge

c ⇒ Consumer GPU, p ⇒ Producer GPU
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GPU Composition

Represented by c ◦ p; performed only when they share a common
node called the pivot

Reduces the indlev of c by using information from p

◮ Eliminating pivot and creating a reduced GPU r between other
two nodes by using pivot as a bridge

Requires the indlev s of the pivot in both the GPUs to be made same
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Represented by c ◦ p; performed only when they share a common
node called the pivot

Reduces the indlev of c by using information from p

◮ Eliminating pivot and creating a reduced GPU r between other
two nodes by using pivot as a bridge
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GPU Composition

Represented by c ◦ p; performed only when they share a common
node called the pivot

Reduces the indlev of c by using information from p

◮ Eliminating pivot and creating a reduced GPU r between other
two nodes by using pivot as a bridge

Requires the indlev s of the pivot in both the GPUs to be made same
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z = ∗x ;
x y
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Data dependence
through x

is eliminated.
Control flow

becomes redundant
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GPU Composition

Represented by c ◦ p; performed only when they share a common
node called the pivot

Reduces the indlev of c by using information from p

◮ Eliminating pivot and creating a reduced GPU r between other
two nodes by using pivot as a bridge

Requires the indlev s of the pivot in both the GPUs to be made same
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GPUs r and c are
equivalent in the
context of p
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GPU Composition

Represented by c ◦ p; performed only when they share a common
node called the pivot

Reduces the indlev of c by using information from p

◮ Eliminating pivot and creating a reduced GPU r between other
two nodes by using pivot as a bridge

Requires the indlev s of the pivot in both the GPUs to be made same
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z = ∗x ;
x y
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Strength reduction
optimization replaces

c by r
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GPU Composition

Represented by c ◦ p; performed only when they share a common
node called the pivot

Reduces the indlev of c by using information from p

◮ Eliminating pivot and creating a reduced GPU r between other
two nodes by using pivot as a bridge

Requires the indlev s of the pivot in both the GPUs to be made same
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x y
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GPU reduction is a
series of GPU
compositions
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Generalized Points-to Graphs (GPGs) I

A GPG is a graph with

Nodes called as generalized points-to blocks (GPBs)

A GPB contains a set of GPUs

Edges representing control flow between GPBs
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A GPB contains a set of GPUs

Edges representing control flow between GPBs

A GPG is analogous to a CFG of a procedure
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BB

Ptr. Assgn.

First difference:

GPUs in a GPB represent parallel assignments

Assignments in a basic block are sequential
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Generalized Points-to Graphs (GPGs) I

A GPG is a graph with

Nodes called as generalized points-to blocks (GPBs)

A GPB contains a set of GPUs

Edges representing control flow between GPBs

A GPG is analogous to a CFG of a procedure

GPG

GPB

GPU

CFG

BB

Ptr. Assgn.

Second difference:

CFGs contain call basic blocks

GPGs do not have call GPBs
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Generalized Points-to Graphs (GPGs) II

Construction of Initial GPGs:

Non-pointer assignments and condition tests are removed

Each pointer assignment s is transliterated to its GPU (γs)

A separate GPB is created for assignment in the CFG

GPG edges are induced from the control flow of the CFG

GPGs contain only variables that are shared across procedures

GPGs then undergo extensive optimizations
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The Big Picture View of GPG Construction

Abstractions

GPU Operations

Data Flow Analysis

Optimizations
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GPGs Across Optimizations
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All GPGs represent sound and precise summary of
procedure f for points-to analysis

Structurally, all GPGs are different but their application
computes identical results

A series of optimizations increases the compactness of
GPGs significantly
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Factors affecting Scalability

Three issues that cause non-scalability

Modelling indirect accesses of pointees that are defined in callers
without examining their code

◮ GPUs track indirection levels that relate (transitively indirect)
pointees of a variable with those of other variables

Preserving data dependence between memory updates

◮ Maintain minimal control flow between memory updates
ensuring soundness and precision

Incorporating the effect of summaries of the callee procedures
transitively

◮ Series of GPG optimizations gives compactness that mitigate
the impact of transitive inlining
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Part IV

Implementation and Empirical Measurements



Implementation

Implemented in GCC 4.7.2 using the LTO framework

Measurements carried out on SPEC CPU2006 benchmarks on a machine
with 16 GB RAM with eight 64-bit Intel i7-4770 CPUs running at 3.40GHz

We could scale our analysis on benchmarks upto 158kLoC

Also implemented flow- and context-insensitive points-to analysis and
flow-insensitive and context-sensitive points-to analysis
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Effectiveness of GPGs

Compactness of GPGs.

