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Abstract

Loop acceleration can be used to prove safety, reachability, runtime bounds, and (non-)termination
of programs. To this end, a variety of acceleration techniques has been proposed. However, so
far all of them have been monolithic, i.e., a single loop could not be accelerated using a combi-
nation of several different acceleration techniques. In contrast, we present a calculus that allows
for combining acceleration techniques in a modular way and we show how to integrate many
existing acceleration techniques into our calculus. Moreover, we propose two novel acceleration
techniques that can be incorporated into our calculus seamlessly. Some of these acceleration tech-
niques apply only to non-terminating loops. Thus, combining them with our novel calculus results
in a new, modular approach for proving non-termination. An empirical evaluation demonstrates
the applicability of our approach, both for loop acceleration and for proving non-termination.

1 Introduction

In the last years, loop acceleration techniques
have successfully been used to build static analy-
ses for programs operating on integers [3, 10, 21,
26, 28, 43]. Essentially, such techniques extract a
quantifier-free first-order formula ψ from a single-
path loop T , i.e., a loop without branching in its
body, such that ψ under-approximates (or is equiv-
alent to) T . More specifically, each model of the
resulting formula ψ corresponds to an execution
of T (and vice versa). By integrating such tech-
niques into a suitable program-analysis framework
[4, 21, 26, 28, 37], whole programs can be trans-
formed into first-order formulas which can then
be analyzed by off-the-shelf solvers. Applications
include proving safety [37] or reachability [37, 43],

deducing bounds on the runtime complexity [26],
and proving (non-)termination [10, 21].

However, existing acceleration techniques apply
only if certain prerequisites are in place. So the
power of static analyses built upon loop accelera-
tion depends on the applicability of the underlying
acceleration technique.

In this paper, we introduce a calculus which
allows for combining several acceleration tech-
niques modularly in order to accelerate a single
loop. This not only allows for modular combina-
tions of standalone techniques, but it also enables
interactions between different acceleration tech-
niques, allowing them to obtain better results
together. Consequently, our calculus can handle
classes of loops where all standalone techniques
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fail. Moreover, we present two novel acceleration
techniques and integrate them into our calculus.

One important application of loop acceleration
is proving non-termination. As already observed
in [21], certain properties of loops – in particu-
lar monotonicity of (parts of) the loop condition
w.r.t. the loop body – are crucial for both loop
acceleration and proving non-termination. In [21],
this observation has been exploited to develop a
technique for deducing invariants that are helpful
to deal with non-terminating as well as termi-
nating loops: For the former, they help to prove
non-termination, and for the latter, they help to
accelerate the loop.

In this paper, we take the next step by also
unifying the actual techniques that are used for
loop acceleration and for proving non-termination.
To this end, we identify loop acceleration tech-
niques that, if applied in isolation, give rise to
non-termination proofs. Furthermore, we show that
the combination of such non-termination tech-
niques via our novel calculus for loop acceleration
gives rise to non-termination proofs, too. In this
way, we obtain a modular framework for combin-
ing several different non-termination techniques in
order to prove non-termination of a single loop.

In the following, we introduce preliminaries in
Section 2. Then, we discuss existing acceleration
techniques in Section 3. In Section 4, we present
our calculus to combine acceleration techniques
and show how existing acceleration techniques
can be integrated into our framework. Section 5
lifts existing acceleration techniques to conditional
acceleration techniques, which provides additional
power in the context of our framework by enabling
interactions between different acceleration tech-
niques. Next, we present two novel acceleration
techniques and incorporate them into our calcu-
lus in Section 6. Then we adapt our calculus and
certain acceleration techniques for proving non-
termination in Section 7. After discussing related
work in Section 8, we demonstrate the applicabil-
ity of our approach via an empirical evaluation in
Section 9 and conclude in Section 10.

A conference version of this paper was pub-
lished in [22]. The present paper provides the
following additional contributions:

• We present formal correctness proofs for all
of our results, which were omitted in [22] for
reasons of space.

• We present an improved version of the loop
acceleration technique from [26, Thm. 3.8]
and [27, Thm. 7] that yields simpler formulas.

• We prove an informal statement from [22]
on using arbitrary existing acceleration tech-
niques in our setting, resulting in the novel
Lemma 1.

• The adaptation of our calculus and of cer-
tain acceleration techniques for proving non-
termination (Section 7) is completely new.

• We extend the empirical evaluation from [22]
with extensive experiments comparing the
adaptation of our calculus for proving non-
termination with other state-of-the-art tools
for proving non-termination (Section 9.2).

2 Preliminaries

We use the notation ~x, ~y, ~z, ... for vectors. Let
C (~z) be the set of closed-form expressions over the
variables ~z. So C (~z) may, for example, be defined
to be the smallest set containing all expressions
built from ~z, integer constants, and binary function
symbols {+,−, ·, /, exp} for addition, subtraction,
multiplication, division, and exponentiation. How-
ever, there is no widely accepted definition of
“closed forms”, and the results of the current paper
are independent of the precise definition of C (~z)
(which may use other function symbols). Thus, we
leave its definition open to avoid restricting our
results unnecessarily. We consider loops of the form

while ϕ do ~x← ~a (Tloop)

where ~x is a vector of d pairwise different variables
that range over the integers, the loop condition
ϕ ∈ FOQF (C (~x)) (which we also call guard) is a
finite quantifier-free first-order formula over the
atoms {p > 0 | p ∈ C (~x)}, and ~a ∈ C (~x)d such
that the function1 ~x 7→ ~a maps integers to integers.
Loop denotes the set of all such loops.

We identify Tloop and the pair 〈ϕ,~a〉. More-
over, we identify ~a and the function ~x 7→ ~a, where
we sometimes write ~a(~x) to make the variables
~x explicit. We use the same convention for other
(vectors of) expressions. Similarly, we identify the
formula ϕ(~x) (or just ϕ) with the predicate ~x 7→ ϕ.
We use the standard integer-arithmetic semantics
for the symbols occurring in formulas.

1i.e., the (anonymous) function that maps ~x to ~a
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Throughout this paper, let n be a designated
variable ranging over N = {0, 1, 2, . . .} and let:

~a :=
( a1
...
ad

)
~x :=

( x1
...
xd

)
~x′ :=

(
x′
1
...
x′
d

)
~y :=

(
~x
n
~x′

)
Intuitively, the variable n represents the number
of loop iterations and ~x′ corresponds to the values
of the program variables ~x after n iterations.
Tloop induces a relation −→Tloop on Zd:

ϕ(~x) ∧ ~x′ = ~a(~x) ⇐⇒ ~x −→Tloop ~x′

3 Existing Acceleration
Techniques

In the following (up to and including Section 6),
our goal is to accelerate Tloop, i.e., to find a formula
ψ ∈ FOQF (C (~y)) such that

ψ ⇐⇒ ~x −→n
Tloop ~x

′ for all n > 0. (equiv)

To see why we use C (~y) instead of, e.g., polynomi-
als, consider the loop

while x1 > 0 do ( x1
x2

)←
(
x1−1
2·x2

)
. (Texp)

Here, an acceleration technique synthesizes, e.g.,
the formula(

x′
1

x′
2

)
=
( x1−n
2n·x2

)
∧ x1 − n+ 1 > 0, (ψexp)

where
( x1−n
2n·x2

)
is equivalent to the value of ( x1

x2
)

after n iterations, and the inequation x1−n+1 > 0
ensures that Texp can be executed at least n times.
Clearly, the growth of x2 cannot be captured by a
polynomial, i.e., even the behavior of quite simple
loops is beyond the expressiveness of polynomial
arithmetic.

In practice, one can restrict our approach to
weaker classes of expressions to ease automation,
but the presented results are independent of such
considerations.

Some acceleration techniques cannot guar-
antee (equiv), but the resulting formula is an
under-approximation of Tloop, i.e., we have

ψ =⇒ ~x −→n
Tloop ~x

′ for all n > 0. (approx)

If (equiv) holds, then ψ is equivalent to Tloop.
Similarly, if (approx) holds, then ψ approximates
Tloop.2

Definition 1 (Acceleration Technique) An accelera-
tion technique is a partial function

accel : Loop ⇀ FOQF (C (~y)).

It is sound if the formula accel(T ) approximates T for
all T ∈ dom(accel). It is exact if the formula accel(T )
is equivalent to T for all T ∈ dom(accel).

We now recall several existing acceleration
techniques. In Section 4 we will see how these tech-
niques can be combined in a modular way. All
of them first compute a closed form ~c ∈ C (~x, n)d

for the values of the program variables after n
iterations.

Definition 2 (Closed Form) We call ~c ∈ C (~x, n)d a
closed form of Tloop if

∀~x ∈ Zd, n ∈ N. ~c = ~an(~x).

Here, ~an is the n-fold application of ~a, i.e., ~a0(~x) = ~x
and ~an+1(~x) = ~a(~an(~x)).

To find closed forms, one tries to solve the
system of recurrence equations ~x(n) = ~a(~x(n−1))
with the initial condition ~x(0) = ~x. In the sequel, we
assume that we can represent ~an(~x) in closed form.

Note that one can always do so if ~a(~x) = A~x+~b

with A ∈ Zd×d and ~b ∈ Zd, i.e., if ~a is linear. To

this end, one considers the matrix B :=
(
A ~b
~0T 1

)
and computes its Jordan normal form J where B =
T−1JT and J is a block diagonal matrix (which
has complex entries if B has complex eigenvalues).
Then the closed form for Jn can be given directly
(see, e.g., [48]), and ~an(~x) is equal to the first d
components of T−1JnT

(
~x
1

)
. Moreover, one can

compute a closed form if ~a =
(
c1·x1+p1

...
cd·xd+pd

)
where

ci ∈ N and each pi is a polynomial over x1, . . . , xi−1
[25, 36].

2While there are also over-approximating acceleration tech-
niques (see Section 8.1), in this paper we are interested only in
under-approximations.
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3.1 Acceleration via Decrease or
Increase

The first acceleration technique discussed in
this section exploits the following observation: If
ϕ(~a(~x)) implies ϕ(~x) and if ϕ(~an−1(~x)) holds, then
the loop condition ϕ of Tloop is satisfied through-
out (at least) n loop iterations. So in other words,
it requires that the indicator function (or char-
acteristic function) Iϕ : Zd → {0, 1} of ϕ with
Iϕ(~x) = 1 ⇐⇒ ϕ(~x) is monotonically decreasing
w.r.t. ~a, i.e., Iϕ(~x) ≥ Iϕ(~a(~x)).

Theorem 1 (Acceleration via Monotonic Decrease
[43]) If

ϕ(~a(~x)) =⇒ ϕ(~x),

then the following acceleration technique is exact:

Tloop 7→ ~x′ = ~an(~x) ∧ ϕ(~an−1(~x))

We will prove the more general Theorem 7 in
Section 5.

So for example, Theorem 1 accelerates Texp to
ψexp. However, the requirement ϕ(~a(~x)) =⇒ ϕ(~x)
is often violated in practice. To see this, consider
the loop

while x1 > 0 ∧ x2 > 0 do ( x1
x2

)←
(
x1−1
x2+1

)
. (Tnon-dec)

It cannot be accelerated with Theorem 1 as

x1 − 1 > 0 ∧ x2 + 1 > 0 6=⇒ x1 > 0 ∧ x2 > 0.

A dual acceleration technique to Theorem 1
is obtained by “reversing” the implication in the
prerequisites of the theorem, i.e., by requiring

ϕ(~x) =⇒ ϕ(~a(~x)).

So the resulting dual acceleration technique applies
iff ϕ is a loop invariant of Tloop.3 Then {~x ∈ Zd |
ϕ(~x)} is a recurrent set [35] (see also Section 8.2)
of Tloop. In other words, this acceleration technique
applies if Iϕ is monotonically increasing w.r.t. ~a.

Theorem 2 (Acceleration via Monotonic Increase) If

ϕ(~x) =⇒ ϕ(~a(~x)),

3We call a formula δ a loop invariant of a loop Tloop if
ϕ(~x) ∧ δ(~x) =⇒ δ(~a(~x)) is valid.

then the following acceleration technique is exact:

Tloop 7→ ~x′ = ~an(~x) ∧ ϕ(~x)

We will prove the more general Theorem 8 in
Section 5.

Example 1 As a minimal example, Theorem 2 acceler-
ates

while x > 0 do x← x+ 1 (Tinc)
to x′ = x+ n ∧ x > 0. 4

3.2 Acceleration via Decrease and
Increase

Both acceleration techniques presented so far have
been generalized in [21].

Theorem 3 (Acceleration via Monotonicity [21]) If

ϕ(~x) ⇐⇒ ϕ1(~x) ∧ ϕ2(~x) ∧ ϕ3(~x),

ϕ1(~x) =⇒ ϕ1(~a(~x)),

ϕ1(~x) ∧ ϕ2(~a(~x)) =⇒ ϕ2(~x), and

ϕ1(~x) ∧ ϕ2(~x) ∧ ϕ3(~x) =⇒ ϕ3(~a(~x)),

then the following acceleration technique is exact:

Tloop 7→ ~x′ = ~an(~x) ∧ ϕ1(~x) ∧ ϕ2(~an−1(~x)) ∧ ϕ3(~x)

Proof Immediate consequence of Theorem 5 and
Remark 1, which will be proven in Sections 4 and 5.

