
Analysing Parallel Complexity of Term
Rewriting?

Thäıs Baudon1, Carsten Fuhs2, and Laure Gonnord3,1

1 LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon, France
2 Birkbeck, University of London, United Kingdom

3 LCIS (UGA/Grenoble INP/Ésisar), Valence, France

Abstract. We revisit parallel-innermost term rewriting as a model of
parallel computation on inductive data structures and provide a corre-
sponding notion of runtime complexity parametric in the size of the start
term. We propose automatic techniques to derive both upper and lower
bounds on parallel complexity of rewriting that enable a direct reuse of
existing techniques for sequential complexity. The applicability and the
precision of the method are demonstrated by the relatively light effort in
extending the program analysis tool AProVE and by experiments on
numerous benchmarks from the literature.

1 Introduction

Automated inference of complexity bounds for parallel computation has seen
a surge of attention in recent years [11,12,31,5,30,17]. While techniques and
tools for a variety of computational models have been introduced, so far there
does not seem to be any paper in this area for complexity of term rewrit-
ing with parallel evaluation strategies. This paper addresses this gap in the

fn size(&self) -> int {

match self {

&Tree::Node { v, ref left, ref right }

=> left.size() + right.size() + 1,

&Tree::Empty => 0 , } }

Fig. 1. Tree size computation in Rust

literature. We consider term
rewrite systems (TRSs) as
intermediate representation
for programs with pattern-
matching operating on alge-
braic data types like the one
depicted in Figure 1.

In this particular example, the recursive calls to left.size() and right.

size() can be done in parallel. Building on previous work on parallel-innermost
rewriting [40,19], and first ideas about parallel complexity [6], we propose a
new notion of Parallel Dependency Tuples that captures such a behaviour, and
methods to compute both upper and lower parallel complexity bounds.

? This work was partially funded by the French National Agency of Research in the
CODAS Project (ANR-17-CE23-0004-01). For Open Access purposes, our extended
authors’ accepted manuscript [14] of this paper is available under Creative Commons
CC BY licence.

Bounds on parallel complexity can provide insights about the potentiality of
parallelisation: if sequential and parallel complexity of a function (asymptotically)
coincide, this information can be useful for a parallelising compiler to refrain
from parallelising the evaluation of this function. Moreover, evaluation of TRSs
(as a simple functional programming language) in massively parallel settings
such as GPUs is currently a topic of active research [18]. In this context, a static
analysis of parallel complexity can be helpful to determine whether to rewrite on
a (fast, but not very parallel) CPU or on a (slower, but massively parallel) GPU.

A preliminary version of this work with an initial notion of parallel complexity
was presented in an informal extended abstract [13]. We now propose a more
formal version accompanied by extensions, proofs, implementation, experiments,
and related work. Sect. 2 recalls term rewriting and Dependency Tuples [37] as
the basis of our approach. In Sect. 3, we introduce a notion of runtime complexity
for parallel-innermost rewriting, and we harness the existing Dependency Tuple
framework to compute asymptotic upper bounds on this complexity. In Sect. 4,
we provide a transformation to innermost term rewriting that lets any tool
for (sequential) innermost runtime complexity be reused to find upper bounds
for parallel-innermost runtime complexity and, for confluent parallel-innermost
rewriting, also lower bounds. Sect. 5 gives experimental evidence of the practicality
of our method on a large standard benchmark set. We discuss related work
in Sect. 6. Our extended authors’ accepted manuscript [14] additionally has full
proofs of our theorems.

2 Term Rewriting and Innermost Runtime Complexity

We assume basic familiarity with term rewriting (see, e.g., [10]) and recall standard
definitions to fix notation. As customary for analysis of runtime complexity of
rewriting, we consider terms as tree-shaped objects, without sharing of subtrees.

We first define Term Rewrite Systems and Innermost Rewriting. T (Σ,V)
denotes the set of terms over a finite signature Σ and the set of variables V . For a
term t, its size |t| is defined by: (a) if t ∈ V , |t| = 1; (b) if t = f(t1, . . . , tn), then
|t| = 1 +

∑n
i=1|ti|. The set Pos(t) of the positions of t is defined by: (a) if t ∈ V,

then Pos(t) = {ε}, and (b) if t = f(t1, . . . , tn), then Pos(t) = {ε} ∪
⋃

1≤i≤n{iπ |
π ∈ Pos(ti)}. The position ε is the root position of term t. If t = f(t1, . . . , tn),
root(t) = f is the root symbol of t. The (strict) prefix order > on positions is the
strict partial order given by: τ > π iff there exists π′ 6= ε such that ππ′ = τ . Two
positions π and τ are parallel iff neither π > τ nor π = τ nor τ > π hold. For
π ∈ Pos(t), t|π is the subterm of t at position π, and we write t[s]π for the term
that results from t by replacing the subterm t|π at position π by the term s.

A substitution σ is a mapping from V to T (Σ,V) with finite domain Dom(σ) =
{x ∈ V | σ(x) 6= x}. We write {x1 7→ t1; . . . ;xn 7→ tn} for a substitution σ with
σ(xi) = ti for 1 ≤ i ≤ n and σ(x) = x for all other x ∈ V . We extend substitutions
to terms by σ(f(t1, . . . , fn)) = f(σ(t1), . . . , σ(tn)). We may write tσ for σ(t).