Percentage of context independent information (CI)

A procedure summary is very useful if it contains high percentage of
context-independent information (GPUs with indlev “1|0”).
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Effectiveness of GPGs
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Size of GPGs Relative to the Size of Procedures in

terms of GPUs and Pointer Assignments

0 20 40 60 80 100

0

20

40

60

80

Ratio of GPUs and stmts in GPGs and CFGs

after call inlining (in terms of percentage)

Pe
rc
en
ta
ge

of
pr
oc
ed
ur
es

0 10 20 30 40

0

20

40

60

80

Ratio of GPUs and stmts in optimized GPGs and CFGs

after call inlining (in terms of percentage)

Pe
rc
en
ta
ge

of
pr
oc
ed
ur
es

lbm
mcf

libquantum
bzip2
milc
sjeng
hmmer
h264ref
gobmk

0 20 40 60 80 100

0

10

20

30

40

Ratio of GPUs in optimized GPGs and GPGs

after call inlining (in terms of percentage)

Pe
rc
en
ta
ge

of
pr
oc
ed
ur
es

lbm
mcf

libquantum
bzip2
milc
sjeng
hmmer
h264ref
gobmk

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 30 / 50



Size of GPGs Relative to the Size of Procedures in

terms of GPUs and Pointer Assignments

0 20 40 60 80 100

0

20

40

60

80

Ratio of GPUs and stmts in GPGs and CFGs

after call inlining (in terms of percentage)

Pe
rc
en
ta
ge

of
pr
oc
ed
ur
es

0 10 20 30 40

0

20

40

60

80

Ratio of GPUs and stmts in optimized GPGs and CFGs

after call inlining (in terms of percentage)

Pe
rc
en
ta
ge

of
pr
oc
ed
ur
es

lbm
mcf

libquantum
bzip2
milc
sjeng
hmmer
h264ref
gobmk

0 20 40 60 80 100

0

10

20

30

40

Ratio of GPUs in optimized GPGs and GPGs

after call inlining (in terms of percentage)

Pe
rc
en
ta
ge

of
pr
oc
ed
ur
es

lbm
mcf

libquantum
bzip2
milc
sjeng
hmmer
h264ref
gobmk

Smaller the
ratio, more is
the reduction

and more compact
are the GPGs

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 30 / 50



Size of GPGs Relative to the Size of Procedures in

terms of control flow edges
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terms of control flow edges

0 20 40 60 80 100

0

10

20

30

40

50

60

70

Ratio of control flow edges in GPGs and

CFGs after call inlining (in terms of percentage)

Pe
rc
en
ta
ge

of
pr
oc
ed
ur
es

0 20 40 60 80 100

0

20

40

60

80

100

Ratio of control flow edges in optimized GPGs and

CFGs after call inlining (in terms of percentage)

Pe
rc
en
ta
ge

of
pr
oc
ed
ur
es

lbm
mcf

libquantum
bzip2
milc
sjeng
hmmer
h264ref
gobmk

0 20 40 60 80 100

0

20

40

60

80

100

Ratio of control flow edges in optimized GPGs and
GPGs after call inlining (in terms of percentage)

Pe
rc
en
ta
ge

of
pr
oc
ed
ur
es

lbm
mcf

libquantum
bzip2
milc
sjeng
hmmer
h264ref
gobmk

Optimization of
control flow

is more compared
to the optimization

of GPUs

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 31 / 50



Data Measurements

lb
m

m
cf

li
b
q
u
an
tu
m

b
zi
p
2

m
il
c

sj
en
g

h
m
m
er

h
26
4r
ef

go
b
m
k0

1

2

15

30

50

80

Benchmark

A
vg
.
of

po
in
ts
-t
o
pa
ir
s
pe
r
pr
oc
ed
ur
e

FSCS
FICI
FICS

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 32 / 50



Data Measurements

lb
m

m
cf

li
b
q
u
an
tu
m

b
zi
p
2

m
il
c

sj
en
g

h
m
m
er

h
26
4r
ef

go
b
m
k0

1

2

15

30

50

80

Benchmark

A
vg
.
of

po
in
ts
-t
o
pa
ir
s
pe
r
pr
oc
ed
ur
e

FSCS
FICI
FICS

Average number
of points-to pairs
in FSCS is much
smaller than FICI

and FICS
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Part V

Points-to Information Computation



Points-to Information Computation

Traditional bottom-up approach consists of two phases:

a bottom-up phase for constructing procedure summaries

a top-down phase for computing points-to information using
procedure summaries
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Points-to Information Computation

Interleaving of strength reduction and call inlining ⇒

The top-down phase redundant

Points-to information is computed by bringing the definitions and
uses of a pointer to a common context

Can be achieved by pushing

◮ a use to a caller

◮ a definition to a caller

◮ both use and definition to a caller

◮ neither (if they are already in the same procedure)
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Points-to Information Computation

Startp Startp

x a
1|0

5

Call q

Endp Endp

Startq Startq

y x
1|1

2

Endq Endq

Startr Startr

Call s

Starts Starts

x b
1|0

8

Ends EndsCall q

Endr Endr
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Points-to Information Computation
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Endq EndqCall q

Endp Endp

Startr Startr Starts Starts

x b
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Ends Ends

Call s

Call q

Endr Endr
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Points-to Information Computation

Startp Startp

x a
1|0
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Startq Startq

y x
1|1

2

Endq Endqy x
1|1

2

Endp Endp

Startr Startr Starts Starts

x b
1|0

8

Ends Ends

x b
1|0

8

y x
1|1

2

Endr Endr

After call inlining
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Points-to Information Computation

Startp Startp

x a
1|0

5

Startq Startq

y x
1|1

2

Endq Endqy x
1|1

2

Endp Endp

Startr Startr Starts Starts

x b
1|0

8

Ends Ends

x b
1|0

8

Use pushed
towards definition

in a caller

y x
1|1

2

Endr Endr

Use and
definition pushed in
a common context
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Points-to Information Computation

Startp Startp

x a
1|0

5

Startq Startq

y x
1|1

2

Endq Endqy a
1|0

2

Endp Endp

Startr Startr Starts Starts

x b
1|0

8

Ends Ends

x b
1|0

8

y b
1|0

2

Endr Endr

After strength reduction optimization
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Points-to Information Computation

Startp Startp

x a
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Endq Endqy a
1|0

2
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x b
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Endr Endr

Stmt. id Points-to Information

2 {y
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−−→
2

a, y
1|0
−−→
2

b}
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Points-to Information Computation
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Stmt. id Points-to Information

2 {y
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−−→
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Context-sensitive points-to information for statement 2
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Points-to Information Computation

Startp Startp

x a
1|0

5

Startq Startq

y x
1|1

2

Endq Endqy a
1|0

2

Endp Endp

Startr Startr Starts Starts

x b
1|0

8

Ends Ends

x b
1|0

8

y b
1|0

2

Endr Endr

Stmt. id Points-to Information

2 {y
1|0
−−→
2

a, y
1|0
−−→
2

b}

Context-sensitive points-to information for statement 2

Statement ids
are unique

across procedures
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Part VI

Future Work



Future Work

It would be useful to explore the possibilities:

Restricting the GPG construction to live pointer variables for
scalability.

Studying the interactions between GPGs and the abstractions of a
client analysis, say property proving application for verification.

Extending the scope of GPG-based points-to analysis to concurrent
programs such as Java programs containing threads.
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Part VII

Thank You ,



Part VIII

Extra Slides



Part IX

Advanced Features of Languages



Handling Recursion

main

p

q

∆1
p

∆1
q

∆⊤

∆2
q

∆2
p

∆3
q

∆3
p

. . .

. . .

fixed point

∆1
p contains recursive call to q and ∆1

q contains recursive call to p.

∆2
q is constructed from ∆1

q by using ∆⊤ as a summary for call to p.

∆2
p is constructed from ∆1

p by using ∆2
q as a summary for call to q.

