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overview

I knowledge for Bayesian machine learning over model structure

I applied knowledge representation for biological data analytics



Bayesian inference of model structure (Bims)

A Bayesian machine learning system that can model prior
knowledge by means of a probabilistic logic programming.

Nonmeclature

I DLPs = Distributional logic programs

I Bims = Bayesian inference of model structure

Timeline

I Theory (York, 2000-5)

I Applications (Edinburgh, 2006-8, IAH 2009, NKI 2013)

I Bims library and theory paper 2015-2017



Bims Overview

I syntax of DLPs

I a succinct classification tree prior program

I Bayesian learning of model structure

I learning classification and regression trees

I Bayesian learning of Bayesian networks

I the bims library



DLPs- description

We extend LP’s clausal syntax with probabilistic guards that
associate a resolution step using a particular clause with a
probability whose value is computed on-the-fly.

The intuition is that this value can be used as the probability with
which the clause is selected for resolution.

Thus in addition to the logical relation, a clause defines over the
objects that appear as arguments in its head, it also defines a
probability distribution over aspects of this relation.



DLPs example
member(H, [H| T ]).

member(El , [ H|T ]) :− (C1)

member(El ,T ).

L :: length(List, L) ∼ El :: umember(El , List) (G1)

1

L
:: L :: umember(El , [El |Tail ]). (C2)

1− 1

L
:: L :: umember(El , [H|Tail ]) :− (C3)

umember(El ,Tail).



DLPs probabilistic goals

1

L
:: L :: umember(El , [El |Tail ]). (C4)

1− 1

L
:: L :: umember(El , [H|Tail ]) :− (C5)

K is L− 1,

K :: umember(El ,Tail).



DLPs query

?− umember(X , [a, b, c]).

X = a (1/3 of the times = 1/3);

X = b (1/3 of the times = 2/3 ∗ 1/2);

X = c (1/3 of the times = 2/3 ∗ 1/2 ∗ 1).



simple tree prior
?- cart( ζ, ξ, A, M ).

M=nd(x2,1,nd(x1,0,lf,lf),lf)
(C0) cart(ζ, ξ,M,Cart) : −

ψ0 is ζ,
ψ0: split(0, ζ, ξ,M,Cart).

(C1) ψD : split(D, ζ, ξ,MB , nd(F ,Val , L,R)) : −
ψD+1 is ζ ∗ (1 + D)−ξ,
D1 is D + 1,
r select(F ,Val ,MB , LB ,RB),

ψD+1: split(D1, ζ, ξ, LB , L),
ψD+1: split(D1, ζ, ξ,RB ,R).

(C2) 1− ψD : split(D, ζ, ξ,MB , lf ).



Bims theory

Bayes’ Theorem

p(M|D) =
p(D|M)p(M)∑
M p(D|M)p(M)

Metropolis-Hastings

α(Mi ,M∗) = min

{
q(M∗,Mi )P(D|M∗)P(M∗)

q(Mi ,M∗)P(D|Mi )P(Mi )
, 1

}



DLP defined model space

From Mi identify Gi then sample forward to M?.
q(Mi ,M?) is the probability of proposing M? when Mi is the
current model.



Pyruvate kinase interactors

objective
improve chances of discovering binding molecules based on
examples from screened chemical libraries.

pyruvate kinase affinity data
582 Active and 582 Inactive. Dragon software produces 1500
property descriptors for each molecule, about 1100 were used.

ten-fold cross-validation
Compared to Feed Forward Neural Networks and Support Vector
Machines by splitting the data into ten train/test segments.



best likelihood model



ten-fold validation

Sensitivity =
T+

T+ + F− Specificity =
T−

T− + F+



molecules of Eduliss according to BCarts



Bims: Bayesian inference of model structure

Released in 2016 as an easily installable SWI-Prolog library
(IJAR paper in 2017)Includes

I priors and likelihoods for: CARTs and Bayesian networks

I hooks for user defined models

Probabilistic logic programming

I thesis: probabilistic finite domains

I PLP workshop and IJAR associated issues (5th edition)



knowledge-based computation biology

I graphical models
(focal adhesion dynamics, NKI, 2011-3)