For a term t, V(t) is the set of variables in t. A term rewrite system (TRS)
R is a set of rules {`1 → r1, . . . , `n → rn} with `i, ri ∈ T (Σ,V), `i 6∈ V, and

2

V(ri) ⊆ V(`i) for all 1 ≤ i ≤ n. The rewrite relation of R is s→R t iff there are a
rule `→ r ∈ R, a position π ∈ Pos(s), and a substitution σ such that s = s[`σ]π
and t = s[rσ]π. Here, σ is called the matcher and the term `σ the redex of the
rewrite step. If no proper subterm of `σ is a possible redex, `σ is an innermost
redex, and the rewrite step is an innermost rewrite step, denoted by s i→R t.

ΣRd = {f | f(`1, . . . , `n) → r ∈ R} and ΣRc = Σ \ ΣRd are the defined and
constructor symbols of R. We may also just write Σd and Σc. The set of positions
with defined symbols of t is Posd(t) = {π | π ∈ Pos(t), root(t|π) ∈ Σd}.

For a relation →, →+ is its transitive closure and →∗ its reflexive-transitive
closure. An object o is a normal form wrt a relation → iff there is no o′ with
o→ o′. A relation → is confluent iff s→∗ t and s→∗ u implies that there exists
an object v with t→∗ v and u→∗ v. A relation → is terminating iff there is no
infinite sequence t0 → t1 → t2 → · · · .

Example 1 (size). Consider the TRS R with the following rules modelling the
code of Figure 1.

plus(Zero, y)→ y size(Nil)→ Zero
plus(S(x), y)→ S(plus(x, y)) size(Tree(v, l, r))→ S(plus(size(l), size(r)))

Here ΣRd = {plus, size} and ΣRc = {Zero,S,Nil,Tree}. We have the following
innermost rewrite sequence, where the used innermost redexes are underlined:

size(Tree(Zero,Nil,Tree(Zero,Nil,Nil)))
i→R S(plus(size(Nil), size(Tree(Zero,Nil,Nil))))
i→R S(plus(Zero, size(Tree(Zero,Nil,Nil))))
i→R S(plus(Zero,S(plus(size(Nil), size(Nil)))))
i→R S(plus(Zero,S(plus(Zero, size(Nil)))))
i→R S(plus(Zero,S(plus(Zero,Zero))))
i→R S(plus(Zero,S(Zero)))
i→R S(S(Zero))

This rewrite sequence uses 7 steps to reach a normal form.

We wish to provide static bounds on the length of the longest rewrite sequence
from terms of a specific size. Here we use innermost evaluation strategies, which
closely correspond to call-by-value strategies used in many programming lan-
guages. We focus on rewrite sequences that start with basic terms, corresponding
to function calls where a function is applied to data objects. The resulting notion
of complexity for term rewriting is known as innermost runtime complexity.

Definition 1 (Innermost Runtime Complexity irc [26,37]). The deriva-
tion height of a term t wrt a relation → is the length of the longest sequence of
→-steps from t: dh(t,→) = sup{e | ∃ t′ ∈ T (Σ,V). t→e t′} where →e is the eth

iterate of →. If t starts an infinite →-sequence, we write dh(t,→) = ω. Here, ω
is the smallest infinite ordinal, i.e., ω > n holds for all n ∈ N.

A term f(t1, . . . , tk) is basic (for a TRS R) iff f ∈ ΣRd and t1, . . . , tk ∈
T (ΣRc ,V). T Rbasic is the set of basic terms for a TRS R. For n ∈ N, the innermost

3

runtime complexity function is ircR(n) = sup{dh(t, i→R) | t ∈ T Rbasic, |t| ≤ n}.
For all P ⊆ N ∪ {ω}, sup P is the least upper bound of P , where sup ∅ = 0.

Many automated techniques are available [26,37,27,8,36,35] to analyse ircR.
We build on Dependency Tuples [37], originally designed to find upper bounds for
(sequential) innermost runtime complexity. A central idea is to group all function
calls by a rewrite rule together rather than to separate them (as with DPs for
proving termination [7]). We use sharp terms to represent these function calls.

Definition 2 (Sharp Terms T]). For every f ∈ Σd, we introduce a fresh
symbol f] of the same arity, called a sharp symbol. For a term t = f(t1, . . . , tn)
with f ∈ Σd, we define t] = f](t1, . . . , tn). For all other terms t, we define t] = t.
T] = {t] | t ∈ T (Σ,V), root(t) ∈ Σd} denotes the set of sharp terms.

To get an upper bound for sequential complexity, we “count” how often each
rewrite rule is used. The idea is that when a rule ` → r is used, the cost (i.e.,
number of rewrite steps for the evaluation) of the function call to the instance of
` is 1 + the sum of the costs of all the function calls in the resulting instance of
r, counted separately in some fixed order. To group k function calls together, we
use “compound symbols” Comk of arity k, which intuitively represent the sum of
the runtimes of their arguments.