�

Here, ϕ1 and ϕ3 are again invariants of the loop.
Thus, as in Theorem 2 it suffices to require that
they hold before entering the loop. On the other
hand, ϕ2 needs to satisfy a similar condition as in
Theorem 1, and thus it suffices to require that ϕ2

holds before the last iteration. In such cases, i.e., if

ϕ1(~x) ∧ ϕ2(~a(~x)) =⇒ ϕ2(~x)

is valid, we also say that ϕ2 is a converse invariant
(w.r.t. ϕ1). It is easy to see that Theorem 3 is
equivalent to Theorem 1 if ϕ1 ≡ ϕ3 ≡ > (where
> denotes logical truth) and it is equivalent to
Theorem 2 if ϕ2 ≡ ϕ3 ≡ >.

Example 2 With Theorem 3, Tnon-dec can be acceler-
ated to(

x′
1

x′
2

)
=
(
x1−n
x2+n

)
∧ x2 > 0 ∧ x1 − n+ 1 > 0 (ψnon-dec)
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by choosing ϕ1 := x2 > 0, ϕ2 := x1 > 0, and ϕ3 := >.
4

Theorem 3 naturally raises the question: Why
do we need two invariants? To see this, consider a
restriction of Theorem 3 where ϕ3 := >. It would
fail for a loop like

while x1 > 0 ∧ x2 > 0 do ( x1
x2

)←
(
x1+x2
x2−1

)
(T2-invs)

which can easily be handled by Theorem 3 (by
choosing ϕ1 := >, ϕ2 := x2 > 0, and ϕ3 := x1 >
0). The problem is that the converse invariant
x2 > 0 is needed to prove invariance of x1 > 0.
Similarly, a restriction of Theorem 3 where ϕ1 := >
would fail for the following variant of T2-invs:

while x1 > 0 ∧ x2 > 0 do ( x1
x2

)←
(
x1−x2
x2+1

)
Here, the problem is that the invariant x2 > 0 is
needed to prove converse invariance of x1 > 0.

3.3 Acceleration via Metering
Functions

Another approach for loop acceleration uses meter-
ing functions, a variation of classical ranking
functions from termination and complexity analy-
sis [27]. While ranking functions give rise to upper
bounds on the runtime of loops, metering functions
provide lower runtime bounds, i.e., the definition
of a metering function mf : Zd → Q ensures that
for each ~x ∈ Zd, the loop under consideration can
be applied at least dmf (~x)e times.

Definition 3 (Metering Function [27]) We call a func-
tion mf : Zd → Q a metering function if the following
holds:

ϕ(~x) =⇒ mf (~x)−mf (~a(~x)) ≤ 1 and

¬ϕ(~x) =⇒ mf (~x) ≤ 0 (mf-bounded)

We can use metering functions to accelerate
loops as follows:

Theorem 4 (Acceleration via Metering Functions [26,
27]) Let mf be a metering function for Tloop. Then the
following acceleration technique is sound:

Tloop 7→ ~x′ = ~an(~x) ∧ n < mf (~x) + 1

We will prove the more general Theorem 9 in
Section 5. In contrast to [26, Thm. 3.8] and
[27, Thm. 7], the acceleration technique from
Theorem 4 does not conjoin the loop condition ϕ
to the result, which turned out to be superfluous.
The reason is that 0 < n < mf (~x) + 1 implies ϕ
due to (mf-bounded).

Example 3 Using the metering function (x1, x2) 7→ x1,
Theorem 4 accelerates Texp to((

x′
1

x′
2

)
=
(
x1−n
2n·x2

)
∧ n < x1 + 1

)
≡ ψexp.

4

However, synthesizing non-trivial (i.e., non-
constant) metering functions is challenging. More-
over, unless the number of iterations of Tloop equals
dmf (~x)e for all ~x ∈ Zd, acceleration via metering
functions is not exact.

Linear metering functions can be synthesized
via Farkas’ Lemma and SMT solving [27]. How-
ever, many loops have only trivial linear metering
functions. To see this, reconsider Tnon-dec. Here,
(x1, x2) 7→ x1 is not a metering function as Tnon-dec
cannot be iterated at least x1 times if x2 ≤ 0.
Thus, [26] proposes a refinement of [27] based on
metering functions of the form ~x 7→ Iξ(~x) · f(~x)
where ξ ∈ FOQF (C (~x)) and f is linear. With this
improvement, the metering function

(x1, x2) 7→ Ix2>0(x2) · x1

can be used to accelerate Tnon-dec to(
x′
1

x′
2

)
=
(
x1−n
x2+n

)
∧ x2 > 0 ∧ n < x1 + 1.

4 A Calculus for Modular
Loop Acceleration

All acceleration techniques presented so far are
monolithic: Either they accelerate a loop success-
fully or they fail completely. In other words, we
cannot combine several techniques to accelerate a
single loop. To this end, we now present a calculus
that repeatedly applies acceleration techniques to
simplify an acceleration problem resulting from a
loop Tloop until it is solved and hence gives rise to
a suitable ψ ∈ FOQF (C (~y)) which approximates
or is equivalent to Tloop.
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Definition 4 (Acceleration Problem) A tuple

Jψ | qϕ | ϕ̂K~a
where ψ ∈ FOQF (C (~y)), qϕ, ϕ̂ ∈ FOQF (C (~x)), and

~a : Zd → Zd is an acceleration problem. It is consistent
if ψ approximates 〈qϕ,~a〉, exact if ψ is equivalent to
〈qϕ,~a〉, and solved if it is consistent and ϕ̂ ≡ >. The
canonical acceleration problem of a loop Tloop is

q
~x′ = ~an(~x)

∣∣ > ∣∣ ϕ(~x)
y
~a
.

Example 4 The canonical acceleration problem of
Tnon-dec is

r(
x′
1

x′
2

)
=
(
x1−n
x2+n

) ∣∣∣ > ∣∣∣ x1 > 0 ∧ x2 > 0
z(

x1−1
x2+1

) .
4

The first component ψ of an acceleration prob-
lem Jψ | qϕ | ϕ̂K~a is the partial result that has been
computed so far. The second component qϕ corre-
sponds to the part of the loop condition that has
already been processed successfully. As our calcu-
lus preserves consistency, ψ always approximates
〈qϕ,~a〉. The third component is the part of the loop
condition that remains to be processed, i.e., the
loop 〈ϕ̂,~a〉 still needs to be accelerated. The goal
of our calculus is to transform a canonical into a
solved acceleration problem.

More specifically, whenever we have simplified
a canonical acceleration problem

J~x′ = ~an(~x) | > | ϕ(~x)K~a

to

Jψ1(~y) | qϕ(~x) | ϕ̂(~x)K~a ,
then ϕ ≡ qϕ ∧ ϕ̂ and

ψ1 implies ~x −→n
〈 qϕ,~a〉 ~x

′.

Then it suffices to find some ψ2 ∈ FOQF (C (~y))
such that

~x −→n
〈 qϕ,~a〉 ~x

′ ∧ ψ2 implies ~x −→n
〈ϕ̂,~a〉 ~x

′. (1)

The reason is that we have −→〈 qϕ,~a〉 ∩ −→〈ϕ̂,~a〉 =
−→〈 qϕ∧ϕ̂,~a〉 = −→〈ϕ,~a〉 and thus

ψ1 ∧ ψ2 implies ~x −→n
〈ϕ,~a〉 ~x

′,

i.e., ψ1 ∧ ψ2 approximates Tloop.

Note that the acceleration techniques presented
so far would map 〈ϕ̂,~a〉 to some ψ2 ∈ FOQF (C (~y))
such that

ψ2 implies ~x −→n
〈ϕ̂,~a〉 ~x

′, (2)

which does not use the information that we have
already accelerated 〈qϕ,~a〉. In Section 5, we will
adapt all acceleration techniques from Section 3
to search for some ψ2 ∈ FOQF (C (~y)) that satis-
fies (1) instead of (2), i.e., we will turn them into
conditional acceleration techniques.

Definition 5 (Conditional Acceleration) We call a
partial function

accel : Loop × FOQF (C (~x)) ⇀ FOQF (C (~y))

a conditional acceleration technique. It is sound if

~x −→n
〈 qϕ,~a〉 ~x

′∧accel(〈χ,~a〉, qϕ) implies ~x −→n
〈χ,~a〉 ~x

′

for all (〈χ,~a〉, qϕ) ∈ dom(accel), ~x, ~x′ ∈ Zd, and n > 0.
It is exact if additionally

~x −→n
〈χ∧ qϕ,~a〉 ~x

′ implies accel(〈χ,~a〉, qϕ)

for all (〈χ,~a〉, qϕ) ∈ dom(accel), ~x, ~x′ ∈ Zd, and n > 0.

Note that every acceleration technique gives
rise to a conditional acceleration technique in a
straightforward way (by disregarding the second
argument qϕ of accel in Definition 5). Soundness and
exactness can be lifted directly to the conditional
setting.

Lemma 1 (Acceleration as Conditional Acceleration)
Let accel0 be an acceleration technique following Def-
inition 1 such that accel0(〈χ,~a〉) =⇒ ~x′ = ~an(~x)
is valid whenever 〈χ,~a〉 ∈ dom(accel0). Then for
the conditional acceleration technique accel given by
accel(T , qϕ) := accel0(T ), the following holds:

1. accel is sound if and only if accel0 is sound

2. accel is exact if and only if accel0 is exact

Proof For the “if” direction of 1., we need to show that

~x −→n
〈 qϕ,~a〉 ~x

′∧accel(〈χ,~a〉, qϕ) implies ~x −→n
〈χ,~a〉 ~x

′

if accel0 is a sound acceleration technique. Thus:

~x −→n
〈 qϕ,~a〉 ~x

′ ∧ accel(〈χ,~a〉, qϕ)

=⇒ accel(〈χ,~a〉, qϕ)

⇐⇒ accel0(〈χ,~a〉) (by definition of accel)
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=⇒ ~x −→n
〈χ,~a〉 ~x

′ (by soundness of accel0)

For the “only if” direction of 1., we need to show
that

accel0(〈ϕ,~a〉) implies ~x −→n
〈ϕ,~a〉 ~x

′

if accel is a sound conditional acceleration technique.
Thus:

accel0(〈ϕ,~a〉)

⇐⇒ accel0(〈ϕ,~a〉) ∧ ~x′ = ~an(~x)
(by the prerequisites of the lemma)

⇐⇒ ~x −→n
〈>,~a〉 ~x

′ ∧ accel0(〈ϕ,~a〉)

⇐⇒ ~x −→n
〈>,~a〉 ~x

′ ∧ accel(〈ϕ,~a〉,>)

(by definition of accel)

=⇒ ~x −→n
〈ϕ,~a〉 ~x

′ (by soundness of accel)

For the “if” direction of 2., soundness of accel
follows from 1. We still need to show that

~x −→n
〈χ∧ qϕ,~a〉 ~x

′ implies accel(〈χ,~a〉, qϕ)

if accel0 is an exact acceleration technique. Thus:

~x −→n
〈χ∧ qϕ,~a〉 ~x

′

=⇒ ~x −→n
〈χ,~a〉 ~x

′

⇐⇒ accel0(〈χ,~a〉) (by exactness of accel0)

⇐⇒ accel(〈χ,~a〉, qϕ) (by definition of accel)

For the “only if” direction of 2., soundness of accel0
follows from 1. We still need to show that

~x −→n
〈ϕ,~a〉 ~x

′ implies accel0(〈ϕ,~a〉)
if accel is an exact conditional acceleration technique.
Thus:

~x −→n
〈ϕ,~a〉 ~x

′

=⇒ accel(〈ϕ,~a〉,>) (by exactness of accel)

⇐⇒ accel0(〈ϕ,~a〉) (by definition of accel)

�

We are now ready to present our acceleration
calculus, which combines loop acceleration tech-
niques in a modular way. In the following, w.l.o.g.
we assume that formulas are in CNF, and we iden-
tify the formula

∧k
i=1 Ci with the set of clauses

{Ci | 1 ≤ i ≤ k}.

Definition 6 (Acceleration Calculus) The relation  
on acceleration problems is defined by the rule

∅ 6= χ ⊆ ϕ̂ accel(〈χ,~a〉, qϕ) = ψ2

Jψ1 | qϕ | ϕ̂K~a  (e) Jψ1 ∪ ψ2 | qϕ ∪ χ | ϕ̂ \ χK~a

where accel is a sound conditional acceleration tech-
nique. A  -step is exact (written  e) if accel is
exact.

So our calculus allows us to pick a subset χ
(of clauses) from the yet unprocessed condition
ϕ̂ and “move” it to qϕ, which has already been
processed successfully. To this end, 〈χ,~a〉 needs
to be accelerated by a conditional acceleration
technique, i.e., when accelerating 〈χ,~a〉 we may
assume ~x −→n

〈 qϕ,~a〉 ~x
′.