∆3
q is constructed from ∆2

q by using ∆2
p as a summary for call to p.

∆3
p is constructed from ∆2

p by using ∆3
q as a summary for call to q.

. . . ⇒ Fixed point.
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Handling Recursion

main

p

q

∆1
p

∆1
q

∆⊤

∆2
q

∆2
p

∆3
q

∆3
p

. . .

. . .

fixed point

∆1
p contains recursive call to q and ∆1

q contains recursive call to p.

∆2
q is constructed from ∆1

q by using ∆⊤ as a summary for call to p.

∆2
p is constructed from ∆1

p by using ∆2
q as a summary for call to q.

∆3
q is constructed from ∆2

q by using ∆2
p as a summary for call to p.

∆3
p is constructed from ∆2

p by using ∆3
q as a summary for call to q.

. . . ⇒ Fixed point.

Fixed point is reached
when the data flow values
converge, not when the
resultant GPGs converge
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Handling Recursion

main

p

q

∆1
p

∆1
q

∆⊤

∆2
q

∆2
p

∆3
q

∆3
p

. . .

. . .

fixed point

∆1
p contains recursive call to q and ∆1

q contains recursive call to p.

∆2
q is constructed from ∆1

q by using ∆⊤ as a summary for call to p.

∆2
p is constructed from ∆1

p by using ∆2
q as a summary for call to q.

∆3
q is constructed from ∆2

q by using ∆2
p as a summary for call to p.

∆3
p is constructed from ∆2

p by using ∆3
q as a summary for call to q.

. . . ⇒ Fixed point.

Fixed point is
reached in a finite
number of steps

because the lattice
is finite

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 40 / 50



Handling Function Pointers

x = &a;

afp();b

x = &a;
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Handling Function Pointers

x = &a;

afp();b

x = &a;

If pointees of fp
are f and g
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Handling Function Pointers

If pointees of fp
are f and g

x = &a;

af ();b ag();b

x = &a;

Calls to f and g could be
recursive or non-recursive

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 41 / 50



Handling Function Pointers

x = &a;

afp();b

x = &a;

If pointees of
fp are not

available locally
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Handling Function Pointers

If pointees of
fp are not

available locally

x = &a;

u fp
1|1

x = &a;

Model indirect call
as a use statement
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Handling Structures

Statement Field-sensitive
representation

Field-insensitive
representation Our choice

x = ∗y x
[∗]|[∗,∗]
−−−−→y x

1|2
−−→y x

1|2
−−→y

x = y→n x
[∗]|[∗,n]
−−−−→y x

1|2
−−→y x

[∗]|[∗,n]
−−−−→y
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Handling Structures

Statement Field-sensitive
representation

Field-insensitive
representation Our choice

x = ∗y x
[∗]|[∗,∗]
−−−−→y x

1|2
−−→y x

1|2
−−→y

x = y→n x
[∗]|[∗,n]
−−−−→y x

1|2
−−→y x

[∗]|[∗,n]
−−−−→y

x
[∗]|[∗,∗]
−−−−→y x

[∗]|[∗,n]
−−−−→y

y φ1 φ2

x

∗ ∗

∗

y xavbxavb

φ2x

∗

n

∗
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Handling Structures

Statement Field-sensitive
representation

Field-insensitive
representation Our choice

x = ∗y x
[∗]|[∗,∗]
−−−−→y x

1|2
−−→y x

1|2
−−→y

x = y→n x
[∗]|[∗,n]
−−−−→y x

1|2
−−→y x

[∗]|[∗,n]
−−−−→y

x
[∗]|[∗,∗]
−−−−→y x

[∗]|[∗,n]
−−−−→y

y φ1 φ2

x

∗ ∗

∗

y xavbxavb

φ2x

∗

n

∗No distinction
between dereferences

Distinction
between

dereferences
is essential
for field
sensitivity
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Handling Structures

Statement Field-sensitive
representation

Field-insensitive
representation Our choice

x = ∗y x
[∗]|[∗,∗]
−−−−→y x

1|2
−−→y x

1|2
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x = y→n x
[∗]|[∗,n]
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−−−−→y
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Handling Structures