Definition 3 (Dependency Tuple, DT [37]). A dependency tuple (DT) is

a rule of the form s] → Comn(t]1, . . . , t
]
n) where s], t]1, . . . , t

]
n ∈ T]. Let `→ r be

a rule with Posd(r) = {π1, . . . , πn} and π1 m . . . m πn for a total order m (e.g.,
lexicographic order) on positions. Then DT (`→ r) = `] → Comn(r|]π1

, . . . , r|]πn
).4

For a TRS R, let DT (R) = {DT (`→ r) | `→ r ∈ R}.

Example 2. For R from Ex. 1, DT (R) consists of the following DTs:

plus](Zero, y)→ Com0

plus](S(x), y)→ Com1(plus](x, y))

size](Nil)→ Com0

size](Tree(v, l, r))→ Com3(size](l), size](r), plus](size(l), size(r)))

To represent the complexity of a sharp term for a set of DTs and a TRS
R, chain trees are used [37]. Intuitively, a chain tree for some sharp term is
a dependency tree of the computations involved in evaluating this term. Each
node represents a computation (the DT) on some arguments (defined by the
substitution).

Definition 4 (Chain Tree, Cplx [37]). Let D be a set of DTs and R be
a TRS. Let T be a (possibly infinite) tree where each node is labelled with

a DT q] → Comn(w]1, . . . , w
]
n) from D and a substitution ν, written (q] →

Comn(w]1, . . . , w
]
n) | ν). Let the root node be labelled with (s] → Come(r

]
1, . . . , r

]
e) |

σ). Then T is a (D,R)-chain tree for s]σ iff the following conditions hold for

any node of T , where (u] → Comm(v]1, . . . , v
]
m) | µ) is the label of the node:

4 The order m must be total to ensure that the function DT is well defined wrt the
order of the arguments of Comn. The (partial!) prefix order > is not sufficient here.

4

– u]µ is in normal form wrt R;
– if this node has the children (p]1 → Comm1(. . .) | δ1), . . . , (p]k → Commk

(. . .) |
δk), then there are pairwise different i1, . . . , ik ∈ {1, . . . ,m} with v]ijµ

i→∗R
p]jδj for all j ∈ {1, . . . , k}.

Let S ⊆ D and s] ∈ T]. For a chain tree T , |T |S ∈ N ∪ {ω} is the number of
nodes in T labelled with a DT from S. We define Cplx 〈D,S,R〉(s

]) = sup{|T |S |
T is a (D,R)-chain tree for s]}. For terms s] without a (D,R)-chain tree, we
define Cplx 〈D,S,R〉(s

]) = 0.

Example 3. For R from Ex. 1 and D = DT (R) from Ex. 2, the following is a
chain tree for the term size](Tree(Zero,Nil,Nil)):

(size](Tree(v, l, r))→ Com3(size](l), size](r), plus](size(l), size(r)))
| {v 7→ Zero; l 7→ Nil; r 7→ Nil})

(size](Nil)→ Com0 | {})

(size](Nil)→ Com0 | {})

(plus](Zero, y)→ Com0 | {y 7→ Zero})

size(Nil) i→ ∗
R Zero

The main correctness statement in the sequential case is the following:

Theorem 1 (Cplx bounds Derivation Height for i→R [37]). Let R be a
TRS, let t = f(t1, . . . , tn) ∈ T (Σ,V) such that all ti are in normal form (this
includes all t ∈ T Rbasic). Then we have dh(t, i→R) ≤ Cplx 〈DT(R),DT(R),R〉(t

]). If
i→R is confluent, then dh(t, i→R) = Cplx 〈DT(R),DT(R),R〉(t

]).

For automated complexity analysis with DTs, the following notion of DT
problems is used as a characterisation of DTs that we reduce in incremental proof
steps to a trivially solved problem.

Definition 5 (DT Problem, Complexity of DT Problem [37]). Let R be
a TRS, D be a set of DTs, S ⊆ D. Then 〈D,S,R〉 is a DT problem. Its complexity
function is irc〈D,S,R〉(n) = sup{Cplx 〈D,S,R〉(t

]) | t ∈ T Rbasic, |t| ≤ n}. The DT
problem 〈DT (R),DT (R),R〉 is called the canonical DT problem for R.

For a DT problem 〈D,S,R〉, the set D contains all DTs that can be used in
chain trees. S contains the DTs whose complexity remains to be analysed. R
contains the rewrite rules for evaluating the arguments of DTs. Here we focus
on simplifying S (thus D and R are fixed during the process) but techniques to
simplify D and R are available as well [37,8].

Thm. 1 implies the following link between ircR and irc〈DT(R),DT(R),R〉:

Theorem 2 (Complexity Bounds for TRSs via Canonical DT Prob-
lems [37]). Let R be a TRS with canonical DT problem 〈DT (R),DT (R),R〉.
Then we have ircR(n) ≤ irc〈DT(R),DT(R),R〉(n). If i→R is confluent, we have
ircR(n) = irc〈DT(R),DT(R),R〉(n).

5

In practice, the focus is on finding asymptotic bounds for ircR. For example,
Ex. 4 will show that for our TRS R from Ex. 1 we have ircR(n) ∈ O(n2).

A DT problem 〈D,S,R〉 is said to be solved iff S = ∅: we always have
irc〈D,∅,R〉(n) = 0. To simplify and finally solve DT problems in an incremental
fashion, complexity analysis techniques called DT processors are used. A DT
processor takes a DT problem as input and returns a (hopefully simpler) DT
problem as well as an asymptotic complexity bound as an output. The largest
asymptotic complexity bound returned over this incremental process is then also
an upper bound for ircR(n) [37, Corollary 21].

