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A Work in Progress Talk

Don’t say | didn't warn you...

o No answers; only problems.

o No results; only opinions.
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“The Library Problem”

Parts of the program are not available or desireable to analyse
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Because. ..
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@ Source unavailable Unspecified / imp. def.

o External functionality Too complex
Program not finished

This is the library

@ Out of scope

@ Platform independence



The Pyramid Model of Verification
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The Pyramid Model of Verification

Over-approximate Automatic Under-approximate
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The Over-approximate Solution : Just Over-approximate

Non-det / Havoc

+ Simple in principle Under-approximate

- But what about. .. Automatic
- Correct OR precise
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The Over-approximate Solution : Just Over-approximate

size_t f00(voidx*, size_t, size_t, struct s %)



The Over-approximate Solution : Just Over-approximate

size_t fread(void*, size_t, size_t, FILE %)



The Under-approximate Solution : “Concolic”

Non-det / Havoc
-+ Simple in principle

- But what about. ..
- Correct OR precise
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Concolic
. -+ Works reasonably
Automatic - If you can run the binary. ..
- Fully stateful
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The Under-approximate Solution : “Concolic”

ssize_t fO01(int, const void*, size_t, int,
const struct t*, size_t)



The Under-approximate Solution : “Concolic”

ssize_t sendto(int, const void*, size_t, int,
const struct sockaddr*, socklen_t)



The Human-assisted Solution :

Write Models

Non-det / Havoc
-+ Simple in principle
- But what about. ..
- Correct OR precise

Concolic
-+ Works reasonably

Automatic - If you can run the binary. ..
- Fully stateful
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+ Use solver well

- Validation

- Assuming docs are right. ..




The Human-assisted Solution : Write Models

void * realloc(void *ptr, size t size)

Should we model. ..
@ When is size too much?
@ Return NULL?
@ Return NULL is sticky?
@ Alignment of result?
@ When does it return ptr?
o

errno set?



Possible Approaches

@ Isn’t this what game semantics is supposed to fix?



Possible Approaches

@ Isn’t this what game semantics is supposed to fix?

@ Lattice-based (formula) abstraction refinement

HAVOC!
HavocﬂGIobaI ‘ ’Term. ‘ Non—Term Havoc Args

Pure function

return O;



Possible Approaches

@ Isn't this what game semantics is supposed to fix?
@ Lattice-based (formula) abstraction refinement

© What is “the answer” anyway?
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Possible Approaches

@ Isn't this what game semantics is supposed to fix?
@ Lattice-based (formula) abstraction refinement

© What is “the answer” anyway?

@ Opaque handles — automata?

FILE xfopen(const char *pathname, const char #*mode);

size_t fread(void #*ptr, size_t size, size_t nmemb, FILE *stream)
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *
int feof (FILE *stream);

int ferror(FILE *stream);

int fclose(FILE *stream);



Possible Approaches

@ Isn't this what game semantics is supposed to fix?
@ Lattice-based (formula) abstraction refinement

©® What is “the answer” anyway?

@ Opaque handles — automata?

© The spec is in the caller!

struct dirent *d =

readdir (root) ; do {
struct dirent *d =
if (d == NULL) { readdir (tmp) ;
perror("Directory empty");
return errno; if (strcmp(d->d_name, "vmlinuz")

} else {



Possible Approaches

@ Isn't this what game semantics is supposed to fix?
@ Lattice-based (formula) abstraction refinement

© What is “the answer” anyway?

@ Opaque handles — automata?

@ The spec is in the caller!

@ Is modular symbolic execution impossible? Prove it!

Assuming independence is an (the only?)
over-approximation. . .



Conclusions

@ The library problem is the pressing problem for practical
application of verification tools
(that can be solved by theoretical advances).

@ Current approaches are not practical / cost-effective.

© Your solution here?



Conclusions

@ The library problem is the pressing problem for practical
application of verification tools
(that can be solved by theoretical advances).

@ Current approaches are not practical / cost-effective.

© Your solution here?

Thank you for your time and attention.

Made using only Free Software
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