With Lemma 1, our calculus allows for com-
bining arbitrary existing acceleration techniques
without adapting them. However, many acceler-
ation techniques can easily be turned into more
sophisticated conditional acceleration techniques
(see Section 5), which increases the power of our
approach.

Example 5 We continue Example 4, where we fix
χ := x1 > 0 for the first acceleration step. Thus, we

first need to accelerate the loop
〈
x1 > 0,

(
x1−1
x2+1

)〉
to enable a first  -step, and we need to accelerate〈
x2 > 0,

(
x1−1
x2+1

)〉
afterwards. The resulting deriva-

tion is shown in Figure 1. Thus, we successfully
constructed the formula ψnon-dec, which is equivalent
to Tnon-dec. Note that here neither of the two steps ben-
efit from the component ϕ̂ of the acceleration problems.
We will introduce more powerful conditional accelera-
tion techniques that benefit from ϕ̂ in Section 5. 4

The crucial property of our calculus is the
following.

Lemma 2 The relation  preserves consistency, and
the relation  e preserves exactness.

Proof For the first part of the lemma, assume

Jψ1 | qϕ | ϕ̂K~a  Jψ1 ∪ ψ2 | qϕ ∪ χ | ϕ̂ \ χK~a
where Jψ1 | qϕ | ϕ̂K~a is consistent and

accel(〈χ,~a〉, qϕ) = ψ2.

We get

ψ1 ∧ ψ2

=⇒ ~x −→n
〈 qϕ,~a〉 ~x

′ ∧ ψ2

=⇒ ~x −→n
〈 qϕ,~a〉 ~x

′ ∧ ~x −→n
〈χ,~a〉 ~x

′

⇐⇒ ~x −→n
〈 qϕ∧χ,~a〉 ~x

′
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r
ψinitnon-dec :=

(
x′
1

x′
2

)
=
(
x1−n
x2+n

) ∣∣∣ > ∣∣∣ x1 > 0 ∧ x2 > 0
z(

x1−1
x2+1

)
 e

q
ψinitnon-dec ∧ x1 − n+ 1 > 0

∣∣ x1 > 0
∣∣ x2 > 0

y(
x1−1
x2+1

) (Theorem 1)

 e

q
ψinitnon-dec ∧ x1 − n+ 1 > 0 ∧ x2 > 0

∣∣ x1 > 0 ∧ x2 > 0
∣∣ >y(

x1−1
x2+1

) (Theorem 2)

= Jψnon-dec | x1 > 0 ∧ x2 > 0 | >K( x1−1
x2+1

)

Fig. 1:  -derivation for Tnon-dec

The first step holds since Jψ1 | qϕ | ϕ̂K~a is consistent
and the second step holds since accel is sound. This
proves consistency of

Jψ1 ∧ ψ2 | qϕ ∧ χ | ϕ̂ \ χK~a
= Jψ1 ∪ ψ2 | qϕ ∪ χ | ϕ̂ \ χK~a .

For the second part of the lemma, assume

Jψ1 | qϕ | ϕ̂K~a  e Jψ1 ∪ ψ2 | qϕ ∪ χ | ϕ̂ \ χK~a
where Jψ1 | qϕ | ϕ̂K~a is exact and accel(〈χ,~a〉, qϕ) = ψ2.
We get

~x −→n
〈 qϕ∧χ,~a〉 ~x

′

⇐⇒ ~x −→n
〈 qϕ∧χ,~a〉 ~x

′ ∧ ψ2 (by exactness of accel)

⇐⇒ ~x −→n
〈 qϕ,~a〉 ~x

′ ∧ ψ2

⇐⇒ ψ1 ∧ ψ2 (by exactness of Jψ1 | qϕ | ϕ̂K~a)

which proves exactness of

Jψ1 ∪ ψ2 | qϕ ∪ χ | ϕ̂ \ χK~a .
�

Then the correctness of our calculus follows
immediately. The reason is that

J~x′ = ~an(~x) | > | ϕ(~x)K~a  
∗
(e) Jψ(~y) | qϕ(~x) | >K~a

implies ϕ ≡ qϕ.

Theorem 5 (Correctness of  ) Ifq
~x′ = ~an(~x)

∣∣ > ∣∣ ϕ(~x)
y
~a
 ∗ Jψ(~y) | qϕ(~x) | >K~a ,

then ψ approximates Tloop. If
q
~x′ = ~an(~x)

∣∣ > ∣∣ ϕ(~x)
y
~a
 ∗e Jψ(~y) | qϕ(~x) | >K~a ,

then ψ is equivalent to Tloop.

Termination of our calculus is trivial, as the
size of the third component ϕ̂ of the acceleration
problem is decreasing.

Theorem 6 (Well-Foundedness of  ) The relation
 is well-founded.

5 Conditional Acceleration
Techniques

We now show how to turn the acceleration tech-
niques from Section 3 into conditional acceleration
techniques, starting with acceleration via mono-
tonic decrease.

Theorem 7 (Conditional Acceleration via Monotonic
Decrease) If

qϕ(~x) ∧ χ(~a(~x)) =⇒ χ(~x), (3)

then the following conditional acceleration technique is
exact:

(〈χ,~a〉, qϕ) 7→ ~x′ = ~an(~x) ∧ χ(~an−1(~x))

Proof For soundness, we need to prove

~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧ χ(~am−1(~x))

=⇒ ~x −→m
〈χ,~a〉 ~a

m(~x) (4)

for all m > 0. We use induction on m. If m = 1, then

~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧ χ(~am−1(~x))

=⇒ χ(~x) (as m = 1)

⇐⇒ ~x −→〈χ,~a〉 ~a(~x)

⇐⇒ ~x −→m
〈χ,~a〉 ~a

m(~x). (as m = 1)

In the induction step, we have

~x −→m+1
〈 qϕ,~a〉 ~a

m+1(~x) ∧ χ(~am(~x))

=⇒ ~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧ χ(~am(~x))

⇐⇒ ~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧ qϕ(~am−1(~x)) ∧ χ(~am(~x))

(as m > 0)

=⇒ ~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧ χ(~am−1(~x)) ∧ χ(~am(~x))

(due to (3))

=⇒ ~x −→m
〈χ,~a〉 ~a

m(~x) ∧ χ(~am(~x))

(by the induction hypothesis (4))
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⇐⇒ ~x −→m+1
〈χ,~a〉 ~a

m+1(~x).

For exactness, we need to prove

~x −→m
〈χ∧ qϕ,~a〉 ~a

m(~x) =⇒ χ(~am−1(~x))

for all m > 0, which is trivial. �

So we just add qϕ to the premise of the implica-
tion that needs to be checked to apply acceleration
via monotonic decrease. Theorem 2 can be adapted
analogously.

Theorem 8 (Conditional Acceleration via Monotonic
Increase) If

qϕ(~x) ∧ χ(~x) =⇒ χ(~a(~x)), (5)

then the following conditional acceleration technique is
exact:

(〈χ,~a〉, qϕ) 7→ ~x′ = ~an(~x) ∧ χ(~x)

Proof For soundness, we need to prove

~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧ χ(~x) =⇒ ~x −→m
〈χ,~a〉 ~a

m(~x) (6)

for all m > 0. We use induction on m. If m = 1, then

~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧ χ(~x)

=⇒ ~x −→〈χ,~a〉 ~a(~x)

⇐⇒ ~x −→m
〈χ,~a〉 ~a

m(~x). (as m = 1)

In the induction step, we have

~x −→m+1
〈 qϕ,~a〉 ~a

m+1(~x) ∧ χ(~x)

=⇒ ~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧ χ(~x)

=⇒ ~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧ ~x −→m
〈χ,~a〉 ~a

m(~x)

(by the induction hypothesis (6))

=⇒ ~x −→m
〈χ,~a〉 ~a

m(~x) ∧ qϕ(~am−1(~x)) ∧ χ(~am−1(~x))

(as m > 0)

=⇒ ~x −→m
〈χ,~a〉 ~a

m(~x) ∧ χ(~am(~x)) (due to (5))

⇐⇒ ~x −→m+1
〈χ,~a〉 ~a

m+1(~x).

For exactness, we need to prove

~x −→m
〈χ∧ qϕ,~a〉 ~a

m(~x) =⇒ χ(~x),

for all m > 0, which is trivial. �

Example 6 For the canonical acceleration problem of
T2-invs, we obtain the derivation shown in Figure 2,

where ~a2-invs :=
(
x1+x2
x2−1

)
. While we could also use

Theorem 1 for the first step, Theorem 2 is inapplicable
in the second step. The reason is that we need the
converse invariant x2 > 0 to prove invariance of x1 > 0.

4

It is not a coincidence that T2-invs, which could
also be accelerated with acceleration via mono-
tonicity (see Theorem 3) directly, can be handled
by applying our novel calculus with Theorems 7
and 8.

Remark 1 If applying acceleration via monotonicity to
Tloop yields ψ, then

q
~x′ = ~an(~x)

∣∣ > ∣∣ ϕ(~x)
y
~a
 ≤3e Jψ(~y) | ϕ(~x) | >K~a

where either Theorem 7 or Theorem 8 is applied in
each  e-step.

Proof As Theorem 3 applies, we have

ϕ(~x) ≡ ϕ1(~x) ∧ ϕ2(~x) ∧ ϕ3(~x)

where

ϕ1(~x) =⇒ ϕ1(~a(~x)) ∧ (7)

ϕ1(~x) ∧ ϕ2(~a(~x)) =⇒ ϕ2(~x) ∧ (8)

ϕ1(~x) ∧ ϕ2(~x) ∧ ϕ3(~x) =⇒ ϕ3(~a(~x)). (9)

If ϕ1 6= >, then Theorem 8 applies to 〈ϕ1,~a〉 with
qϕ := > due to (7), and we obtain:

q
~x′ = ~an(~x)

∣∣ > ∣∣ ϕ(~x)
y
~a

=
q
~x′ = ~an(~x)

∣∣ > ∣∣ ϕ1(~x) ∧ ϕ2(~x) ∧ ϕ3(~x)
y
~a

 e
q
~x′ = ~an(~x) ∧ ϕ1(~x)

∣∣ ϕ1(~x)
∣∣ ϕ2(~x) ∧ ϕ3(~x)

y
~a

= Jψ1(~y) | ϕ1(~x) | ϕ2(~x) ∧ ϕ3(~x)K~a

Next, if ϕ2 6= >, then Theorem 7 applies to 〈ϕ2,~a〉
with qϕ := ϕ1 due to (8) and we obtain:

Jψ1(~y) | ϕ1(~x) | ϕ2(~x) ∧ ϕ3(~x)K~a

 e

r
ψ1(~y) ∧ ϕ2(~an−1(~x))

∣∣∣ ϕ1(~x) ∧ ϕ2(~x)
∣∣∣ ϕ3(~x)

z

~a

= Jψ2(~y) | ϕ1(~x) ∧ ϕ2(~x) | ϕ3(~x)K~a

Finally, if ϕ3 6= >, then Theorem 8 applies to 〈ϕ3,~a〉
with qϕ := ϕ1 ∧ ϕ2 due to (9) and we obtain

Jψ2(~y) | ϕ1(~x) ∧ ϕ2(~x) | ϕ3(~x)K~a
 e Jψ2(~y) ∧ ϕ3(~x) | ϕ(~x) | >K~a

= Jψ(~y) | ϕ(~x) | >K~a .

�

Thus, there is no need for a conditional vari-
ant of acceleration via monotonicity. Note that
combining Theorems 7 and 8 with our calcu-
lus is also useful for loops where acceleration via
monotonicity is inapplicable.
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J~x′ = ~an2-invs(~x) | > | x1 > 0 ∧ x2 > 0K~a2-invs

 e J~x′ = ~an2-invs(~x) ∧ x2 − n+ 1 > 0 | x2 > 0 | x1 > 0K~a2-invs
(Theorem 7)

 e J~x′ = ~an2-invs(~x) ∧ x2 − n+ 1 > 0 ∧ x1 > 0 | x2 > 0 ∧ x1 > 0 | >K~a2-invs
(Theorem 8)

Fig. 2:  -derivation for T2-invs

q
ψinit2-c-invs

∣∣ > ∣∣ ϕ2-c-invs

y
~a2-c-invs

 e

r
ψinit2-c-invs ∧ x

(n−1)
1 > 0

∣∣∣ x1 > 0
∣∣∣ x2 > 0 ∧ x3 > 0

z

~a2-c-invs

(Theorem 7)

 e

r
ψinit2-c-invs ∧ x

(n−1)
1 > 0 ∧ x2 > 0

∣∣∣ x1 > 0 ∧ x2 > 0
∣∣∣ x3 > 0

z

~a2-c-invs

(Theorem 8)

 e

r
ψinit2-c-invs ∧ x

(n−1)
1 > 0 ∧ x2 > 0 ∧ x(n−1)3 > 0

∣∣∣ ϕ2-c-invs

∣∣∣ >z

~a2-c-invs

(Theorem 7)

Fig. 3:  -derivation for T2-c-invs

Example 7 Consider the following loop, which can be
accelerated by splitting its guard into one invariant
and two converse invariants.

while x1 > 0 ∧ x2 > 0 ∧ x3 > 0 do( x1
x2
x3

)
←
(
x1−1
x2+x1
x3−x2

)
(T2-c-invs)

Let

ϕ2-c-invs := x1 > 0 ∧ x2 > 0 ∧ x3 > 0,

~a2-c-invs :=

(
x1−1
x2+x1
x3−x2

)
,

ψinit2-c-invs := ~x′ = ~an2-c-invs(~x),

and let x
(m)
i be the ith component of ~am2-c-invs(~x).