Statement Field-sensitive
representation

Field-insensitive
representation Our choice

x = ∗y x
[∗]|[∗,∗]
−−−−→y x

1|2
−−→y x

1|2
−−→y

x = y→n x
[∗]|[∗,n]
−−−−→y x

1|2
−−→y x

[∗]|[∗,n]
−−−−→y

Imprecise
representation
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Handling Structures

Statement Field-sensitive
representation

Field-insensitive
representation Our choice

x = ∗y x
[∗]|[∗,∗]
−−−−→y x

1|2
−−→y x

1|2
−−→y

x = y→n x
[∗]|[∗,n]
−−−−→y x

1|2
−−→y x

[∗]|[∗,n]
−−−−→y

List operations are similar to the arithmetic operations performed
on indirection levels for GPU composition
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Miscellaneous Features

Our heap abstraction consists of:

• allocation-site-based-abstraction
• k-limited indirection lists

Arrays, pointer arithmetic, address escaped variables undergo weak
updates. Hence their effect is over-approximated
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Is Flow and Context Sensitivity Important? (I)

Articles [Hind and Pioli 1998;2000; Hind 2001] claim that the better
precision is not worth the price one has to pay for flow sensitivity

This claim is criticized because [Staiger-Stöhr 2013]:

◮ Study performed on relatively small programs

◮ Indirect strong updates not supported

◮ Field-insensitive analyses

Work by Hardekopf and Lin [2009, 2011] with very good results for
flow-sensitive pointer analysis supports Staiger-Stöhr’s theory
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Is Flow and Context Sensitivity Important? (II)

Lack of flow sensitivity in race detection algorithm [Naik-Aiken 2006]
affects the synchronization idioms that the approach can handle
precisely

The pointer-flow used for taint analysis is ineffective without context
sensitivity [Tripp-Pistoia 2009]

A context sensitive call graph is more precise [Grove-Chambers 2001]
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Is Flow and Context Sensitivity Important? (III)

Jens Palsberg in his key note talk [SAS 2012] says that
context-sensitive analysis improved the precision of “May Happen in
Parallel Analysis”

Object sensitivity [Milanova-Ryder 2005] shows significant
improvement in the precision of side-effect analysis and call graph
construction compared to a context-insensitive analysis
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Context Based Bottom-up Approach

The need of multiple partial transfer functions (PTFs)

Example:
1. x = ∗y ;
2. ∗z = q;
3. p = ∗y ;

Two dereferences of y are separated by a possibly
side-effect causing statement through z
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Context Based Bottom-up Approach

The need of multiple partial transfer functions (PTFs)

Example:
1. x = ∗y ;
2. ∗z = q;
3. p = ∗y ;

∗z is aliased to y

y φ1 φ2

xz

q

φ3

φ4 p

z is aliased to y

y φ1 φ2

xz

q

φ3

p

z and y are
not related

y φ1 φ2

xz

q

φ3

φ4 p

Red edges ⇒ killed information

Blue edges ⇒ information generated

Black edges ⇒ carried forward input information

Pritam Gharat ( IIT Bombay) Generalized Points-to Graphs September 2018 47 / 50



Context Based Bottom-up Approach

The need of multiple partial transfer functions (PTFs)

Example:
1. x = ∗y ;
2. ∗z = q;
3. p = ∗y ;

∗z is aliased to y

y φ1 φ2

xz

q

φ3

φ4 p

z is aliased to y

y φ1 φ2

xz

q

φ3

p

z and y are
not related

y φ1 φ2

xz

q

φ3

φ4 p

Only relevant aliases are considered

Statement 2 will cause a side effect
and p will point to what is related
to q and not what is related to x
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Context Based Bottom-up Approach

The need of multiple partial transfer functions (PTFs)

Example:
1. x = ∗y ;
2. ∗z = q;
3. p = ∗y ;

∗z is aliased to y

y φ1 φ2

xz

q

φ3

φ4 p

z is aliased to y

y φ1 φ2

xz

q

φ3

p

z and y are
not related

y φ1 φ2

xz

q

φ3

φ4 p

Only relevant aliases are considered

Statement 2 will NOT cause a side
effect and p will point to what is related
to x and not what is related to q
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Context Based Bottom-up Approach

The need of multiple partial transfer functions (PTFs)