The reduction pair processor using polynomial interpretations [37] applies a
restriction of polynomial interpretations to N [34] to infer upper bounds on the
number of times that DTs can occur in a chain tree for terms of size at most n.

Definition 6 (Polynomial Interpretation, CPI). A polynomial interpre-
tation Pol maps every n-ary function symbol to a polynomial with variables
x1, . . . , xn and coefficients from N. Pol extends to terms via Pol(x) = x for x ∈ V
and Pol(f(t1, . . . , tn)) = Pol(f)(Pol(t1), . . . ,Pol(tn)). Pol induces an order �Pol
and a quasi-order %Pol over terms where s �Pol t iff Pol(s) > Pol(t) and s %Pol t
iff Pol(s) ≥ Pol(t) for all instantiations of variables with natural numbers.

A complexity polynomial interpretation (CPI) Pol is a polynomial inter-
pretation where: Pol(Comn(x1, . . . , xn)) = x1 + · · · + xn, and for all f ∈ Σc,
Pol(f(x1, . . . , xn)) = a1 · x1 + · · ·+ an · xn + b for some ai ∈ {0, 1} and b ∈ N.

The restriction for CPIs regarding constructor symbols enforces that the
interpretation of a constructor term t (as an argument of a term for which a chain
tree is constructed) can exceed its size |t| only by at most a constant factor. This
is crucial for soundness. Using a CPI, we can now define and state correctness of
the corresponding reduction pair processor [37, Theorem 27].

Theorem 3 (Reduction Pair Processor with CPIs [37]). Let 〈D,S,R〉 be
a DT problem, let % and � be induced by a CPI Pol. Let k ∈ N be the maximal
degree of all polynomials Pol(f]) for all f ∈ Σd. Let D∪R ⊆ %. If S ∩� 6= ∅, the
reduction pair processor returns the DT problem 〈D,S \�,R〉 and the complexity
O(nk). Then the reduction pair processor is sound.

Example 4 (Ex. 2 continued). For our running example, consider the CPI Pol
with: Pol(plus](x1, x2)) = Pol(size(x1)) = x1, Pol(size](x1)) = 2x1 + x21,
Pol(plus(x1, x2)) = x1 + x2,Pol(Tree(x1, x2, x3)) = 1 + x2 + x3,Pol(S(x1)) =
1 + x1,Pol(Zero) = Pol(Nil) = 1. Pol orients all DTs in S = DT (R) with � and
all rules in R with %. This proves ircR(n) ∈ O(n2): since the maximal degree of
the CPI for a symbol f] is 2, the upper bound of O(n2) follows by Thm. 3.

3 Finding Upper Bounds for Parallel Complexity

In this section we present our main contribution: an application of the DT
framework from innermost runtime complexity to parallel-innermost rewriting.

6

The notion of parallel-innermost rewriting dates back at least to [40]. Infor-
mally, in a parallel-innermost rewrite step, all innermost redexes are rewritten
simultaneously. This corresponds to executing all function calls in parallel using
a call-by-value strategy on a machine with unbounded parallelism [15]. In the
literature [39], this strategy is also known as “max-parallel-innermost rewriting”.

Definition 7 (Parallel-Innermost Rewriting [19]). A term s rewrites in-
nermost in parallel to t with a TRS R, written s i−→‖ R t, iff s i→+

R t, and either
(a) s i→R t with s an innermost redex, or (b) s = f(s1, . . . , sn), t = f(t1, . . . , tn),
and for all 1 ≤ k ≤ n either sk

i−→‖ R tk or sk = tk is a normal form.

Example 5 (Ex. 1 continued). The TRS R from Ex. 1 allows the following
parallel-innermost rewrite sequence, where innermost redexes are underlined:

size(Tree(Zero,Nil,Tree(Zero,Nil,Nil)))
i−→‖ R S(plus(size(Nil), size(Tree(Zero,Nil,Nil))))
i−→‖ R S(plus(Zero,S(plus(size(Nil), size(Nil)))))
i−→‖ R S(plus(Zero,S(plus(Zero,Zero))))
i−→‖ R S(plus(Zero,S(Zero)))
i−→‖ R S(S(Zero))

In the second and in the third step, two innermost steps each happen in
parallel (which is not possible with standard innermost rewriting: i−→‖ R 6⊆ i→R).
An innermost rewrite sequence without parallel evaluation necessarily needs two
more steps to a normal form from this start term, as in Ex. 1.

Note that for all TRSsR, i−→‖ R is terminating iff i→R is terminating [19]. Ex. 5
shows that such an equivalence does not hold for the derivation height of a term.
The question now is: given a TRS R, how much of a speed-up might we get by a
switch from innermost to parallel-innermost rewriting? To investigate, we extend
the notion of innermost runtime complexity to parallel-innermost rewriting.

Definition 8 (Parallel-Innermost Runtime Complexity pirc). For n ∈ N,
we define the parallel-innermost runtime complexity function as pircR(n) =
sup{dh(t, i−→‖ R) | t ∈ T Rbasic, |t| ≤ n}.