I proteomics functional analysis
(TKSilac,KSR1,ATG9A, Imperial, 2014-5)

I mutational profiling
(14MG, Sanger, 2016-8)



Graphical models of FAD

Graphical models (aka Bayesian networks) can provide a network
view of dependencies among variables, capturing much richer
information than pairwise correlations.
In this project, microscopy based variables characterising focal
adhesion in time are connected for a number of conditions in the
HGF pathway.





tkSilac: tyrosine kinase screen

I MCF7 cell line

I 33 SILAC runs

I 65/66 expressed tyrosine kinases

I 4739 quantified in some experiment

I 1000 quantified in 60 or more TK KO
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Fig. 2. Heatmap of quantified proteins after TK silencing. The overall pattern of regulation is shown in the heat-
map of quantified values. After normalized to siControl, values of fold changes are all above 0, with value 1 show-
ing that the expression levels of the specific protein are not altered after silencing TKs. For each knockdown (rows) 
the quantified value for an identified protein is plotted in red for down regulated proteins (below 1), white for 
non-differential and non-identified and blue for up-regulated proteins (above 1). The row labels indicate the knock 
out experiment and the colors correspond to the clusters described below.
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Fig. 4. Hierarchical clustering of the 65 TKs expressed in MCF7 cells. A, Hierarchical clustering of the 65 TKs 
was performed using R's hclust function. The complete linkage method which aims to identify similar clusters 
based on overall cluster measure was used. 10 distinctive clusters were obtained and the complete dendrogram is 
shown with the labels colored for these clusters. B, Full list of the TKs included in each cluster . The color coding 
of the clusters is used throughout to identify the analysis relevant to the corresponding clusters. C, Heatmap of the 
proteomic quantifications (log2 values of normalized fold changes against control) for the downstream effects 
(significantly up- or down-regulated proteins, Significant B test p< 0.05) after silencing TKs in cluster 1. D, 
Number of proteins significantly up or down-regulated in each identified cluster. x-axis shows 10 different clusters 
and y-axis indicates the counts.
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Fig. 5. Characterization of a functional portrait for each cluster. A, A functional profile of top GO biologic 
processes that the up- and downregulated proteins belong to is presented. x-axis shows the percentage of hits in 
each cluster that belong to a GO biologic process term. The color coding and the number for each cluster are indi-
cated as above. B, A functional profile of top GO molecular functions that the up- and downregulated proteins 
belong to is presented. x-axis shows the percentage of hits in each cluster that belong to a GO molecular function 
term.
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Fig. 6. Representatives of defined functional networks in each classified TK cluster. The functional networks 
were generated using GO analysis combined with the STRING platform. Proteins in lighter color are up-regulated, 
whereas brighter color indicates down-regulation. Arrows show the interactions between connected proteins. Rep-
resentative defined functional networks associated with their clusters are shown here. The color coding and the 
number for each cluster are indicated as above.



volcano plot (BT474HR H/M)
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Autophagy
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Myelodysplastic syndrom, NGS somatic mutations profiling
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5 year: Clinical vs Lasso (Optimal)
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myeloma structural variations
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logic programming for (biological) data analytics

Positives

I interpreted

I memory management

I clean and high level

I probabilistic ML & reasoning (Prism,Bims,Pepl)

I intuitive database integration (db facts,bio db)

I multi-threaded and web-capable

I talking to other systems (R:Real,ODBC,proSQLite)

I (largely) OS independence

Negatives

I graphics

I SWI-Prolog, at core a one-person project

I code sharing in toddler stage (but showing promise)

I in-browser interaction with other technologies



KR bottom line

(probabilistic) logic programming and Bayesian networks are
powerful tools for

explainable, accountable, open and shareable AI & ML

symbolic AI education, can be a central player in

contributing tangibly to the current AI resurgence, while
managing expectations of modern AI

see media coverage of Facebook/Cambridge-Analytica
& Uber/Tesla driveless accidents
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