Starting with the canonical acceleration problem of
T2-c-invs, we obtain the derivation shown in Figure 3.

4

Finally, we present a variant of Theorem 4 for
conditional acceleration. The idea is similar to the
approach for deducing metering functions of the
form ~x 7→ I

qϕ(~x) · f(~x) from [26] (see Section 3.3
for details). But in contrast to [26], in our setting
the “conditional” part qϕ does not need to be an
invariant of the loop.

Theorem 9 (Conditional Acceleration via Metering
Functions) Let mf : Zd → Q. If

qϕ(~x) ∧ χ(~x) =⇒ mf (~x)−mf (~a(~x)) ≤ 1 and (10)

qϕ(~x) ∧ ¬χ(~x) =⇒ mf (~x) ≤ 0, (11)

then the following conditional acceleration technique is
sound:

(〈χ,~a〉, qϕ) 7→ ~x′ = ~an(~x) ∧ n < mf (~x) + 1

Proof We need to prove

~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧m < mf (~x) + 1

=⇒ ~x −→m
〈χ,~a〉 ~a

m(~x) (12)

for all m > 0. Note that (11) is equivalent to

mf (~x) > 0 =⇒ ¬qϕ(~x) ∨ χ(~x). (13)

We use induction on m. If m = 1, then

~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧m < mf (~x) + 1

⇐⇒ qϕ(~x) ∧mf (~x) > 0 (as m = 1)

=⇒ χ(~x) (due to (13))

⇐⇒ ~x −→〈χ,~a〉 ~a(~x)

⇐⇒ ~x −→m
〈χ,~a〉 ~a

m(~x) (as m = 1)

In the induction step, assume

~x −→m+1
〈 qϕ,~a〉 ~a

m+1(~x) ∧m < mf (~x). (14)

Then we have:

(14)

=⇒ ~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧m < mf (~x)

=⇒ ~x −→m
〈 qϕ,~a〉 ~a

m(~x) ∧m < mf (~x) ∧
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~x −→m
〈χ,~a〉 ~a

m(~x)

(due to the induction hypothesis (12))

⇐⇒ m < mf (~x) ∧ ~x −→m
〈χ,~a〉 ~a

m(~x) ∧

∀i ∈ [0,m− 1].
(

qϕ(~ai(~x)) ∧ χ(~ai(~x))
)

=⇒ m < mf (~x) ∧ ~x −→m
〈χ,~a〉 ~a

m(~x) ∧

mf (~x)−mf (~am(~x)) ≤ m (due to (10))

=⇒ ~x −→m
〈χ,~a〉 ~a

m(~x) ∧mf (~am(~x)) > 0

(as m < mf (~x))

=⇒ ~x −→m
〈χ,~a〉 ~a

m(~x) ∧ (¬qϕ(~am(~x)) ∨ χ(~am(~x)))

(due to (13))

⇐⇒ ~x −→m
〈χ,~a〉 ~a

m(~x) ∧ χ(~am(~x))

(as (14) implies qϕ(~am(~x)))

⇐⇒ ~x −→m+1
〈χ,~a〉 ~a

m+1(~x)

�

6 Acceleration via Eventual
Monotonicity

The combination of the calculus from Section 4
and the conditional acceleration techniques from
Section 5 still fails to handle certain interesting
classes of loops. Thus, to improve the appli-
cability of our approach we now present two
new acceleration techniques based on eventual
monotonicity.

6.1 Acceleration via Eventual
Decrease

All (combinations of) techniques presented so far
fail for the following example.

while x1 > 0 do ( x1
x2

)←
(
x1+x2
x2−1

)
(Tev-dec)

The reason is that x1 does not behave monoton-
ically, i.e., x1 > 0 is neither an invariant nor a
converse invariant. Essentially, Tev-dec proceeds in
two phases: In the first (optional) phase, x2 is pos-
itive and hence the value of x1 is monotonically
increasing. In the second phase, x2 is non-positive
and consequently the value of x1 decreases (weakly)
monotonically. The crucial observation is that once
the value of x1 decreases, it can never increase
again. Thus, despite the non-monotonic behavior
of x1, it suffices to require that x1 > 0 holds before
the first and before the nth loop iteration to ensure
that the loop can be iterated at least n times.

Theorem 10 (Acceleration via Eventual Decrease)

If ϕ(~x) ≡
∧k
i=1 Ci where each clause Ci contains an

inequation ei(~x) > 0 such that

ei(~x) ≥ ei(~a(~x)) =⇒ ei(~a(~x)) ≥ ei(~a2(~x)),

then the following acceleration technique is sound:

Tloop 7→ ~x′ = ~an(~x) ∧
k∧
i=1

ei(~x) > 0 ∧ ei(~an−1(~x)) > 0

If Ci ≡ ei > 0 for all i ∈ [1, k], then it is exact.

We will prove the more general Theorem 11 later
in this section.

Example 8 With Theorem 10, we can accelerate Tev-dec
to (

x′
1

x′
2

)
=

(
n−n2

2 +x2·n+x1

x2−n

)
∧ x1 > 0

∧ n−1−(n−1)2
2 + x2 · (n− 1) + x1 > 0

as we have

(x1 ≥ x1 + x2) ≡ (0 ≥ x2) =⇒
(0 ≥ x2 − 1) ≡ (x1 + x2 ≥ x1 + x2 + x2 − 1).

4

Turning Theorem 10 into a conditional acceler-
ation technique is straightforward.

Theorem 11 (Conditional Acceleration via Eventual

Decrease) If we have χ(~x) ≡
∧k
i=1 Ci where each

clause Ci contains an inequation ei(~x) > 0 such that

qϕ(~x) ∧ ei(~x) ≥ ei(~a(~x)) =⇒ ei(~a(~x)) ≥ ei(~a2(~x)), (15)

then the following conditional acceleration technique is
sound:

(〈χ,~a〉, qϕ) 7→
(
~x′ = ~an(~x)

∧
k∧
i=1

ei(~x) > 0 ∧ ei(~an−1(~x)) > 0
) (16)

If Ci ≡ ei > 0 for all i ∈ [1, k], then it is exact.

Proof For soundness, we need to show(
~x −→n

〈 qϕ,~a〉 ~a
n(~x)

∧
k∧
i=1

ei(~x) > 0 ∧ ei(~an−1(~x)) > 0
)

=⇒ ~x −→n
〈χ,~a〉 ~a

n(~x).

(17)
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Assume

~x −→n
〈 qϕ,~a〉 ~a

n(~x) ∧
k∧
i=1

ei(~x) > 0 ∧ ei(~an−1(~x)) > 0.

(18)
This implies

n−1∧
i=0

qϕ(~ai(~x)). (19)

In the following, we show

k∧
i=1

n−1∧
m=0

ei(~a
m(~x)) ≥ min(ei(~x), ei(~a

n−1(~x))). (20)

Then the claim (17) follows, as we have

k∧
i=1

n−1∧
m=0

ei(~a
m(~x)) ≥ min(ei(~x), ei(~a

n−1(~x)))

=⇒
k∧
i=1

n−1∧
m=0

ei(~a
m(~x)) > 0 (due to (18))

=⇒
n−1∧
m=0

χ(~am(~x)) (by definition of ei)

⇐⇒ ~x −→n
〈χ,~a〉 ~a

n(~x).

Let i be arbitrary but fixed, let e = ei, and let j be
the minimal natural number with

e(~aj(~x)) = max{e(~am(~x)) | m ∈ [0, n− 1]}. (21)

We first prove

e(~am(~x)) < e(~am+1(~x)) (22)

for all m ∈ [0, j − 1] by backward induction on m. If
m = j − 1, then

e(~am(~x))

= e(~aj−1(~x)) (as m = j − 1)

< e(~aj(~x)) (due to (21) as j is minimal)

= e(~am+1(~x)). (as m = j − 1)

For the induction step, note that (15) implies

e(~a(~x)) < e(~a2(~x)) =⇒ ¬qϕ(~x) ∨ e(~x) < e(~a(~x)). (23)

Then we have

e(~am+1(~x)) < e(~am+2(~x))
(due to the induction hypothesis (22))

=⇒ ¬qϕ(~am(~x)) ∨ e(~am(~x)) < e(~am+1(~x)) (by (23))

=⇒ e(~am(~x)) < e(~am+1(~x)). (by (19))

Now we prove

e(~am(~x)) ≥ e(~am+1(~x)) (24)

for all m ∈ [j, n− 1] by induction on m. If m = j, then

e(~am(~x))

= e(~aj(~x)) (as m = j)

= max{e(~am(~x)) | m ∈ [0, n− 1]} (due to (21))

≥ e(~aj+1(~x))

= e(~am+1(~x)). (as m = j)

In the induction step, we have

e(~am(~x)) ≥ e(~am+1(~x))
(due to the induction hypothesis (24))

=⇒ e(~am+1(~x)) ≥ e(~am+2(~x)).
(due to (19) and (15))

As (22) and (24) imply

n−1∧
m=0

e(~am(~x)) ≥ min(e(~x), e(~an−1(~x))),

this finishes the proof of (20) and hence shows (17).

For exactness, assume χ(~x) :=
∧k
i=1 ei(~x) > 0. We

have

~x −→n
〈χ∧ qϕ,~a〉 ~a

n(~x)

=⇒ χ(~x) ∧ χ(~an−1(~x))

⇐⇒
k∧
i=1

ei(~x) > 0 ∧ ei(~an−1(~x)) > 0.

�

Example 9 Consider the following variant of Tev-dec

while x1 > 0 ∧ x3 > 0 do
( x1
x2
x3

)
←
( x1+x2
x2−x3
x3

)
,

i.e., we have ~a :=
( x1+x2
x2−x3
x3

)
. Starting with its canonical

acceleration problem, we get the derivation shown in
Figure 4, where the second step can be performed via
Theorem 11 as

( qϕ(~x) ∧ e(~x) ≥ e(~a(~x)))

≡ (x3 > 0 ∧ x1 ≥ x1 + x2)

≡ (x3 > 0 ∧ 0 ≥ x2)

implies

(0 ≥ x2 − x3)

≡ (x1 + x2 ≥ x1 + x2 + x2 − x3)

≡ (e(~a(~x)) ≥ e(~a2(~x))).

4

6.2 Acceleration via Eventual
Increase

Still, all (combinations of) techniques presented so
far fail for

while x1 > 0 do ( x1
x2

)←
(
x1+x2
x2+1

)
. (Tev-inc)
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J~x′ = ~an(~x) | > | x1 > 0 ∧ x3 > 0K~a
 e J~x′ = ~an(~x) ∧ x3 > 0 | x3 > 0 | x1 > 0K~a (Theorem 8)

 e

r
~x′ = ~an(~x) ∧ x3 > 0 ∧ x1 > 0 ∧ x(n−1)1 > 0

∣∣∣ x3 > 0 ∧ x1 > 0
∣∣∣ >z

~a
(Theorem 11)

Fig. 4:  -derivation for Example 9

As in the case of Tev-dec, the value of x1 does not
behave monotonically, i.e., x1 > 0 is neither an
invariant nor a converse invariant. However, this
time x1 is eventually increasing, i.e., once x1 starts
to grow, it never decreases again. Thus, in this
case it suffices to require that x1 is positive and
(weakly) increasing.

Theorem 12 (Acceleration via Eventual Increase) If

ϕ(~x) ≡
∧k
i=1 Ci where each clause Ci contains an

inequation ei(~x) > 0 such that

ei(~x) ≤ ei(~a(~x)) =⇒ ei(~a(~x)) ≤ ei(~a2(~x)),

then the following acceleration technique is sound:

Tloop 7→ ~x′ = ~an(~x) ∧
k∧
i=1

0 < ei(~x) ≤ ei(~a(~x))

We prove the more general Theorem 13 later in
this section.

Example 10 With Theorem 12, we can accelerate
Tev-inc to(

x′
1

x′
2

)
=

(
n2−n

2 +x2·n+x1

x2+n

)
∧ 0 < x1 ≤ x1 + x2

(ψev-inc)
as we have

(x1 ≤ x1 + x2) ≡ (0 ≤ x2) =⇒
(0 ≤ x2 + 1) ≡ (x1 + x2 ≤ x1 + x2 + x2 + 1).

4

However, Theorem 12 is not exact, as the result-
ing formula only covers program runs where each
ei behaves monotonically. So ψev-inc only covers
those runs of Tev-inc where the initial value of x2
is non-negative.