In the literature on parallel computing [15,30,11], the terms depth or span are
commonly used for the concept of the runtime of a function on a machine with
unbounded parallelism (“wall time”), corresponding to the complexity measure
of pircR. In contrast, ircR would describe the work of a function (“CPU time”).

In the following, given a TRS R, our goal shall be to infer (asymptotic) upper
bounds for pircR fully automatically. Of course, an upper bound for (sequential)
ircR is also an upper bound for pircR. We will now introduce techniques to find
upper bounds for pircR that are strictly tighter than these trivial bounds.

To find upper bounds for runtime complexity of parallel-innermost rewriting,
we can reuse the notion of DTs from Def. 3 for sequential innermost rewriting
along with existing techniques [37] as illustrated in the following example.

7

Example 6. In the recursive size-rule, the two calls to size(l) and size(r) happen
in parallel (they are structurally independent) and take place at parallel positions
in the term. Thus, the cost (number of rewrite steps with i−→‖ R until a normal
form is reached) for these two calls is not the sum, but the maximum of their
individual costs. Regardless of which of these two calls has the higher cost, we
still need to add the cost for the call to plus on the results of the two calls: plus
starts evaluating only after both calls to size have finished. With σ as the used
matcher for the rule and with t ↓ as the (here unique) normal form resulting from
repeatedly rewriting a term t with i−→‖ R (the “result” of evaluating t), we have:

dh(size(Tree(v, l, r))σ, i−→‖ R)
= 1 + max(dh(size(l)σ, i−→‖ R),dh(size(r)σ, i−→‖ R))

+ dh(plus(size(l)σ↓, size(r)σ↓), i−→‖ R)

In the DT setting, we could introduce a new symbol ComPark that explicitly
expresses that its arguments are evaluated in parallel. This symbol would then
be interpreted as the maximum of its arguments in an extension of Thm. 3:

size](Tree(v, l, r))→ Com2(ComPar2(size](l), size](r)), plus](size(l), size(r)))

Although automation of the search for polynomial interpretations extended by
the maximum function is readily available [23], we would still have to extend
the notion of Dependency Tuples and also adapt all existing techniques in the
Dependency Tuple framework to work with ComPark.

This is why we have chosen the following alternative approach, which is
equally powerful on theoretical level and enables immediate reuse of existing
techniques in the DT framework. Equivalently to the above, we can “factor in”
the cost of calling plus into the maximum function:

dh(size(Tree(v, l, r))σ, i−→‖ R)
= max(1 + dh(size(l)σ, i−→‖ R) + dh(plus(size(l)σ↓, size(r)σ↓), i−→‖ R),

1 + dh(size(r)σ, i−→‖ R) + dh(plus(size(l)σ↓, size(r)σ↓), i−→‖ R))

Intuitively, this would correspond to evaluating plus(. . . , . . .) twice, in two parallel
threads of execution, which costs the same amount of (wall) time as evaluating
plus(. . . , . . .) once. We can represent this maximum of the execution times of two
threads by introducing two DTs for our recursive size-rule:

size](Tree(v, l, r))→ Com2(size](l), plus](size(l), size(r)))

size](Tree(v, l, r))→ Com2(size](r), plus](size(l), size(r)))

To express the cost of a concrete rewrite sequence, we would non-deterministically
choose the DT that corresponds to the “slower thread”.

In other words, when a rule `→ r is used, the cost of the function call to the
instance of ` is 1 + the sum of the costs of the function calls in the resulting
instance of r that are in structural dependency with each other. The actual cost
of the function call to the instance of ` in a concrete rewrite sequence is the

8

maximum of all the possible costs caused by such chains of structural dependency
(based on the prefix order > on positions of defined function symbols in r). Thus,
structurally independent function calls are considered in separate DTs, whose
non-determinism models the parallelism of these function calls.

The notion of structural dependency of function calls is captured by Def. 9.
Basically, it comes from the fact that a term cannot be evaluated before all its
subterms have been reduced to normal forms (innermost rewriting/call by value).
This induces a “happens-before” relation for the computation [33].

Definition 9 (Structural Dependency, MSDC). For positions π1, . . . , πk,
we call 〈π1, . . . , πk〉 a structural dependency chain for a term t iff π1, . . . , πk ∈
Posd(t) and π1 > . . . > πk. Here πi structurally depends on πj in t iff j < i. A
structural dependency chain 〈π1, . . . , πk〉 for a term t is maximal iff k = 0 and
Posd(t) = ∅, or k > 0 and ∀π ∈ Posd(t) . π ≯ π1 ∧ (π1 > π ⇒ π ∈ {π2, . . . , πk}).
We write MSDC (t) for the set of all maximal structural dependency chains for t.

Note that MSDC (t) 6= ∅ always holds: if Posd(t) = ∅, then MSDC (t) = {〈〉}.

Example 7. Let t = S(plus(size(Nil), plus(size(x),Zero))). In our running example,
t has the following structural dependencies: MSDC (t) = {〈11, 1〉, 〈121, 12, 1〉}.
The chain 〈11, 1〉 corresponds to the nesting of t|11 = size(Nil) below t|1 =
plus(size(Nil), plus(size(x),Zero)), so the evaluation of t|1 will have to wait at least
until t|11 has been fully evaluated.

