
What Are We Going To Do About Libraries? A
Work in Non-Progress Talk

Martin Nyx Brain

University of Oxford

September 18, 2018



A Work in Non-Progress Talk

Don’t say I didn’t warn you...

No answers; only problems.

No results; only opinions.



Verification

Spec.

Program

Verification!

CPU

FTE

:-D

}-[

???



Verification

Spec.

Program

Verification!

CPU

FTE

:-D

}-[

???



“The Library Problem”

Parts of the program are not available or desireable to analyse

Spec.

Program

Verification!

CPU

FTE

:-D

}-[?

Because. . .

Source unavailable

External functionality

Out of scope

Platform independence

Unspecified / imp. def.

Too complex

Program not finished

This is the library



The Pyramid Model of Verification

Automatic

N
o

M
issed

B
ugs N

o
Fa

ls
e

A
la

rm
s

Over-approximate Under-approximate

Human-assisted

Abstract Interpretation

Static Analysis Bug Patterns

Model Checking

Testing & Symbolic Execution

Functional VerificationDeductive Verification



The Pyramid Model of Verification

Automatic

N
o

M
issed

B
ugs N

o
Fa

ls
e

A
la

rm
s

Over-approximate Under-approximate

Human-assisted

Abstract Interpretation

Static Analysis Bug Patterns

Model Checking

Testing & Symbolic Execution

Functional VerificationDeductive Verification



The Pyramid Model of Verification

Automatic

N
o

M
issed

B
ugs N

o
Fa

ls
e

A
la

rm
s

Over-approximate Under-approximate

Human-assisted

Abstract Interpretation

Static Analysis Bug Patterns

Model Checking

Testing & Symbolic Execution

Functional VerificationDeductive Verification



The Over-approximate Solution : Just Over-approximate

Automatic

N
o

M
issed

B
ugs N

o
Fa

ls
e

A
la

rm
s

Over-approximate Under-approximate

Human-assisted

Abstract Interpretation

Static Analysis Bug Patterns

Model Checking

Testing & Symbolic Execution

Functional VerificationDeductive Verification

Non-det / Havoc
+ Simple in principle

- But what about. . .

- Correct OR precise



The Over-approximate Solution : Just Over-approximate

size t f00(void*, size t, size t, struct s *)



The Over-approximate Solution : Just Over-approximate

size t fread(void*, size t, size t, FILE *)



The Under-approximate Solution : “Concolic”

Automatic

N
o

M
issed

B
ugs N

o
Fa

ls
e

A
la

rm
s

Over-approximate Under-approximate

Human-assisted

Abstract Interpretation

Static Analysis Bug Patterns

Model Checking

Testing & Symbolic Execution

Functional VerificationDeductive Verification

Non-det / Havoc
+ Simple in principle

- But what about. . .

- Correct OR precise

Concolic
+ Works reasonably

- If you can run the binary. . .

- Fully stateful



The Under-approximate Solution : “Concolic”

ssize t f01(int, const void*, size t, int,

const struct t*, size t)



The Under-approximate Solution : “Concolic”

ssize t sendto(int, const void*, size t, int,

const struct sockaddr*, socklen t)



The Human-assisted Solution : Write Models

Automatic

N
o

M
issed

B
ugs N

o
Fa

ls
e

A
la

rm
s

Over-approximate Under-approximate

Human-assisted

Abstract Interpretation

Static Analysis Bug Patterns

Model Checking

Testing & Symbolic Execution

Functional VerificationDeductive Verification

Non-det / Havoc
+ Simple in principle

- But what about. . .

- Correct OR precise

Concolic
+ Works reasonably

- If you can run the binary. . .

- Fully stateful

Model
+ Use solver well

- Assuming docs are right. . .

- Validation



The Human-assisted Solution : Write Models

void * realloc(void *ptr, size t size)

Should we model. . .

When is size too much?

Return NULL?

Return NULL is sticky?

Alignment of result?

When does it return ptr?

errno set?



Possible Approaches

1 Isn’t this what game semantics is supposed to fix?

2 Lattice-based (formula) abstraction refinement

HAVOC!

Term. Non-TermHavoc Global Havoc Args

Pure function

return 0;



Possible Approaches

1 Isn’t this what game semantics is supposed to fix?

2 Lattice-based (formula) abstraction refinement

HAVOC!

Term. Non-TermHavoc Global Havoc Args

Pure function

return 0;



Possible Approaches

1 Isn’t this what game semantics is supposed to fix?

2 Lattice-based (formula) abstraction refinement

3 What is “the answer” anyway?

Spec.

Program

Verification!

CPU

FTE

:-D

}-[?

+assumptions

+assumptions



Possible Approaches

1 Isn’t this what game semantics is supposed to fix?

2 Lattice-based (formula) abstraction refinement

3 What is “the answer” anyway?

4 Opaque handles −→ automata?

FILE *fopen(const char *pathname, const char *mode);

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

int feof(FILE *stream);

int ferror(FILE *stream);

int fclose(FILE *stream);



Possible Approaches

1 Isn’t this what game semantics is supposed to fix?

2 Lattice-based (formula) abstraction refinement

3 What is “the answer” anyway?

4 Opaque handles −→ automata?

5 The spec is in the caller!

struct dirent *d =

readdir(root);

if (d == NULL) {

perror("Directory empty");

return errno;

} else {

...

do {

struct dirent *d =

readdir(tmp);

if (strcmp(d->d_name, "vmlinuz") == 0) {

...



Possible Approaches

1 Isn’t this what game semantics is supposed to fix?

2 Lattice-based (formula) abstraction refinement

3 What is “the answer” anyway?

4 Opaque handles −→ automata?

5 The spec is in the caller!

6 Is modular symbolic execution impossible? Prove it!

Assuming independence is an (the only?)
over-approximation. . .



Conclusions

1 The library problem is the pressing problem for practical
application of verification tools
(that can be solved by theoretical advances).

2 Current approaches are not practical / cost-effective.

3 Your solution here?

Thank you for your time and attention.
Made using only Free Software



Conclusions

1 The library problem is the pressing problem for practical
application of verification tools
(that can be solved by theoretical advances).

2 Current approaches are not practical / cost-effective.

3 Your solution here?

Thank you for your time and attention.
Made using only Free Software


	Verification
	That's Simple, You …
	But Maybe We Could?
	Conclusion