Note that Theorem 12 can also lead to empty
under-approximations. For example, Theorem 12
can be used to accelerate Texp, since the implication

x1 ≤ x1 − 1 =⇒ x1 − 1 ≤ x1 − 2

is valid. Then the resulting formula is(
x′
1

x′
2

)
=
( x1−n
2n·x2

)
∧ 0 < x1 ≤ x1 − 1,

which is unsatisfiable. Thus, when implement-
ing Theorem 12 (or its conditional version
Theorem 13), one has to check whether the result-
ing formula is satisfiable to avoid trivial (empty)
under-approximations.

Again, turning Theorem 12 into a conditional
acceleration technique is straightforward.

Theorem 13 (Conditional Acceleration via Eventual

Increase) If we have χ(~x) ≡
∧k
i=1 Ci where each clause

Ci contains an inequation ei(~x) > 0 such that

qϕ(~x) ∧ ei(~x) ≤ ei(~a(~x)) =⇒ ei(~a(~x)) ≤ ei(~a2(~x)), (25)

then the following conditional acceleration technique is
sound:

(〈χ,~a〉, qϕ) 7→ ~x′ = ~an(~x) ∧
k∧
i=1

0 < ei(~x) ≤ ei(~a(~x))

Proof We need to show

~x −→n
〈 qϕ,~a〉 ~a

n(~x) ∧
k∧
i=1

0 < ei(~x) ≤ ei(~a(~x))

=⇒ ~x −→n
〈χ,~a〉 ~a

n(~x).

Due to ~x −→n
〈 qϕ,~a〉 ~a

n(~x), we have

n−1∧
j=0

qϕ(~aj(~x)). (26)

Let i be arbitrary but fixed and assume

0 < ei(~x) ≤ ei(~a(~x)). (27)

We prove

ei(~a
m(~x)) ≤ ei(~am+1(~x)) (28)

for all 0 ≤ m < n by induction on m. Then we get

0 < ei(~a
m(~x))
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and thus χ(~am(~x)) for all 0 ≤ m < n due to (27) and
hence the claim follows. If m = 0, then

ei(~a
m(~x)) = ei(~x) ≤ ei(~a(~x)) = ei(~a

m+1(~x)).
(due to (27))

In the induction step, note that (26) implies

qϕ(~am(~x))

as 0 ≤ m < n. Together with the induction hypothesis
(28), we get

qϕ(~am(~x)) ∧ ei(~am(~x)) ≤ ei(~am+1(~x)).

By (25), this implies

ei(~a
m+1(~x)) ≤ ei(~am+2(~x)),

as desired. �

Example 11 Consider the following variant of Tev-inc.

while x1 > 0 ∧ x3 > 0 do
( x1
x2
x3

)
←
( x1+x2
x2+x3
x3

)
So we have ~a :=

( x1+x2
x2+x3
x3

)
. Starting with the canonical

acceleration problem, we get the derivation shown in
Figure 5, where the second step can be performed via
Theorem 13 as

( qϕ(~x) ∧ e(~x) ≤ e(~a(~x)))

≡ (x3 > 0 ∧ x1 ≤ x1 + x2)

≡ (x3 > 0 ∧ 0 ≤ x2)

implies

(0 ≤ x2 + x3)

≡ (x1 + x2 ≤ x1 + x2 + x2 + x3)

≡ (e(~a(~x)) ≤ e(~a2(~x))).

4

We also considered versions of Theorems 11
and 13 where the inequations in (15) and (25) are
strict, but this did not lead to an improvement
in our experiments. Moreover, we experimented
with a variant of Theorem 13 that splits the loop
under consideration into two consecutive loops,
accelerates them independently, and composes the
results. While such an approach can accelerate
loops like ψev-inc exactly, the impact on our experi-
mental results was minimal. Thus, we postpone an
in-depth investigation of this idea to future work.

7 Proving Non-Termination
via Loop Acceleration

We now aim for proving non-termination.

Definition 7 ((Non-)Termination) We call a vector
~x ∈ Zd a witness of non-termination for Tloop (denoted
~x −→∞Tloop ⊥) if

∀n ∈ N. ϕ(~an(~x)).

If there is such a witness, then Tloop is non-terminating.
Otherwise, Tloop terminates.

To this end, we search for a formula that
characterizes a non-empty set of witnesses of
non-termination, called a certificate of non-
termination.

Definition 8 (Certificate of Non-Termination) We
call a formula η ∈ FOQF (C (~x)) a certificate of non-
termination for Tloop if η is satisfiable and

∀~x ∈ Zd. η(~x) =⇒ ~x −→∞Tloop ⊥.

Clearly, the loops Tinc and Tev-inc that were
used to motivate the acceleration techniques Accel-
eration via Monotonic Increase (Theorem 2) and
Acceleration via Eventual Increase (Theorem 12)
are non-terminating: Tinc diverges for all initial
valuations that satisfy its guard x > 0 and Tev-inc
diverges if the initial values are sufficiently large,
such that x1 remains positive until x2 becomes
non-negative and hence x1 starts to increase.

As we will see in the current section, this is not
a coincidence: Unsurprisingly, all loops that can
be accelerated with Acceleration via Monotonic
Increase or Acceleration via Eventual Increase are
non-terminating. More interestingly, the same
holds for all loops that can be accelerated using
our calculus from Section 4, as long as all  -steps
use one of the conditional versions of the aforemen-
tioned acceleration techniques, i.e., Conditional
Acceleration via Monotonic Increase (Theorem 8)
or Conditional Acceleration via Eventual Increase
(Theorem 13). Thus, we obtain a novel, modu-
lar technique for proving non-termination of loops
Tloop.
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J~x′ = ~an(~x) | > | x1 > 0 ∧ x3 > 0K~a
 e J~x′ = ~an(~x) ∧ x3 > 0 | x3 > 0 | x1 > 0K~a (Theorem 8)

 J~x′ = ~an(~x) ∧ x3 > 0 ∧ 0 < x1 ≤ x1 + x2 | x3 > 0 ∧ x1 > 0 | >K~a (Theorem 13)

Fig. 5:  -derivation for Example 11

Recall that derivations of our calculus from
Section 4 start with canonical acceleration prob-
lems (Definition 4) whose first component is

~x′ = ~an(~x).

It relates the values of the variables before evaluat-
ing the loop (~x) to the values of the variables after
evaluating the loop (~x′) using the closed form (~an).
However, if we are interested in non-terminating
runs, then the values of the variables after eval-
uating the loop are obviously irrelevant. Hence,
attempts to prove non-termination operate on a
variation of acceleration problems, which we call
non-termination problems.

Definition 9 (Non-Termination Problem) A tuple

‖ψ | qϕ | ϕ̂‖~a
where ψ, qϕ, ϕ̂ ∈ FOQF (C (~x)) and ~a : Zd → Zd is
a non-termination problem. It is consistent if every
model of ψ is a witness of non-termination for 〈qϕ,~a〉
and solved if it is consistent and ϕ̂ ≡ >. The canonical
non-termination problem of a loop Tloop is

‖> | > | ϕ‖~a .

In particular, this means that the technique
presented in the current section can also be applied
to loops where ~an cannot be expressed in closed
form.

Example 12 The canonical non-termination problem
of Tev-inc is

‖> | > | x1 > 0‖( x1+x2
x2+1

) .
4

We use a variation of conditional acceleration
techniques (Definition 5), which we call condi-
tional non-termination techniques, to simplify the
canonical non-termination problem of the analyzed
loop.

Definition 10 (Conditional Non-Termination Tech-
nique) We call a partial function

nt : Loop × FOQF (C (~x)) ⇀ FOQF (C (~x))

a conditional non-termination technique if

~x −→∞〈 qϕ,~a〉 ⊥ ∧ nt(〈χ,~a〉, qϕ) implies ~x −→∞〈χ,~a〉 ⊥

for all (〈χ,~a〉, qϕ) ∈ dom(nt) and all ~x ∈ Zd.

Thus, we obtain the following variation of our
calculus from Section 4.

Definition 11 (Non-Termination Calculus) The rela-
tion  nt on non-termination problems is defined by
the rule

∅ 6= χ ⊆ ϕ̂ nt(〈χ,~a〉, qϕ) = ψ2

‖ψ1 | qϕ | ϕ̂‖~a  nt ‖ψ1 ∪ ψ2 | qϕ ∪ χ | ϕ̂ \ χ‖~a
where nt is a conditional non-termination technique.

Like  , the relation  nt preserves consistency.
Hence, we obtain the following theorem, which
shows that our calculus is indeed suitable for
proving non-termination.

Theorem 14 (Correctness of  nt ) If

‖> | > | ϕ‖~a  
∗
nt ‖ψ | qϕ | >‖~a ,

and ψ is satisfiable, then ψ is a certificate of non-
termination for Tloop.

Proof We prove that our calculus preserves consistency,
then the claim follows immediately. Assume

‖ψ1 | qϕ | ϕ̂‖~a  nt ‖ψ1 ∪ ψ2 | qϕ ∪ χ | ϕ̂ \ χ‖~a
where ‖ψ1 | qϕ | ϕ̂‖~a is consistent and

nt(〈χ,~a〉, qϕ) = ψ2.

We get

ψ1 ∧ ψ2

=⇒ ~x −→∞〈 qϕ,~a〉 ⊥ ∧ ψ2
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=⇒ ~x −→∞〈 qϕ,~a〉 ⊥ ∧ ~x −→
∞
〈χ,~a〉 ⊥

⇐⇒ ~x −→∞〈 qϕ∧χ,~a〉 ⊥

The first step holds since ‖ψ1 | qϕ | ϕ̂‖~a is consistent
and the second step holds since nt is a conditional
non-termination technique. This proves consistency of

‖ψ1 ∧ ψ2 | qϕ ∧ χ | ϕ̂ \ χ‖~a
= ‖ψ1 ∪ ψ2 | qϕ ∪ χ | ϕ̂ \ χ‖~a .

�

Analogously to well-foundedness of  , well-
foundedness of  nt is trivial.

Theorem 15 (Well-Foundedness of nt ) The relation
 nt is well-founded.

It remains to present non-termination tech-
niques that can be used with our novel calculus.
We first derive a non-termination technique from
Conditional Acceleration via Monotonic Increase
(Theorem 8).

Theorem 16 (Non-Termination via Monotonic In-
crease) If

qϕ(~x) ∧ χ(~x) =⇒ χ(~a(~x)),

then
(〈χ,~a〉, qϕ) 7→ χ

is a conditional non-termination technique.

Proof We need to prove

~x −→∞〈 qϕ,~a〉 ⊥ ∧ χ(~x) =⇒ ~x −→∞〈χ,~a〉 ⊥.

To this end, it suffices to prove

~x −→∞〈 qϕ,~a〉 ⊥ ∧ χ(~x) =⇒ ∀m ∈ N. χ(~am(~x))

by the definition of non-termination (Definition 7).
Assume

~x −→∞〈 qϕ,~a〉 ⊥ ∧ χ(~x).

We prove χ(~am(~x)) for all m ∈ N by induction on
m. If m = 0, then the claim follows immediately. For
the induction step, note that ~x −→∞〈 qϕ,~a〉 ⊥ implies

~x −→m+1
〈 qϕ,~a〉 ~a

m+1(~x), which in turn implies qϕ(~am(~x)).

Together with the induction hypothesis χ(~am(~x)), the
claim follows from the prerequisites of the theorem.

�

Example 13 The canonical non-termination problem
of Tinc is

‖> | > | x > 0‖(x+1) .

Thus, in order to apply nt with Theorem 16, the only
possible choice for the formula χ is x > 0. Furthermore,
we have qϕ := > and ~a := (x+ 1). Hence, Theorem 16
is applicable if the implication

> ∧ x > 0 =⇒ x+ 1 > 0

is valid, which is clearly the case. Thus, we get

‖> | > | x > 0‖(x+1)  nt ‖x > 0 | x > 0 | >‖(x+1) .

Since the latter non-termination problem is solved
and x > 0 is satisfiable, x > 0 is a certificate of non-
termination for Tinc due to Theorem 14. 4

Clearly, Theorem 16 is only applicable in
very simple cases. To prove non-termination of
more complex examples, we now derive a condi-
tional non-termination technique from Conditional
Acceleration via Eventual Increase (Theorem 13).

Theorem 17 (Non-Termination via Eventual Increase)

If we have χ(~x) ≡
∧k
i=1 Ci where each clause Ci

contains an inequation ei(~x) > 0 such that

qϕ(~x) ∧ ei(~x) ≤ ei(~a(~x)) =⇒ ei(~a(~x)) ≤ ei(~a2(~x)),

then

(〈χ,~a〉, qϕ) 7→
k∧
i=1

0 < ei(~x) ≤ ei(~a(~x))

is a conditional non-termination technique.

Proof Let χ′ :=
∧k
i=1 0 < ei(~x) ≤ ei(~a(~x)). We need

to prove

~x −→∞〈 qϕ,~a〉 ⊥ ∧ χ
′ =⇒ ~x −→∞〈χ,~a〉 ⊥.