If π structurally depends on τ in a term t, neither t|τ nor t|π need to be a redex.
Rather, t|τ could be instantiated to a redex and an instance of t|π could become
a redex after its subterms, including the instance of t|τ , have been evaluated.

We thus revisit the notion of DTs, which now embed structural dependencies
in addition to the algorithmic dependencies already captured in DTs.

Definition 10 (Parallel Dependency Tuples PDT , Canonical Parallel
DT Problem). For a rewrite rule `→ r, we define the set of its Parallel Depen-
dency Tuples (PDTs) PDT (`→ r): PDT (`→ r) = {`] → Comk(r|]π1

, . . . , r|]πk
) |

〈π1, . . . , πk〉 ∈ MSDC (r)}. For a TRS R, let PDT (R) =
⋃
`→r∈R PDT (`→ r).

The canonical parallel DT problem for R is 〈PDT (R),PDT (R),R〉.

Example 8. For our recursive size-rule `→ r, we have Posd(r) = {1, 11, 12} and
MSDC (r) = {〈11, 1〉, 〈12, 1〉}. With r |1 = plus(size(l), size(r)), r |11 = size(l), and
r |12 = size(r), we get the PDTs from Ex. 6. For the rule size(Nil)→ Zero, we have
MSDC (Zero) = {〈〉}, so we get PDT (size(Nil)→ Zero) = {size](Nil)→ Com0}.

We can now make our main correctness statement:

Theorem 4 (Cplx bounds Derivation Height for i−→‖ R). Let R be a TRS,
let t = f(t1, . . . , tn) ∈ T (Σ,V) such that all ti are in normal form (e.g., when
t ∈ T Rbasic). Then we have dh(t, i−→‖ R) ≤ Cplx 〈PDT(R),PDT(R),R〉(t

]). If i−→‖ R is

confluent, then dh(t, i−→‖ R) = Cplx 〈PDT(R),PDT(R),R〉(t
]).5

5 The proof uses the confluence of R as a sufficient criterion for unique normal forms.

9

From Thm. 4, the soundness of our approach to parallel complexity analysis
via the DT framework follows analogously to [37]:

Theorem 5 (Parallel Complexity Bounds for TRSs via Canonical Par-
allel DT Problems). Let R be a TRS with canonical parallel DT problem
〈PDT (R),PDT (R),R〉. Then we have pircR(n) ≤ irc〈PDT(R),PDT(R),R〉(n). If

i−→‖ R is confluent, we have pircR(n) = irc〈PDT(R),PDT(R),R〉(n).

This theorem implies that we can reuse arbitrary techniques to find upper
bounds for sequential complexity in the DT framework also to find upper bounds
for parallel complexity, without requiring any modification to the framework.

Thus, via Thm. 3, in particular we can use polynomial interpretations in the
DT framework for our PDTs to get upper bounds for pircR.

Example 9 (Ex. 6 continued). For our TRS R computing the size function on
trees, we get the set PDT (R) with the following PDTs:

plus](Zero, y)→ Com0

plus](S(x), y)→ Com1(plus](x, y))

size](Nil)→ Com0

size](Tree(v, l, r))→ Com2(size](l), plus](size(l), size(r)))

size](Tree(v, l, r))→ Com2(size](r), plus](size(l), size(r)))

The interpretation Pol from Ex. 4 implies pircR(n) ∈ O(n2). This bound is
tight: consider size(t) for a comb-shaped tree t where the first argument of Tree
is always Zero and the third is always Nil. The function plus, which needs time
linear in its first argument, is called linearly often on data linear in the size of
the start term. Due to the structural dependencies, these calls do not happen in
parallel (so call k + 1 to plus must wait for call k).

Example 10. Note that pircR(n) can be asymptotically lower than ircR(n), for
instance for the TRS R with the following rules:

doubles(Zero)→ Nil d(Zero)→ Zero
doubles(S(x))→ Cons(d(S(x)), doubles(x)) d(S(x))→ S(S(d(x)))

The upper bound ircR(n) ∈ O(n2) is tight: from doubles(S(S(. . .S(Zero) . . .))),
we get linearly many calls to the linear-time function d on arguments of size linear
in the start term. However, the Parallel Dependency Tuples in this example are:

doubles](Zero)→ Com0 d](Zero)→ Com0

doubles](S(x))→ Com1(d](S(x))) d](S(x))→ Com1(d](x))

doubles](S(x))→ Com1(doubles](x))

Then the following polynomial interpretation, which orients all DTs with �
and all rules from R with %, proves pircR(n) ∈ O(n): Pol(doubles](x1)) =
Pol(d(x1)) = 2x1,Pol(d](x1)) = x1,Pol(doubles(x1)) = Pol(Cons(x1, x2)) =
Pol(Zero) = Pol(Nil) = 1,Pol(S(x1)) = 1 + x1.

10

Interestingly enough, Parallel Dependency Tuples also allow us to identify
TRSs that have no potential for parallelisation by parallel-innermost rewriting.

Theorem 6 (Absence of Parallelism by PDTs). Let R be a TRS such that
for all rules ` → r ∈ R, |MSDC (r)| = 1. Then: (a) PDT (R) = DT (R); (b)
for all basic terms t0 and rewrite sequences t0

i−→‖ R t1
i−→‖ R t2

i−→‖ R . . . , also
t0

i→R t1
i→R t2

i→R . . . holds (i.e., from basic terms, i−→‖ R and i→R coincide);
(c) pircR(n) = ircR(n).

