Synthesis of Surveillance Strategies for Mobile Sensors

Rayna Dimitrova

University of Leicester

joint work with

Suda Bharadwaj and Ufuk Topcu

University of Texas at Austin

S-REPLS 10 18th September 2018

Autonomous systems: challenges and opportunities for formal methods

Autonomous systems: challenges and opportunities for formal methods

Reactive surveillance with mobile sensors

Goal: maintain knowledge of the location of a moving target Example objectives

- always know (up to some precision) the location of the target
- eventually discover the target every time it gets out of sight

Reactive surveillance with mobile sensors

Specification φ : formulate surveillance objectives using LTL

Synthesis: solve a two player game between agent and target

agent (mobile sensor) tries to satisfy φ

 $\begin{array}{c} {\rm target} \\ {\rm tries\ to\ violate\ } \varphi \end{array}$

Compute a strategy for the agent to enforce φ .

Reactive surveillance with mobile sensors

Specification φ : formulate surveillance objectives using LTL

introduce surveillance predicates

Synthesis: solve a two player game between agent and target

- tracking agent's knowledge
- handling multiple sensors

"Synthesis of Surveillance Strategies via Belief Abstraction"

- S. Bharadwaj, R. D., U. Topcu, CDC 2018
- "Distributed Synthesis of Surveillance Strategies for Mobile Sensors"
- S. Bharadwaj, R. D., U. Topcu, CDC 2018

- set of locations L
- ▶ states $(l_a, l_t) \in L \times L$ l_a : location of agent l_t : location of target

- set of locations L
- ▶ states $(l_a, l_t) \in L \times L$ l_a : location of agent l_t : location of target
- ightharpoonup visibility $vis: L \times L \to \mathbb{B}$

visibility: $vis(l_a, l_t) = true$ iff l_t is in the line of sight of l_a

- set of locations L
- ▶ states $(l_a, l_t) \in L \times L$ l_a : location of agent l_t : location of target
- ightharpoonup visibility $vis: L \times L \to \mathbb{B}$
- ▶ transitions T, $(l_a, l_t) \leadsto (l'_a, l'_t)$

visibility: $vis(l_a, l_t) = true$ iff l_t is in the line of sight of l_a

transitions: move of target, followed by move of agent

- set of locations L
- ▶ states $(l_a, l_t) \in L \times L$ l_a : location of agent l_t : location of target
- ightharpoonup visibility $vis: L \times L \to \mathbb{B}$
- ightharpoonup transitions T, $(l_a, l_t) \leadsto (l_a', l_t')$

visibility: $vis(l_a, l_t) = true$ iff l_t is in the line of sight of l_a

transitions: move of target, followed by move of agent

- set of locations L
- ▶ states $(l_a, l_t) \in L \times L$ l_a : location of agent l_t : location of target
- ightharpoonup visibility $vis: L \times L \to \mathbb{B}$
- lacktriangledown transitions T, $(l_a,l_t) \leadsto (l_a',l_t')$

visibility: $vis(l_a, l_t) = true$ iff l_t is in the line of sight of l_a

transitions: move of target, followed by move of agent

Belief game structure

belief: knowledge about the possible current locations of target

- ightharpoonup set of beliefs 2^L
- ▶ belief states $(l_a, B_t) \in L \times 2^L$

Belief game structure

belief: knowledge about the possible current locations of target

belief transitions track the evolution of the agent's belief

Belief game structure

belief: knowledge about the possible current locations of target

belief transitions track the evolution of the agent's belief

Belief game structure

belief: knowledge about the possible current locations of target

- ightharpoonup set of beliefs 2^L
- ▶ belief states $(l_a, B_t) \in L \times 2^L$
- ▶ belief transitions $(l_a, B_t) \rightsquigarrow (l'_a, B'_t)$

belief transitions track the evolution of the agent's belief

Specification

belief predicate $p_{\leq b}$, for $b \in \mathbb{N}_{>0}$: $(l_a, B_t) \models p_{\leq b}$ iff $|B_t| \leq b$

Belief game structure

belief: knowledge about the possible current locations of target

- ightharpoonup set of beliefs 2^L
- ▶ belief states $(l_a, B_t) \in L \times 2^L$
- ▶ belief transitions $(l_a, B_t) \leadsto (l'_a, B'_t)$

belief transitions track the evolution of the agent's belief

Specification

belief predicate $p_{\leq b}$, for $b \in \mathbb{N}_{>0}$: $(l_a, B_t) \models p_{\leq b}$ iff $|B_t| \leq b$

LTL surveillance formulas: LTL with belief predicates. Examples:

- ▶ safety surveillance $\Box p_{\leq b}$: "always" $p_{\leq b}$
- ▶ liveness surveillance $\Box \diamondsuit p_{\leq b}$: "infinitely often" $p_{\leq b}$

Surveillance games and strategies

surveillance game (G, φ) , where

- ightharpoonup G = (L, vis, T) is a surveillance game structure,
- ightharpoonup arphi is a surveillance specification

strategy for the agent: function that maps sequences of belief states to moves that agree with ${\cal T}$

A strategy for the agent is **winning** in (G,φ) if each sequence of belief states resulting from this strategy satisfies the specification φ .