Then it suffices to prove

~x −→∞〈 qϕ,~a〉 ⊥ ∧ χ
′(~x) =⇒ ~x −→∞〈χ′,~a〉 ⊥ (29)

since χ′ implies χ. By the prerequisites of the theorem,
we have qϕ ∧ χ′(~x) =⇒ χ′(~a(~x)). Thus, Theorem 16
applies to 〈χ′,~a〉. Hence, the claim (29) follows. �

Example 14 We continue Example 12. To apply  nt

with Theorem 17 to the canonical non-termination
problem of Tev-inc, the only possible choice for the
formula χ is x1 > 0. Moreover, we again have qϕ := >,

and ~a :=
(
x1+x2
x2+1

)
. Thus, Theorem 17 is applicable if

> ∧ x1 ≤ x1 + x2 =⇒ x1 + x2 ≤ x1 + 2 · x2 + 1

is valid. Since we have x1 ≤ x1 + x2 ⇐⇒ x2 ≥ 0 and
x1 + x2 ≤ x1 + 2 · x2 + 1 ⇐⇒ x2 + 1 ≥ 0, this is
clearly the case. Hence, we get

‖> | > | x1 > 0‖~a
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 nt ‖0 < x1 ≤ x1 + x2 | x1 > 0 | >‖~a .
Since 0 < x1 ≤ x1 +x2 ≡ x1 > 0∧x2 ≥ 0 is satisfiable,
x1 > 0 ∧ x2 ≥ 0 is a certificate of non-termination for
Tev-inc due to Theorem 14. 4

Of course, some non-terminating loops do not
behave (eventually) monotonically, as the following
example illustrates.

Example 15 Consider the loop

while x1 > 0 do ( x1
x2

)← ( x2
x1

) . (Tfixpoint)

Theorem 16 is inapplicable, since

x1 > 0 6=⇒ x2 > 0.

Furthermore, Theorem 17 is inapplicable, since

x1 > x2 6=⇒ x2 > x1.

4

However, Tfixpoint has fixpoints, i.e., there are
valuations such that ~x = ~a(~x). Therefore, it can be
handled by existing approaches like [21, Thm. 12].
As the following theorem shows, such techniques
can also be embedded into our calculus.

Theorem 18 (Non-Termination via Fixpoints) For
each entity e, let V(e) denote the set of variables
occurring in e. Moreover, we define

closure~a(e) :=
⋃
n∈N
V(~an(e)).

Let χ(~x) ≡
∧k
i=1 Ci, and for each i ∈ [1, k], assume

that ei(~x) > 0 is an inequation that occurs in Ci. Then

(〈χ,~a〉, qϕ) 7→
k∧
i=1

ei(~x) > 0 ∧
∧

xj∈closure~a(ei)

xj = ~a(~x)j

is a conditional non-termination technique.

Proof Let

χ′ :=

k∧
i=1

ei(~x) > 0 ∧
∧

xj∈closure~a(ei)

xj = ~a(~x)j .

We need to prove

~x −→∞〈 qϕ,~a〉 ⊥ ∧ χ
′ =⇒ ~x −→∞〈χ,~a〉 ⊥.

Then it suffices to prove

~x −→∞〈 qϕ,~a〉 ⊥ ∧ χ
′(~x) =⇒ ~x −→∞〈χ′,~a〉 ⊥ (30)

since χ′ implies χ. By construction, we have

χ′(~x) =⇒ χ′(~a(~x)).

Thus, Theorem 16 applies to 〈χ′,~a〉. Hence, the claim
(30) follows. �

Example 16 We continue Example 15 by showing how
to apply Theorem 18 to Tfixpoint, i.e., we have χ :=
x1 > 0, qϕ := >, and ~a := ( x2

x1
). Thus, we get

closure~a(x1 > 0) = {x1, x2}.

So starting with the canonical non-termination problem
of Tfixpoint, we get

‖> | > | x1 > 0‖( x2
x1

)

 nt ‖x1 > 0 ∧ x1 = x2 | x1 > 0 | >‖( x2
x1

) .

Since the formula x1 > 0 ∧ x1 = x2 is satisfiable,
x1 > 0∧ x1 = x2 is a certificate of non-termination for
Tfixpoint by Theorem 14. 4

Like the acceleration techniques from Theo-
rems 12 and 13, the non-termination techniques
from Theorems 17 and 18 can result in empty
under-approximations. Thus, when integrating
these techniques into our calculus, one should check
the resulting formula for satisfiability after each
step to detect fruitless derivations early.

We conclude this section with a more complex
example, which shows how the presented non-
termination techniques can be combined to find
certificates of non-termination.

Example 17 Consider the following loop:

while x1 > 0 ∧ x3 > 0 ∧ x4 + 1 > 0 do( x1
x2
x3
x4

)
←

(
1

x2+x1
x3+x2
−x4

)
So we have

ϕ := x1 > 0 ∧ x3 > 0 ∧ x4 + 1 > 0

and

~a :=

(
1

x2+x1
x3+x2
−x4

)
.

Then the canonical non-termination problem is

‖> | > | x1 > 0 ∧ x3 > 0 ∧ x4 + 1 > 0‖~a .

First, our implementation applies Theorem 16 to x1 >
0 (as x1 > 0 =⇒ 1 > 0), resulting in

‖x1 > 0 | x1 > 0 | x3 > 0 ∧ x4 + 1 > 0‖~a .

Next, it applies Theorem 17 to x3 > 0, which is
possible since

x1 > 0∧ x3 ≤ x3 + x2 =⇒ x3 + x2 ≤ x3 + 2 · x2 + x1

is valid. Note that this implication breaks if one
removes x1 > 0 from the premise, i.e., Theorem 17
does not apply to x3 > 0 without applying Theorem 16
to x1 > 0 before. This shows that our calculus is
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more powerful than “the sum” of the underlying non-
termination techniques. Hence, we obtain the following
non-termination problem:

‖x1 > 0 ∧ x2 ≥ 0 ∧ x3 > 0 | x1 > 0 ∧ x3 > 0 | x4 + 1 > 0‖~a

Here, we simplified

0 < x3 ≤ x3 + x2

to

x2 ≥ 0 ∧ x3 > 0.

Finally, neither Theorem 16 nor Theorem 17 applies
to x4 + 1 > 0, since x4 does not behave (eventually)
monotonically: Its value after n iterations is given by
(−1)n · xinit

4 , where xinit
4 denotes the initial value of

x4. Thus, we apply Theorem 18 and we get

‖x1 > 0 ∧ x2 ≥ 0 ∧ x3 > 0 ∧ x4 = 0 | ϕ | >‖~a ,

which is solved. Here, we simplified the sub-formula
x4 + 1 > 0 ∧ x4 = −x4 that results from the last
acceleration step to x4 = 0.

This shows that our calculus allows for applying
Theorem 18 to loops that do not have a fixpoint. The
reason is that it suffices to require that a subset of
the program variables remain unchanged, whereas the
values of other variables may still change.

Since

x1 > 0 ∧ x2 ≥ 0 ∧ x3 > 0 ∧ x4 = 0

is satisfiable, it is a certificate of non-termination due
to Theorem 14. 4

8 Related Work

The related work for our paper splits into papers
on acceleration and papers on methods specifically
designed to prove non-termination. In both cases,
one major difference between our approach and
the approaches in the literature is that we enable
a modular analysis that allows for combining com-
pletely unrelated acceleration or non-termination
techniques to process a loop in an iterative way
and to reuse information obtained by earlier proof
steps.

8.1 Related Work on Acceleration

Acceleration-like techniques are also used in over-
approximating settings (see, e.g., [20, 32, 33, 40,
41, 46, 49, 51]), whereas we consider exact and
under-approximating loop acceleration techniques.
As many related approaches have already been
discussed in Section 3, we only mention three more
techniques here.

First, [6, 9] presents an exact acceleration
technique for finite monoid affine transformations
(FMATs), i.e., loops with linear arithmetic whose

body is of the form ~x← A~x+~b where {Ai | i ∈ N}
is finite. For such loops, Presburger-Arithmetic is
sufficient to construct an equivalent formula ψ, i.e.,
it can be expressed in a decidable logic. In gen-
eral, this is clearly not the case for the techniques
presented in the current paper (which may even
synthesize non-polynomial closed forms, see Texp).
As a consequence and in contrast to our technique,
this approach cannot handle loops where the val-
ues of variables grow super-linearly (i.e., it cannot
handle examples like T2-invs). Implementations are
available in the tools FAST [3] and Flata [38]. Fur-
ther theoretical results on linear transformations
whose n-fold closure is definable in (extensions of)
Presburger-Arithmetic can be found in [7].

Second, [8] shows that octagonal relations can
be accelerated exactly. Such relations are defined
by a finite conjunction ξ of inequations of the form
±x ± y ≤ c, x, y ∈ ~x ∪ ~x′, c ∈ Z. Then ξ induces
the relation ~x −→ξ ~x

′ ⇐⇒ ξ(~x, ~x′). In [42], it is
proven that such relations can even be accelerated
in polynomial time. This generalizes earlier results
for difference bound constraints [17]. As in the case
of FMATs, the resulting formula can be expressed
in Presburger-Arithmetic. In contrast to the loops
considered in the current paper where ~x′ is uniquely
determined by ~x, octagonal relations can represent
non-deterministic programs. Therefore and due to
the restricted form of octagonal relations, the work
from [8, 42] is orthogonal to ours.

Third, Albert et al. recently presented a tech-
nique to find metering functions via loop special-
ization, which is automated via MAX-SMT solving
[1]. This approach could be integrated into our
framework via Theorem 9. However, the technique
from [1] focuses on multi-path loops, whereas we
focus on single-path loops. One of the main reasons
for our restriction to single-path loops is that their
closed form (Definition 2) can often be computed
automatically in practice. In contrast, for multi-
path loops, it is less clear how to obtain closed
forms.
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8.2 Related Work on Proving
Non-Termination

In the following, we focus on approaches for prov-
ing non-termination of programs that operate on
(unbounded) integer numbers as data.

Many approaches to proving non-termination
are based on finding recurrent sets [35]. A recur-
rent set describes program configurations from
which one can take a step to a configuration that
is also in the recurrent set. Thus, a recurrent set
that includes an initial configuration implies non-
termination of the program. In the setting of this
paper, a certificate of non-termination ψ(~x) for a
loop 〈ϕ,~a〉 induces the recurrent set

{~an(~x) | n ∈ N ∧ ~x ∈ Zd ∧ ψ(~x)}.

As long as our calculus is used with the non-
termination techniques presented in the current
paper only (i.e., Theorems 16 to 18), it even holds
that {~x ∈ Zd | ψ(~x)} is a recurrent set. Conversely,
a formula characterizing a non-empty recurrent set
of a loop is also a certificate of non-termination.
Thus, our calculus could also make use of other
non-termination techniques that produce recurrent
sets expressed by formulas in FOQF (C (~x)).

Recurrent sets are often synthesized by search-
ing for suitable parameter values for template
formulas [14, 18, 35, 44, 45, 55] or for safety proofs
[16, 34, 54]. In contrast to these search-based
techniques, our current techniques use constraint
solving only to check implications. As also indi-
cated by our experiments (Section 9), this aspect
leads to low runtimes and an efficient analysis.

Many proof techniques for proving non-ter-
mination of programs [11, 18, 35, 45] work by
proving that some loop is non-terminating and
(often separately) proving that a witness of non-
termination for this loop is reachable from an initial
program configuration. This captures lasso-shaped
counterexamples to program termination. A lasso
consists of a stem of straight-line code (which could
be expressed as a single update), followed by a
loop with a single update in its body. Techniques
for proving non-termination of loops that provide
witnesses of non-termination can thus be lifted to
techniques for lassos by checking reachability of the
found witnesses of non-termination from an initial
program configuration. While the presentation in
this paper focuses on loops, our implementation in

LoAT can also prove that the found certificate of
non-termination for the loop is reachable from an
initial program configuration. If a loop cannot be
proven non-terminating, it can still be possible to
accelerate it and use the accelerated loop as part
of the stem of a lasso for another loop. Like this,
LoAT can analyze programs with more complex
control flow than just single loops.

Several techniques for proving aperiodic non-
termination, i.e., non-termination of programs that
do not have any lasso-shaped counterexamples to
termination, have been proposed [11, 14, 16, 34, 44].
By integrating our calculus into a suitable program-
analysis framework [21, 26], it can be used to prove
aperiodic non-termination as well.