Thus, for TRSs R where Thm. 6 applies, no rewrite rule can introduce parallel
redexes, and specific analysis techniques for pircR are not needed.

4 From Parallel DTs to Innermost Rewriting

As we have seen in the previous section, we can transform a TRS R with parallel-
innermost rewrite relation to a DT problem whose complexity provides an upper
bound of pircR (or, for confluent i−→‖ R, corresponds exactly to pircR). However,
DTs are only one of many available techniques to find bounds for ircR. Other
techniques include, e.g., Weak Dependency Pairs [26], usable replacement maps
[27], the Combination Framework [8], a transformation to complexity problems for
integer transition systems [36], amortised complexity analysis [35], or techniques
for finding lower bounds [22]. Thus, can we benefit also from other techniques
for (sequential) innermost complexity to analyse parallel complexity?

In this section, we answer the question in the affirmative, via a generic
transformation from Dependency Tuple problems back to rewrite systems whose
innermost complexity can then be analysed using arbitrary existing techniques.

We use relative rewriting, which allows for labelling some of the rewrite rules
such that their use does not contribute to the derivation height of a term. In other
words, rewrite steps with these rewrite rules are “for free” from the perspective
of complexity. Existing state-of-the-art tools like AProVE [24] and TcT [9] are
able to find bounds on (innermost) runtime complexity of such rewrite systems.

Definition 11 (Relative Rewriting). For two TRSs R1 and R2, R1/R2 is a
relative TRS. Its rewrite relation →R1/R2

is →∗R2
◦ →R1

◦ →∗R2
, i.e., rewriting

with R2 is allowed before and after each R1-step. We define the innermost rewrite
relation by s i→R1/R2

t iff s →∗R2
s′ →R1 s

′′ →∗R2
t for some terms s′, s′′ such

that the proper subterms of the redexes of each step with →R2
or →R1

are in
normal form wrt R1 ∪R2.

The set T R1/R2

basic of basic terms for a relative TRS R1/R2 is T R1/R2

basic =

T R1∪R2

basic . The notion of innermost runtime complexity extends to relative TRSs

in the natural way: ircR1/R2
(n) = sup{dh(t, i→R1/R2

) | t ∈ T R1/R2

basic , |t| ≤ n}

The rewrite relation i→R1/R2
is essentially the same as i→R1∪R2

, but only
steps using rules from R1 count towards the complexity; steps using rules from
R2 have no cost. This can be useful, e.g., for representing that built-in functions
from programming languages modelled as recursive functions have constant cost.

11

Example 11. Consider a variant of Ex. 1 where plus(S(x), y) → S(plus(x, y)) is
moved to R2, but all other rules are elements of R1. Then R1/R2 would provide
a modelling of the size function that is closer to the Rust function from Sect. 1.
Let Sn(Zero) denote the term obtained by n-fold application of S to Zero (e.g.,
S2(Zero) = S(S(Zero))). Although dh(plus(Sn(Zero), Sm(Zero)), i→R1∪R2

) = n+1,
we would then get dh(plus(Sn(Zero),Sm(Zero)), i→R1/R2

) = 1, corresponding to
a machine model where the time of evaluating addition for integers is constant.

Note the similarity of a relative TRS and a Dependency Tuple problem: only
certain rewrite steps count towards the analysed complexity. We make use of this
observation for the following transformation.

Definition 12 (Relative TRS for a Dependency Tuple Problem, δ). Let
〈D,S,R〉 be a Dependency Tuple problem. We define the corresponding relative
TRS δ(〈D,S,R〉) = S/((D \ S) ∪R).

In other words, we omit the information that steps with our dependency
tuples can happen only on top level (possibly below constructors Comn, but
above →R steps). (As we shall see in Thm. 8, this information can be recovered.)

The following example is taken from the Termination Problem Data Base
(TPDB) [42], a collection of examples used at the annual Termination and
Complexity Competition (termCOMP) [25,41] (see also Sect. 5):

Example 12 (TPDB, HirokawaMiddeldorp 04/t002). Consider the following
TRS R from category Innermost Runtime Complexity of the TPDB:

leq(0, y)→ true if(true, x, y)→ x
leq(s(x), 0)→ false if(false, x, y)→ y

leq(s(x), s(y))→ leq(x, y) −(x, 0)→ x
mod(0, y)→ 0 −(s(x), s(y))→ −(x, y)

mod(s(x), 0)→ 0
mod(s(x), s(y))→ if(leq(y, x),mod(−(s(x), s(y)), s(y)), s(x))

This TRS has the following PDTs PDT (R):

leq](0, y)→ Com0 if](true, x, y)→ Com0

leq](s(x), 0)→ Com0 if](false, x, y)→ Com0

leq](s(x), s(y))→ Com1(leq](x, y)) −](x, 0)→ Com0

mod](0, y)→ Com0 −](s(x), s(y))→ Com1(−](x, y))

mod](s(x), 0)→ Com0

mod](s(x), s(y))→ Com2(leq](y, x), if](leq(y, x),mod(−(s(x), s(y)), s(y)), s(x)))

mod](s(x), s(y))→ Com3(−](s(x), s(y)),mod](−(s(x), s(y)), s(y)),

if](leq(y, x),mod(−(s(x), s(y)), s(y)), s(x)))

The canonical parallel DT problem is 〈PDT (R),PDT (R),R〉. We get the
relative TRS δ(〈PDT (R),PDT (R),R〉) = PDT (R)/R.

