What Are We Going To Do About Libraries? A
Work in Non-Progress Talk

Martin Nyx Brain

University of Oxford

UNIVERSITY OF

0):40)23D)

September 18, 2018

A Work in Progress Talk

Don’t say | didn't warn you...

o No answers; only problems.

o No results; only opinions.

N CPU

Program

FTE

E— CPU
Spec. —» [:-D
> 777
AN
Program — }-[
FTE

“The Library Problem”

Parts of the program are not available or desireable to analyse

CPU
Spec. —|_> —» | :-D
Proga4|_>

FTE

Because. ..

——

@ Source unavailable Unspecified / imp. def.

o External functionality Too complex
Program not finished

This is the library

@ Out of scope

@ Platform independence

The Pyramid Model of Verification

Automatic

¢

12
o &
2
v

&

be

Z

¥y
i
< o
S <S

The Pyramid Model of Verification

Over-approximate Automatic Under-approximate
“
% &
% 3
% @
> >
(2 &
o
S <

Human-assisted

The Pyramid Model of Verification

Over-approximate Automatic Under-approximate
“
% &
G
% 3
% @
> >
(2 &
o
S <

Human-assisted

The Over-approximate Solution : Just Over-approximate

Non-det / Havoc

+ Simple in principle Under-approximate

- But what about. .. Automatic
- Correct OR precise
“
% &
D
% J
Y @
o >
Gé 4
@)
K\ | /S

Human-assisted

The Over-approximate Solution : Just Over-approximate

size_t f00(voidx*, size_t, size_t, struct s %)

The Over-approximate Solution : Just Over-approximate

size_t fread(void*, size_t, size_t, FILE %)

The Under-approximate Solution : “Concolic”

Non-det / Havoc
-+ Simple in principle

- But what about. ..
- Correct OR precise

Z

(@]

2.
()
%
o«@
<
G

Concolic
. -+ Works reasonably
Automatic - If you can run the binary. ..
- Fully stateful
“
&
0
V.
¥
4
@)
S

Human-assisted

The Under-approximate Solution : “Concolic”

ssize_t fO01(int, const void*, size_t, int,
const struct t*, size_t)

The Under-approximate Solution : “Concolic”

ssize_t sendto(int, const void*, size_t, int,
const struct sockaddr*, socklen_t)

The Human-assisted Solution :

Write Models

Non-det / Havoc
-+ Simple in principle
- But what about. ..
- Correct OR precise

Concolic
-+ Works reasonably

Automatic - If you can run the binary. ..
- Fully stateful
2
% &
g
2 $
® &
> >
Gé N4
©. 0
Model

+ Use solver well

- Validation

- Assuming docs are right. ..

The Human-assisted Solution : Write Models

void * realloc(void *ptr, size t size)

Should we model. ..
@ When is size too much?
@ Return NULL?
@ Return NULL is sticky?
@ Alignment of result?
@ When does it return ptr?
o

errno set?

Possible Approaches

@ Isn’t this what game semantics is supposed to fix?

Possible Approaches

@ Isn’t this what game semantics is supposed to fix?

@ Lattice-based (formula) abstraction refinement

HAVOC!
HavocﬂGIobaI ‘ ’Term. ‘ Non—Term Havoc Args

Pure function

return O;

Possible Approaches

@ Isn't this what game semantics is supposed to fix?
@ Lattice-based (formula) abstraction refinement

© What is “the answer” anyway?

CPU
Spec. —|+ —» | :=D -+assumptions

— (}=[+assumptions

Possible Approaches

@ Isn't this what game semantics is supposed to fix?
@ Lattice-based (formula) abstraction refinement

© What is “the answer” anyway?

@ Opaque handles — automata?

FILE xfopen(const char *pathname, const char #*mode);

size_t fread(void #*ptr, size_t size, size_t nmemb, FILE *stream)
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *
int feof (FILE *stream);

int ferror(FILE *stream);

int fclose(FILE *stream);

Possible Approaches

@ Isn't this what game semantics is supposed to fix?
@ Lattice-based (formula) abstraction refinement

©® What is “the answer” anyway?

@ Opaque handles — automata?

© The spec is in the caller!

struct dirent *d =

readdir (root) ; do {
struct dirent *d =
if (d == NULL) { readdir (tmp) ;
perror("Directory empty");
return errno; if (strcmp(d->d_name, "vmlinuz")

} else {

Possible Approaches

@ Isn't this what game semantics is supposed to fix?
@ Lattice-based (formula) abstraction refinement

© What is “the answer” anyway?

@ Opaque handles — automata?

@ The spec is in the caller!

@ Is modular symbolic execution impossible? Prove it!

Assuming independence is an (the only?)
over-approximation. . .

Conclusions

@ The library problem is the pressing problem for practical
application of verification tools
(that can be solved by theoretical advances).

@ Current approaches are not practical / cost-effective.

© Your solution here?

Conclusions

@ The library problem is the pressing problem for practical
application of verification tools
(that can be solved by theoretical advances).

@ Current approaches are not practical / cost-effective.

© Your solution here?

Thank you for your time and attention.

Made using only Free Software

	Verification
	That's Simple, You …
	But Maybe We Could?
	Conclusion