Loop termination was recently proven to be
decidable for the subclass of loops in which the
guards and updates use only linear arithmetic
and the guards are restricted to conjunctions of
atoms [24, 39]. Our approach is less restrictive
regarding the input loops: we allow for non-linear
guards and updates, and we allow for arbitrary
Boolean structure in the guards. In future work,
one could investigate the use of such decision pro-
cedures as conditional non-termination techniques
in our calculus to make them applicable to larger
classes of loops. For practical applications to larger
programs, it is important to obtain a certificate
of non-termination for a loop when proving its
non-termination, corresponding to a large, ideally
infinite set of witnesses of non-termination. The
reason is that some witness of non-termination for
the loop must be reachable from an initial pro-
gram configuration so that the non-termination
proof carries over from the loop to the input pro-
gram. However, the decision procedures in [24, 39]
are not optimized to this end: They produce a
certificate of eventual non-termination, i.e., a for-
mula that describes initial configurations that give
rise to witnesses of non-termination by applying
the loop body a finite, but unknown number of
times. For example, the most general certificate
of non-termination for the loop Tinc is x > 0,
whereas the most general certificate of eventual
non-termination is >. The reason is that, for any
initial valuation −c of x (where c is a natural
number), one obtains a witness of non-termination
by applying the body of the loop c + 1 times
while ignoring the loop condition. The problem
of transforming a single witness of eventual non-
termination into a witness of non-termination has
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been solved partially in [36]. The problem of trans-
forming certificates of eventual non-termination
that describe infinite sets of configurations into
certificates of non-termination is, to the best of
our knowledge, still open. In contrast, the con-
ditional non-termination techniques presented in
Section 7 aim to identify a potentially infinite set
of witnesses of non-termination.

For a subclass of loops involving non-linearity
and arbitrary Boolean structures, decidability of
termination has recently been proven, too [25].
However, the decidability proof from [25] only
applies to loops where the variables range over R.
For loops over Z, termination of such programs
is trivially undecidable (due to Hilbert’s tenth
problem).

Ben-Amram, Doménech, and Genaim [5]
show a connection between the non-existence of
multiphase-linear ranking functions as termina-
tion arguments for linear loops and monotonic
recurrent sets. A recurrent set

R :=

{
~x ∈ Zd

∣∣∣∣∣
m∧
i=1

ei(~x) > 0

}

is monotonic if we have ei(~x) ≤ ei(~a(~x)) for all
i ∈ [1,m] and all ~x ∈ R. In particular, they propose
a procedure that, if it terminates, returns either a
multiphase-linear ranking function as a termina-
tion proof or a set of program states that could not
be proven terminating. If the input loop has a linear
update function with only integer coefficients and
if the procedure returns a non-empty set of states
that includes integer values, this set is a monotonic
recurrent set and proves non-termination. This
approach is implemented in the iRankFinder tool.

Leike and Heizmann [45] propose a method
to find geometric non-termination arguments that
allow for expressing the values of the variables
after the nth loop iteration. In this sense, their
approach can also be seen as a use of loop accel-
eration to express a non-termination argument.
This approach is implemented in the Ultimate
tool. While our technique for loop acceleration
also relies on closed forms, our technique for prov-
ing non-termination does not need closed forms.
Hence our approach also applies to loops where
closed forms cannot be computed, or contain sub-
expressions that make further analyses difficult,
like the imaginary unit.

Finally, Frohn and Giesl [21] have already
used loop acceleration for proving non-termination.
However, they use loop acceleration (more specifi-
cally, Theorem 3) solely for proving reachability of
non-terminating loops. To prove non-termination
of loops, they used unconditional, standalone ver-
sions of Theorems 16 and 18. So their approach
does not allow for combining different accelera-
tion or non-termination techniques when analyzing
loops. However, they already exploited similari-
ties between non-termination proving and loop
acceleration: Both their loop acceleration tech-
nique (Theorem 3) and their main non-termination
technique (Theorem 16) are based on certain mono-
tonicity properties of the loop condition. Starting
from this observation, they developed a technique
for deducing invariants that may be helpful for both
proving non-termination and accelerating loops.
This idea is orthogonal to our approach, which
could, of course, be combined with techniques for
invariant inference.

9 Implementation and
Experiments

We implemented our approach in our open-source
Loop Acceleration Tool LoAT [21, 26]:

https://aprove-developers.github.io/LoAT
It uses Z3 [47] and Yices2 [19] to check implications
and PURRS [2] to compute closed forms. While
LoAT can synthesize formulas with non-polynomial
arithmetic, it cannot yet parse them, i.e., the input
is restricted to polynomials. Moreover, LoAT does
not yet support disjunctive loop conditions.

To evaluate our approach, we extracted 1511
loops with conjunctive guards from the cate-
gory Termination of Integer Transition Systems
of the Termination Problems Database [53], the
benchmark collection which is used at the annual
Termination and Complexity Competition [30], as
follows:

1. We parsed all examples with LoAT and
extracted each single-path loop with conjunc-
tive guard (resulting in 3829 benchmarks).

2. We removed duplicates by checking syntactic
equality (resulting in 2825 benchmarks).

3. We removed loops whose runtime is trivially
constant using an incomplete check (resulting
in 1733 benchmarks).

https://aprove-developers.github.io/LoAT
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4. We removed loops which do not admit any
terminating runs, i.e., loops where Theorem 2
applies (resulting in 1511 benchmarks).

All tests have been run on StarExec [52] (Intel
Xeon E5-2609, 2.40GHz, 264GB RAM [50]). For
our benchmark collection, more details about the
results of our evaluation, and a pre-compiled binary
(Linux, 64 bit) we refer to [23].

9.1 Loop Acceleration

For technical reasons, the closed forms computed
by LoAT are valid only if n > 0, whereas Defini-
tion 2 requires them to be valid for all n ∈ N. The
reason is that PURRS has only limited support for
initial conditions. Thus, LoAT’s results are correct
only for all n > 1 (instead of all n > 0). Moreover,
LoAT can currently compute closed forms only if
the loop body is triangular, meaning that each
ai is an expression over x1, . . . , xi. The reason is
that PURRS cannot solve systems of recurrence
equations, but only a single recurrence equation at
a time. While systems of recurrence equations can
be transformed into a single recurrence equation
of higher order, LoAT does not yet implement
this transformation. However, LoAT failed to com-
pute closed forms for just 26 out of 1511 loops in
our experiments, i.e., this appears to be a minor
restriction in practice. Furthermore, the implemen-
tation of our calculus does not use conditional
acceleration via metering functions. The reason
is that we are not aware of examples where our
monotonicity-based acceleration techniques fail,
but our technique for finding metering functions
(based on Farkas’ Lemma) may succeed.

Apart from these differences, our implementa-
tion closely follows the current paper. It applies the
conditional acceleration techniques from Sections 5
and 6 with the following priorities: Theorem 8 >
Theorem 7 > Theorem 11 > Theorem 13.

We compared our implementation with LoAT’s
implementation of acceleration via monotonicity
(Theorem 3, [21]) and its implementation of accel-
eration via metering functions (Theorem 4, [27]),
which also incorporates the improvements proposed
in [26]. We did not include the techniques from
Theorems 1 and 2 in our evaluation, as they are
subsumed by acceleration via monotonicity.

Furthermore, we compared with Flata [38],
which implements the techniques to accelerate
FMATs and octagonal relations discussed in

Section 8. To this end, we used a straightforward
transformation from LoAT’s native input format4

(which is also used in the category Complexity
of Integer Transition Systems of the Termination
and Complexity Competition) to Flata’s input for-
mat. Note that our benchmark collection contains
16 loops with non-linear arithmetic where Flata is
bound to fail, since it supports only linear arith-
metic. We did not compare with FAST [3], which
uses a similar approach as the more recent tool
Flata. We used a wall clock timeout of 60s per
example and a memory limit of 128GB for each
tool.

The results can be seen in Table 1, where
the information regarding the runtime includes all
examples, not just solved examples. They show
that our novel calculus was superior to the com-
peting techniques in our experiments. In all but 7
cases where our calculus successfully accelerated
the given loop, the resulting formula was polyno-
mial. Thus, integrating our approach into existing
acceleration-based verification techniques should
not present major obstacles w.r.t. automation.

Furthermore, we evaluated the impact of our
new acceleration techniques from Section 6 inde-
pendently. To this end, we ran experiments with
three configurations where we disabled acceleration
via eventual increase, acceleration via eventual
decrease, and both of them. The results can be seen
in Table 2. They show that our calculus does not
improve over acceleration via monotonicity if both
acceleration via eventual increase and acceleration
via eventual decrease are disabled (i.e., our bench-
mark collection does not contain examples like
T2-c-invs). However, enabling either acceleration
via eventual decrease or acceleration via eventual
increase resulted in a significant improvement.
Interestingly, there are many examples that can
be accelerated with either of these two techniques:
When both of them were enabled, LoAT (exactly
or approximately) accelerated 1482 loops. When
only one of them was enabled, it accelerated 1444
and 1338 loops, respectively. But when none of
them was enabled, it accelerated only 845 loops.
We believe that this is due to examples like

while x1 > 0 ∧ . . . do
(
x1
x2
...

)
←
(
x2
x2
...

)
(31)

4https://github.com/aprove-developers/LoAT#koat

https://github.com/aprove-developers/LoAT#koat
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LoAT Monot. Meter Flata

exact 1444 845 05 1231
approx 38 0 733 0
fail 29 666 778 280

avg rt 0.16s 0.11s 0.09s 0.47s
median rt 0.09s 0.09s 0.09s 0.40s
std dev rt 0.18s 0.09s 0.03s 0.50s

Table 1: LoAT vs. other techniques

Ev-Inc Ev-Dec Ev-Mon

exact 1444 845 845
approx 0 493 0
fail 67 173 666

avg rt 0.15s 0.14s 0.09s
median rt 0.08s 0.08s 0.07s
std dev rt 0.17s 0.17s 0.06s

Table 2: Impact of our new acceleration
techniques

LoAT: Acceleration calculus + Theorems 7, 8, 11 and 13
Monot.: Acceleration via Monotonicity, Theorem 3
Meter: Acceleration via Metering Functions, Theorem 4
Flata: http://nts.imag.fr/index.php/Flata
Ev-Inc: Acceleration calculus + Theorems 7, 8 and 11
Ev-Dec: Acceleration calculus + Theorems 7, 8 and 13
Ev-Mon: Acceleration calculus + Theorems 7 and 8
exact: Examples that were accelerated exactly
approx: Examples that were accelerated approximately
fail: Examples that could not be accelerated
avg rt: Average wall clock runtime
median rt: Median wall clock runtime
st dev rt: Standard deviation of wall clock runtime

where Theorem 11 and Theorem 13 are applicable
(since x1 ≤ x2 implies x2 ≤ x2 and x1 ≥ x2 implies
x2 ≥ x2).

Flata exactly accelerated 49 loops where LoAT
failed or approximated and LoAT exactly acceler-
ated 262 loops where Flata failed. So there were
only 18 loops where both Flata and the full version
of our calculus failed to compute an exact result.
Among them were the only 3 examples where our
implementation found a closed form, but failed
anyway. One of them was6

while x3 > 0 do
( x1
x2
x3

)
←
(
x1+1
x2−x1
x3+x2

)
.

Here, the updated value of x1 depends on x1, the
update of x2 depends on x1 and x2, and the update
of x3 depends on x2 and x3. Hence, the closed form

5While acceleration via metering functions may be exact
in some cases (see the discussion after Theorem 4), our
implementation cannot check whether this is the case.

6The other two are structurally similar, but more complex.

of x1 is linear, the closed form of x2 is quadratic,
and the closed form of x3 is cubic:

x
(n)
3 = − 1

6 ·n
3 + 1−x1

2 ·n2 +
(
x1

2 + x2 − 1
3

)
·n+x3

So when x1, x2, and x3 have been fixed, x
(n)
3 has

up to 2 extrema, i.e., its monotonicity may change
twice. However, our techniques based on eventual
monotonicity require that the respective expres-
sions behave monotonically once they start to de-
or increase, so these techniques only allow one
change of monotonicity.

This raises the question if our approach can
accelerate every loop with conjunctive guard and
linear arithmetic whose closed form is a vector
of (at most) quadratic polynomials with rational
coefficients. We leave this to future work.

9.2 Non-Termination

To prove non-termination, our implementation
applies the conditional non-termination techniques
from Section 7 with the following priorities:
Theorem 16 > Theorem 17 > Theorem 18. To
evaluate our approach, we compared it with several
leading tools for proving non-termination of integer
programs: AProVE [29], iRankFinder [5], RevTerm
[14], Ultimate [15], and VeryMax [44]. Note that
AProVE uses, among other techniques, the tool T2
[13] as backend for proving non-termination, so
we refrained from including T2 separately in our
evaluation.

To compare with AProVE, RevTerm, and Ulti-
mate, we transformed all examples into the format
which is used in the category Termination of C
Integer Programs of the Termination and Com-
plexity Competition.7 For iRankFinder and Very-
Max, we transformed them into the format from
the category Termination of Integer Transition
Systems of the Termination and Complexity Com-
petition [12]. The latter format is also supported
by LoAT, so besides iRankFinder and VeryMax, we
also used it to evaluate LoAT.

For the tools iRankFinder, Ultimate, and Very-
Max, we used the versions of their last participa-
tions in the Termination and Complexity Compe-
tition (2019 for VeryMax and 2021 for iRankFinder
and Ultimate), as suggested by the developers.