Example:
1. x = ∗y ;
2. ∗z = q;
3. p = ∗y ;

∗z is aliased to y

y φ1 φ2

xz

q

φ3

φ4 p

z is aliased to y

y φ1 φ2

xz

q

φ3

p

z and y are
not related

y φ1 φ2

xz

q

φ3

φ4 p

Only relevant aliases are considered

Alias information
eliminates data

dependence, hence
no control flow

required
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Context Based Bottom-up Approach

The need of multiple partial transfer functions (PTFs)

Example:
1. x = ∗y ;
2. ∗z = q;
3. p = ∗y ;

∗z is aliased to y

y φ1 φ2

xz

q

φ3

φ4 p

z is aliased to y

y φ1 φ2

xz

q

φ3

p

z and y are
not related

y φ1 φ2

xz

q

φ3

φ4 p

Only relevant aliases are considered

Pre-processing required for discovering aliases
in the callers

Multiple summaries for a procedure
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Context Independent Bottom-up Approach

Construction of a single flow-sensitive procedure summary

Example:
1. x = ∗y ;
2. ∗z = q;
3. p = ∗y ;

y φ1 φ2

xz

q

φ5

φ3

φ6 φ7 p

Different accesses of the same variable may require different placeholders
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Context Independent Bottom-up Approach

Construction of a single flow-sensitive procedure summary

Example:
1. x = ∗y ;
2. ∗z = q;
3. p = ∗y ;

y φ1 φ2

xz

q

φ5

φ3

φ6 φ7 p

Different accesses of the same variable may require different placeholders

Large number of placeholders
⇒ size of procedure summary may be proportional to

the # of statements

A flow-insensitive version may require fewer
placeholders ⇒ affects precision
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Context Independent Bottom-up Approach

Construction of a single flow-sensitive procedure summary

Example:
1. x = ∗y ;
2. ∗z = q;
3. p = ∗y ;

y φ1 φ2

xz

q

φ5

φ3

φ6 φ7 p

Ordering of
generated
edges is
important
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Context Independent Bottom-up Approach

Construction of a single flow-sensitive procedure summary

Example:
1. x = ∗y ;
2. ∗z = q;
3. p = ∗y ;

y φ1 φ2

xz

q

φ5

φ3

φ6 φ7 p

Ordering of
generated
edges is
important

If φ5−→φ3 is considered before x−→φ2, it

will amount to swapping statements 1 and 2
Hence, x and p will be always be aliased
ignoring the possible side-effect of statement 2
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Strong and Weak Updates in Strength Reduction

Optimization

Kill occurs only when a single pointer is defined

We call it a strong update
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Strong and Weak Updates in Strength Reduction

Optimization

x = &y ; x = &z ;

∗x = w ;

Weak Update
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Strong and Weak Updates in Strength Reduction

Optimization

x = &y ; x = &z ;

∗x = w ;

Weak Update

x = &y ; x = &y ;

∗x = w ;

Strong Update
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Strong and Weak Updates in Strength Reduction

Optimization

x = &y ; x = &z ;

∗x = w ;

Weak Update

x = &y ; x = &y ;

∗x = w ;

Strong Update

x = &y ;

∗x = w ;

?
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Strong and Weak Updates in Strength Reduction

Optimization

x = &y ; x = &z ;

∗x = w ;

Weak Update

x = &y ; x = &y ;

∗x = w ;

Strong Update

x = &y ;

∗x = w ;

Definition-free path for x

Possibly weak update
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Strong and Weak Updates in Strength Reduction

Optimization

x = &y ; x = &z ;

∗x = w ;

Weak Update

x = &y ; x = &y ;

∗x = w ;

Strong Update

x = &y ;

∗x = w ;

Possibly weak update

Definition-free path distinguishes between strong and weak updates
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GPU Composition for Structures

x y a
1|2

22

1|0

34

1|1

34

x y a
[∗]|[∗,n]

22

[∗]|[ ]

34

[∗]|[n]

34

Difference of indlev of y
(2− 1) is computed.

Difference (2 − 1) is positive.

Add the difference to
indlev of a.

Remainder of indlist of y
(remainder ([∗], [∗, n])) is computed.

[∗] is prefix of [∗, n].

Append the remainder to
indlist of a.
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