Synthesis of surveillance strategies

Surveillance synthesis problem

Given: surveillance game (G, φ)

Compute: strategy for the agent wining in (G,φ)

A possible approach:

Solve game with LTL objective over belief game structure

Problem:

Size of belief game structure can be exponential in $\left|L\right|$

⇒ Use abstraction!

- $\blacktriangleright \ \mathcal{Q} = \{Q_i\}_{i=1}^n \ \mathrm{partition} \ L$
- ightharpoonup abstract beliefs $2^{\mathcal{Q}}$

- $ightharpoonup Q = \{Q_i\}_{i=1}^n$ partition L
- ightharpoonup abstract beliefs $2^{\mathcal{Q}}$
- ▶ abstract belief states $(l_a, A_t) \in L \times (2^Q \cup L)$

- $\triangleright Q = \{Q_i\}_{i=1}^n$ partition L
- ightharpoonup abstract beliefs $2^{\mathcal{Q}}$
- ▶ abstract belief states $(l_a, A_t) \in L \times (2^{\mathcal{Q}} \cup L)$
- ▶ abstract belief transitions $(l_a, A_t) \leadsto (l'_a, A'_t)$

abstract belief transition: overapproximate belief at each step

- $\triangleright \mathcal{Q} = \{Q_i\}_{i=1}^n$ partition L
- ightharpoonup abstract beliefs $2^{\mathcal{Q}}$
- ▶ abstract belief states $(l_a, A_t) \in L \times (2^{\mathcal{Q}} \cup L)$
- ▶ abstract belief transitions $(l_a, A_t) \rightsquigarrow (l'_a, A'_t)$

abstract belief transition: overapproximate belief at each step

Belief abstraction is sound for surveillance objectives.

- $\triangleright \mathcal{Q} = \{Q_i\}_{i=1}^n$ partition L
- ightharpoonup abstract beliefs $2^{\mathcal{Q}}$
- ▶ abstract belief states $(l_a, A_t) \in L \times (2^{\mathcal{Q}} \cup L)$
- ▶ abstract belief transitions $(l_a, A_t) \leadsto (l'_a, A'_t)$

abstract belief transition: overapproximate belief at each step

Belief abstraction is sound for surveillance objectives.

Worst case abstraction: each Q_i is singleton.

Abstraction-based synthesis of surveillance strategies

Abstract surveillance game: two-player game with LTL objective \Rightarrow use methods for synthesis of reactive systems

Restrict surveillance objectives to the efficient fragment GR(1) \Rightarrow use slugs [Ehlerers and Raman 2016]

Winning abstract strategy for agent \mapsto surveillance strategy

▶ specification $\Box p_{\leq 2}$ \Rightarrow concretizable

- ▶ specification $\Box p_{\leq 2}$ \Rightarrow concretizable
- ▶ specification $\Box p_{\leq 5}$ ⇒ spurious

Analyse counterexample by computing concrete beliefs.

Determine which partitions to split, to refine the belief abstraction.

Counterexample-based belief refinement

abstract counterexample for the surveillance specification $\square p_{\leq 5}$

Annotate nodes of the tree with concrete belief sets. Check if there is a leaf node where the bound is not exceeded. If yes, then the counterexample is spurious. Refine to eliminate it.

Counterexample-based belief refinement

Counterexamples for general surveillance properties are finite graphs.

- ▶ For a liveness property $\Box \diamondsuit p_{\leq b}$, check if there is a lasso path with a concrete belief in the loop with size not exceeding b.
- ► For general properties: refine some node with imprecise belief.