7http://termination-portal.org/wiki/C Integer Programs

http://nts.imag.fr/index.php/Flata
http://termination-portal.org/wiki/C_Integer_Programs
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For AProVE, the developers provided an up-to-
date version. For RevTerm, we followed the build
instruction from [31] and sequentially executed
the following command lines, as suggested by the
developers:

RevTerm.sh prog.c -linear part1 mathsat 2 1

RevTerm.sh prog.c -linear part2 mathsat 2 1

It is important to note that all tools but
RevTerm and LoAT also try to prove termina-
tion. Thus, a comparison between the runtimes
of LoAT and those other tools is of limited signif-
icance. Therefore, we also compared LoAT with
configurations of the tools that only try to prove
non-termination. For AProVE, such a configura-
tion was kindly provided by its developers (named
AProVE NT in Table 3). In the case of iRankFinder,
the excellent documentation allowed us to eas-
ily build such a configuration ourselves (named
iRankFinder NT in Table 3). In the case of Ulti-
mate, its developers pointed out that a comparison
w.r.t. runtime is meaningless, as it is dominated
by Ultimate’s startup-time of ∼10s on small exam-
ples. For VeryMax, it is not possible to disable
termination-proving, according to its authors.

We again used a wall clock timeout of 60s and a
memory limit of 128GB for each tool. For RevTerm,
we used a timeout of 30s for the first invocation,
and the remaining time for the second invocation.

The results can be seen in Table 3. They show
that our novel calculus is competitive with state-of-
the-art tools. Both iRankFinder and Ultimate can
prove non-termination of precisely the same 205
examples. LoAT can prove non-termination of these
examples, too. In addition, it solves one benchmark
that cannot be handled by any other tool:8

while x > 9 ∧ x1 ≥ 0 do ( x
x1

)←
(
x2
1+2·x1+1
x1+1

)
Most likely, the other tools fail for this exam-

ple due to the presence of non-linear arithmetic.
Our calculus from Section 7 just needs to check
implications, so as long as the underlying SMT-
solver supports non-linearity, it can be applied to
non-linear examples, too. It is worth mentioning
that LoAT subsumes all other tools w.r.t. prov-
ing non-termination. There are only 4 examples
where none of the tools can prove termination

81567523105272726.koat.smt2

or non-termination. Termination of one of these
examples can be proven by an experimental, unpub-
lished module of LoAT, which is inspired by the
calculi presented in this paper. A manual investi-
gation revealed that the 3 remaining examples are
terminating, too.

To investigate the impact of the different
non-termination techniques, we also tested con-
figurations where one of the non-termination
techniques from Theorems 16 to 18 was disabled,
respectively. The results can be seen in Table 4.
First, note that disabling Theorem 16 does not
reduce LoAT’s power. The reason is that if the
left-hand side p of an inequation p > 0 is monoton-
ically increasing (such that Theorem 16 applies),
then it is also eventually monotonically increas-
ing (such that Theorem 17 applies). However,
since Theorem 16 yields simpler certificates of
non-termination than Theorem 17, LoAT still uses
both techniques. Interestingly, Ev-Inc and FP are
almost equally powerful: Without Theorem 17,
LoAT still proves non-termination of 203 exam-
ples and without Theorem 18, LoAT solves 205
examples. Presumably, the reason is again due to
examples like (31), where Theorem 17 finds the
recurrent set x2 > 0 and Theorem 18 finds the
recurrent set x1 > 0∧x1 = x2. So even though both
non-termination techniques are applicable in such
cases, the recurrent set deduced via Theorem 17 is
clearly more general and thus preferable in practice.
Note that LoAT cannot solve a single example when
both Theorem 17 and Theorem 18 are disabled
(Ev-Inc, FP in Table 4). Then the only remain-
ing non-termination technique is Non-Termination
via Monotonic Increase. Examples where this tech-
nique suffices to prove non-termination trivially
diverge whenever the loop condition is satisfied,
and hence they were filtered from our benchmark
set (as explained at the beginning of Section 9).

Regarding the runtime, we think that LoAT is
faster than the competing tools due to the fact that
the technique presented in Section 7 requires very
little search, whereas many other non-termination
techniques are heavily search-based (e.g., due to
the use of templates, as it is exercised by RevTerm).
In our setting, the inequations that eventually con-
stitute a certificate of non-termination immediately
arise from the given loop. In this regard, iRank-
Finder’s approach for proving non-termination is
similar to ours, as it also requires little search.
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LoAT AProVE AProVE NT iRankFinder iRankFinder NT RevTerm Ultimate VeryMax

NO 206 200 200 205 205 133 205 175
YES 0 1301 0 1298 0 0 919 1299
fail 1305 10 1311 8 1306 1378 387 37

avg rt 0.03s 16.09s 25.69s 1.40s 1.03s 38.85s 23.30s 3.17s
avg rt NO 0.03s 10.65s 9.67s 1.34s 0.96s 4.63s 7.99s 14.52s
median rt 0.02s 13.41s 15.74s 1.11s 0.91s 34.93s 11.57s 0.03

median rt NO 0.02s 8.51s 6.91s 1.17s 0.90s 1.88s 8.01s 5.36s
std dev rt 0.03s 10.09s 19.95s 2.25s 0.30s 16.61s 21.60s 10.76s

std dev rt NO 0.06s 5.80s 5.80s 0.92s 0.12s 11.08s 1.88s 13.24s

Table 3: Comparison of LoAT with competing tools

LoAT Inc Ev-Inc FP Ev-Inc, FP

NO 206 206 203 205 0
fail 1305 1305 1308 1306 1511

avg rt 0.03s 0.03s 0.03s 0.03s 0.02s
avg rt NO 0.03s 0.02s 0.02s 0.02s –
median rt 0.02s 0.02s 0.02s 0.02s 0.02s

median rt NO 0.02s 0.02s 0.02s 0.02s –
std dev rt 0.03s 0.02s 0.02s 0.02s 0.02s

std dev rt NO 0.06s 0.03s 0.03s 0.04s –

Table 4: Comparison of LoAT versions

LoAT: Calculus from Section 7
AProVE: https://aprove.informatik.rwth-aachen.de
AProVE NT: Configuration of AProVE that does not try to prove termination
iRankFinder: http://irankfinder.loopkiller.com
iRankFinder NT: Configuration of iRankFinder that does not try to prove termination
RevTerm: https://github.com/ekgma/RevTerm
Ultimate: https://monteverdi.informatik.uni-freiburg.de/tomcat/Website
VeryMax: https://www.cs.upc.edu/∼albert/VeryMax.html
Inc: Calculus from Section 7 without Theorem 16
Ev-Inc: Calculus from Section 7 without Theorem 17
FP: Calculus from Section 7 without Theorem 18
Ev-Inc, FP: Calculus from Section 7 without Theorems 17 and 18
NO: Number of non-termination proofs
YES: Number of termination proofs
fail: Number of examples where (non-)termination could not be proven
avg rt: Average wall clock runtime
avg rt NO: Average wall clock runtime when non-termination was proven
median rt: Median wall clock runtime
median rt NO: Median wall clock runtime when non-termination was proven
st dev rt: Standard deviation of wall clock runtime
st dev rt NO: Standard deviation of wall clock runtime when non-termination was proven

This is also reflected in our experiments, where
iRankFinder is the second fastest tool.

It should also be taken into account that
iRankFinder is implemented in Python, AProVE,
RevTerm, and Ultimate are implemented in Java,
and LoAT and VeryMax are implemented in C++.
Thus, the difference in runtime is in parts due

to the different performances of the respective
programming language implementations.

Another interesting aspect of our evaluation
is the result of RevTerm, which outperformed all
other tools in the evaluation of [14]. The reason for
this discrepancy is the following: In [14], 300 dif-
ferent configurations of RevTerm have been tested,

https://aprove.informatik.rwth-aachen.de
http://irankfinder.loopkiller.com
https://github.com/ekgma/RevTerm
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website
https://www.cs.upc.edu/~albert/VeryMax.html
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and a benchmark has been considered to be solved
if at least one of these configurations was able to
prove non-termination. In contrast, we ran two
configurations of RevTerm, one for each of the two
non-termination checks proposed in [14]. So essen-
tially, RevTerm’s results from [14] correspond to a
highly parallel setting, whereas the results from
our evaluation correspond to a sequential setting.

10 Conclusion and Future
Work

We discussed existing acceleration techniques
(Section 3) and presented a calculus to com-
bine acceleration techniques modularly (Section 4).
Then we showed how to combine existing
(Section 5) and two novel (Section 6) accelera-
tion techniques with our calculus. This improves
over prior approaches, where acceleration tech-
niques were used independently, and may thus
improve acceleration-based verification techniques
[8, 9, 21, 26, 28, 43] in the future. An empirical
evaluation (Section 9.1) shows that our approach
is more powerful than state-of-the-art acceleration
techniques. Moreover, if it is able to accelerate a
loop, then the result is exact (instead of just an
under-approximation) in most cases. Thus, our
calculus can be used for under-approximating tech-
niques (e.g., to find bugs or counterexamples) as
well as in over-approximating settings (e.g., to
prove safety or termination).

Furthermore, we showed how our calculus
from Section 4 can be adapted for proving non-
termination in Section 7, where we also presented
three non-termination techniques that can be com-
bined with our novel calculus. While two of them
(Theorems 16 and 18) are straightforward adap-
tions of existing non-termination techniques to our
modular setting, the third one (Theorem 17) is, to
the best of our knowledge, new and might also be
of interest independently from our calculus.

Actually, the two calculi presented in this paper
are so similar that they do not require separate
implementations. In our tool LoAT, both of them
are implemented together, such that we can han-
dle loops uniformly: If our implementation of the
calculi yields a certificate of non-termination, then
it suffices to prove reachability of one of the cor-
responding witnesses of non-termination from an
initial program state afterwards to finish the proof

of non-termination. If our implementation of the
calculi successfully accelerates the loop under con-
sideration, this may help to prove reachability of
other, potentially non-terminating configurations
later on. If our implementation of the calculi fails,
then LoAT continues its search with other program
paths. The success of this strategy is demonstrated
at the annual Termination and Complexity Compe-
tition, where LoAT has been the most powerful tool
for proving non-termination of Integer Transition
Systems since its first participation in 2020.

Regarding future work, we are actively working
on support for disjunctive loop conditions. More-
over, our experiments indicate that integrating
specialized techniques for FMATs (see Section 8)
would improve the power of our approach for
loop acceleration, as Flata exactly accelerated 49
loops where LoAT failed to do so (see Section 9).
Furthermore, we plan to extend our approach to
richer classes of loops, e.g., loops operating on
both integers and arrays, non-deterministic loops,
or loops operating on bitvectors (as opposed to
mathematical integers).
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R., Kuncak, V., Rümmer, P.: A verifica-
tion toolkit for numerical transition sys-
tems - tool paper. In: FM ’12. pp. 247–251.
LNCS 7436 (2012). https://doi.org/10.1007/

https://doi.org/10.1109/FMCAD.2015.7542253
https://doi.org/10.1109/FMCAD.2015.7542253
https://doi.org/10.23919/FMCAD.2019.8894271
https://doi.org/10.23919/FMCAD.2019.8894271
https://doi.org/10.1007/978-3-030-45190-5_4
https://doi.org/10.1007/978-3-030-45190-5_4
https://ffrohn.github.io/acceleration-calculus
https://ffrohn.github.io/acceleration-calculus
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-25543-5_24
https://doi.org/10.1007/978-3-030-65474-0_5
https://doi.org/10.1007/978-3-030-65474-0_5
https://doi.org/10.1145/3410331
https://doi.org/10.1145/3410331
https://doi.org/10.1007/978-3-319-40229-1_37
https://doi.org/10.1007/978-3-319-40229-1_37
https://doi.org/10.1007/s10009-016-0420-7
https://doi.org/10.1007/s10009-016-0420-7
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_10
https://github.com/ekgma/RevTerm
https://doi.org/10.1007/11823230_10
https://doi.org/10.1016/j.scico.2013.09.016
https://doi.org/10.1016/j.scico.2013.09.016
https://doi.org/10.1145/1375581.1375616
https://doi.org/10.1145/1375581.1375616
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.29007/nxv1
https://doi.org/10.1007/978-3-642-33386-6_16
https://doi.org/10.1007/978-3-642-33386-6_16
https://doi.org/10.1007/978-3-642-32759-9_21


Springer Nature 2021 LATEX template

28

978-3-642-32759-9 21

[39] Hosseini, M., Ouaknine, J., Worrell, J.: Ter-
mination of linear loops over the integers.
In: ICALP ’19. pp. 118:1–118:13. LIPIcs
132 (2019). https://doi.org/10.4230/LIPIcs.
ICALP.2019.118

[40] Jeannet, B., Schrammel, P., Sankara-
narayanan, S.: Abstract acceleration of general
linear loops. In: POPL ’14. pp. 529–540 (2014).
https://doi.org/10.1145/2535838.2535843

[41] Kincaid, Z., Breck, J., Boroujeni, A.F., Reps,
T.W.: Compositional recurrence analysis revis-
ited. In: PLDI ’17. pp. 248–262 (2017). https:
//doi.org/10.1145/3062341.3062373
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