Example with liveness surveillance objective

specification

 $\square \diamondsuit p_{\leq 1} \wedge \square \diamondsuit goal$

mobile sensor

straight-line visibility up to $5\ \text{cells}$

Number of abstract belief sets $15 \cdot 10 + 2^7$

Number of concrete belief sets 2^{150}

Example with safety surveillance objective

mobile sensor unbounded straight-line visibility

Number of abstract belief sets $13 \cdot 18 + 2^6$

Number of concrete belief sets $\approx 2^{234}$

Multiple sensors

In practice: multiple sensors

better coverage, smaller abstractions should suffice

the size of the state space of the concrete game increases

▶ set of locations *L*

- set of locations L
- ightharpoonup states (l_a^1,\ldots,l_a^m,l_t)

- set of locations L
- ightharpoonup states (l_a^1,\ldots,l_a^m,l_t)
- ightharpoonup visibility $vis_i: L \times L \to \mathbb{B}$

visibility: $vis_i(l_a^i, l_t) = true$ iff l_t is in the line of sight of l_i

visibility: $vis_i(l_a^i, l_t) = true$ iff l_t is in the line of sight of l_i

- set of locations L
- ightharpoonup states (l_a^1,\ldots,l_a^m,l_t)
- ightharpoonup visibility $vis_i: L \times L \to \mathbb{B}$
- ightharpoonup joint visibility $vis:L^{m+1}\to \mathbb{B}$

visibility: $vis_i(l_a^i, l_t) = true$ iff l_t is in the line of sight of l_i

joint visibility: $vis(\bar{l}, l_t) = true$ iff l_t is visible to at least one agent

- set of locations L
- ightharpoonup states (l_a^1,\ldots,l_a^m,l_t)
- ightharpoonup visibility $vis_i: L \times L \to \mathbb{B}$
- ightharpoonup joint visibility $vis:L^{m+1}\to\mathbb{B}$
- ▶ transitions $(l_a, l_t) \leadsto (l'_a, l'_t)$

visibility: $vis_i(l_a^i, l_t) = true$ iff l_t is in the line of sight of l_i

joint visibility: $vis(\bar{l}, l_t) = true$ iff l_t is visible to at least one agent

transitions: move of target, followed by agents' synchronous move

- set of locations L
- ightharpoonup states (l_a^1,\ldots,l_a^m,l_t)
- ightharpoonup visibility $vis_i: L \times L \to \mathbb{B}$
- ightharpoonup joint visibility $vis:L^{m+1}\to\mathbb{B}$
- ▶ transitions $(l_a, l_t) \rightsquigarrow (l'_a, l'_t)$

visibility: $vis_i(l_a^i, l_t) = true$ iff l_t is in the line of sight of l_i joint visibility: $vis(\bar{l}, l_t) = true$ iff l_t is visible to at least one agent

Joint visibility: $vis(l, l_t) = true$ iff l_t is visible to at least one agent **transitions:** move of target, followed by agents' synchronous move

Multi-agent surveillance with static sensors

static sensor: defined by its range $R_i \subseteq L$

Static sensors do not exhibit false positives or false negatives.

Multi-agent surveillance with static sensors

- ightharpoonup static sensors (R_1,\ldots,R_k)
- belief states $(l_a, B_t, C) \in L \times 2^Q \times 2^{\{1, \dots, k\}}$

static sensor: defined by its range $R_i \subseteq L$

Static sensors do not exhibit false positives or false negatives.

 B_t is contained in the ranges of the triggered sensors C.

Multi-agent surveillance strategies

multi-agent surveillance game $(G, \{R_1, \dots, R_k\}, \varphi)$, where

- ightharpoonup G is a multi-agent surveillance game structure,
- $ightharpoonup R_1, \ldots, R_k$ are static sensors,
- $ightharpoonup \varphi$ is a surveillance specification

A **joint strategy** for the agents is **winning** in $(G,\{R_1,\ldots,R_k\},\varphi)$ if each sequence of belief states resulting from the strategies for the agents satisfies the specification φ .

Multi-agent surveillance strategy synthesis

Multi-agent surveillance synthesis problem

Given: multi-agent surveillance game $(G,\{R_1,\ldots,R_k\},\varphi)$

Compute: joint strategy for the agents that is wining

A possible approach:

Compute a centralized strategy.

Problem:

Size of the state space is exponential in m.

⇒ Decompose the synthesis problem!

Game structure decomposition

- ightharpoonup partition $L = L_1 \uplus \ldots \uplus L_m$
- ightharpoonup agent i cannot exit L_i
- ightharpoonup agent i cannot observe $L \setminus L_i$

Synthesize individual surveillance strategies independently.

Define local specifications appropriately to ensure soundness.

- locations $L_i \uplus \{\widehat{l_i}\}$
- ightharpoonup states (l_a, l_t)
- $ightharpoonup \widehat{vis}_i(l_a, \widehat{l}_i) = false$
- lacktriangle static sensors \widehat{R}_i

Agent 1: size of local belief set is 1

Agent 1: size of local belief set is 3, including $\widehat{\it l}_1$

Agent 1: size of local belief set is 4, including $\widehat{\it l}_1$

Agent 1: size of local belief set is 4, including \widehat{l}_1 Agent 2: size of local belief set is 3, including \widehat{l}_2

Agent 1: size of local belief set is 4, including \widehat{l}_1 Agent 2: size of local belief set is 3, including \widehat{l}_2

The size of the global belief set is 5.

Global belief sets

- locations $L_i \uplus \{\widehat{l_i}\}\$
- ▶ states (l_a, l_t) ▶ $\widehat{vis}_i(l_a, \widehat{l_i}) = false$

local belief set of agent $i: \widehat{B}_{t}^{i} \subseteq (L_{i} \uplus \{\widehat{l}_{i}\})$

$$\textbf{global belief set of agent } i \text{: } B_t^i = \begin{cases} \widehat{B}_t^i & \text{if } \widehat{l_i} \not \in \widehat{B}_t^i \\ \widehat{B}_t^i \cup (L \setminus Li) & \text{otherwise} \end{cases}$$

joint global belief set: $\bigcap_{i \in \{1, ..., m\}} B_t^i$

Specification decomposition

We want **local surveillance specifications** $\varphi_1, \ldots, \varphi_n$ such that if f_1, \ldots, f_n are wining strategies in the local games $(G_i, \widehat{R}_i, \varphi_i)$ then $f_1 \otimes \ldots \otimes f_n$ is a winning strategy in $(G, \{R_1, \ldots, R_k\}, \varphi)$.

Specification decomposition

We restrict to conjunctions of safety and liveness surveillance.

$$\Box p_{\leq a} \wedge \Box p_{\leq b} \qquad \equiv \quad \Box p_{\leq \min(a,b)}$$

$$\Box \diamondsuit p_{\leq a} \wedge \Box \diamondsuit p_{\leq b} \qquad \equiv \quad \Box \diamondsuit p_{\leq \min(a,b)}$$

$$\Box p_{\leq a} \wedge \Box \diamondsuit p_{< b} \qquad \equiv \quad \Box p_{\leq a} \qquad \text{if } a \leq b$$

It suffices to consider only specifications of the following forms

- ▶ safety $\square p_{\leq a}$, liveness $\square \diamondsuit p_{\leq a}$,
- ightharpoonup mixed $\Box p_{\leq a} \wedge \Box \diamondsuit p_{\leq b}$ with a > b.

Safety surveillance objectives

For global specification $\square\, p_{\leq b}$ and $n\geq 2$ agents, take local specifications

$$\Box p_{\leq c}$$
, where $c = \lfloor \frac{b}{n} \rfloor + 1$.

Example: specification $\square p_{\leq 2}$

Each of the local specifications is $\square p_{\leq 2}$ as well.

Conservative approximation due to the absence of coordination.

Liveness surveillance objectives

Require that each mobile sensor satisfies the liveness specification.

For global specification $\square \diamondsuit p_{\leq 2}$ and n agents, take

$$\left(\Box \diamondsuit(belief \neq \{\widehat{l_i}\})\right) \to \left(\Box \diamondsuit(p_{\leq b} \land (\widehat{l_i} \not\in belief))\right),$$

where $belief \neq \{\widehat{l_i}\}$ and $\widehat{l_i} \not\in belief$ are surveillance predicates.

Example: specification $\square \diamondsuit p_{\leq 1}$

Example

- \blacktriangleright model terrain by 20×20 grid
- red regions: impassable terrain
- yellow regions: range of static sensors

Surveillance specification: $\square \diamondsuit p_{\leq 5}$

Example

	Subgame	Number of locations	Synthesis time (s)
3 sensors	Subgame 1	142	473
	Subgame 2	113	306
	Subgame 3	145	372
-	Total	400	1151
6 sensors	Subgame 1	69	101
	Subgame 2	74	206
	Subgame 3	62	111
	Subgame 4	52	88
	Subgame 5	77	285
	Subgame 6	66	64
	Total	400	855

 \blacktriangleright model terrain by 20×20 grid

red regions: impassable terrain

yellow regions: range of static sensors

Surveillance specification: $\square \diamondsuit p_{\leq 5}$

Current work and future directions

- Heuristics for constructing initial abstraction
- Improved abstraction refinement methods
- Less conservative specification decomposition
- Some coordination between mobile sensors
- Probabilistic detection errors by static sensors
- Noisy observations from mobile sensors

. . .

Conclusion

- Applying reactive synthesis to surveillance problems
- Domain specific formal specification languages
- Customized abstraction and refinement methods
- Compositional approaches key for achieving scalability

Thank you for your attention!

Papers at 57th IEEE Conference on Decision and Control preprints available at raynadimitrova.github.io