12

Theorem 7 (Upper Complexity Bounds for δ(〈D,S,R〉) from 〈D,S,R〉).
Let 〈D,S,R〉 be a DT problem. Then (a) for all t] ∈ T] with t ∈ T Rbasic, we have
Cplx〈D,S,R〉(t

])≤dh(t], i→S/((D\S)∪R)), and (b) irc〈D,S,R〉(n)≤ ircS/((D\S)∪R)(n).

Example 13 (Ex. 12 continued). For the relative TRS PDT (R)/R from Ex. 12,
the tool AProVE uses a transformation to integer transition systems [36] followed
by an application of the complexity analysis tool CoFloCo [21,20] to find a
bound ircPDT(R)/R(n) ∈ O(n) and to deduce the bound pircR(n) ∈ O(n) for
the original TRS R from the TPDB. In contrast, using the techniques of Sect. 3
without the transformation to a relative TRS from Def. 12, AProVE finds only
a bound pircR(n) ∈ O(n2).

Intriguingly, we can use our transformation from Def. 12 not only for finding
upper bounds, but also for lower bounds on pircR.

Theorem 8 (Lower Complexity Bounds for δ(〈D,S,R〉) from 〈D,S,R〉).
Let 〈D,S,R〉 be a DT problem. Then (a) there is a type assignment s.t. for all
` → r ∈ D ∪ R, ` and r get the same type, and for all well-typed t ∈ T D∪Rbasic ,
Cplx〈D,S,R〉(t

]) ≥ dh(t, i→S/((D\S)∪R)), and (b) irc〈D,S,R〉(n) ≥ ircS/((D\S)∪R)(n).

Thm. 7 and Thm. 8 hold regardless of whether the original DT problem was
obtained from a TRS with sequential or with parallel evaluation. So while this
kind of connection between DT (or DP) problems and relative rewriting may
be folklore in the community, its application to convert a TRS whose parallel
complexity is sought to a TRS with the same sequential complexity is new.

Note that Thm. 5 requires confluence of i−→‖ R to derive lower bounds for
pircR from lower complexity bounds of the canonical parallel DT problem. So to
use Thm. 8 to search for lower complexity bounds with existing techniques [22],
we need a criterion for confluence of parallel-innermost rewriting.

Example 14 (Confluence of i→R does not Imply Confluence of i−→‖ R). To see
that we cannot prove confluence of i−→‖ R just by using a standard off-the-shelf
tool for confluence analysis of innermost or full rewriting [16], consider the
TRS R = {a → f(b, b), a → f(b, c), b → c, c → b}. For this TRS, both i→R
and →R are confluent. However, i−→‖ R is not confluent: we can rewrite both
a i−→‖ R f(b, b) and a i−→‖ R f(b, c), yet there is no term v such that f(b, b) i−→‖ ∗

R v
and f(b, c) i−→‖ ∗

R v. The reason is that the only possible rewrite sequences
with i−→‖ R from these terms are f(b, b) i−→‖ R f(c, c) i−→‖ R f(b, b) i−→‖ R . . . and
f(b, c) i−→‖ R f(c, b) i−→‖ R f(b, c) i−→‖ R . . . , with no terms in common.

Conjecture 1. If i−→‖ R is confluent, then i→R is confluent.

Confluence means: if a term s can be rewritten to two different terms t1 and
t2 in 0 or more steps, it is always possible to rewrite t1 and t2 in 0 or more steps
to a term u. For i−→‖ R, the redexes that get rewritten are fixed: all innermost
redexes simultaneously. Thus, s can rewrite to two different terms t1 and t2 only
if at least one of these redexes can be rewritten in two different ways using i→R.

Towards a sufficient criterion for confluence of parallel-innermost rewriting,
we introduce the following standard definition:

13

Definition 13 (Non-Overlapping). A TRS R is non-overlapping iff for any
two rules `→ r, u→ v ∈ R where variables have been renamed apart between the
rules, there is no position π in ` such that `|π /∈ V and the terms `|π and u unify.

A sufficient criterion that a given redex has a unique result from a rewrite
step is given in the following.

Lemma 1 ([10], Lemma 6.3.9). If a TRS R is non-overlapping, s→R t1 and
s→R t2 with the redex of both rewrite steps at the same position, then t1 = t2.

With the above reasoning, this lemma directly gives us a sufficient criterion
for confluence of parallel-innermost rewriting.

Corollary 1 (Confluence of Parallel-Innermost Rewriting). If a TRS R
is non-overlapping, then i−→‖ R is confluent.

So, in those cases we can actually use this sequence of transformations from
a parallel-innermost TRS via a DT problem to an innermost (relative) TRS to
analyse both upper and lower bounds for the original. Conveniently, these cases
correspond to deterministic programs, our motivation for this work!

Example 15 (Ex. 13 continued). Cor. 1 and Thm. 8 imply that a lower bound
for ircPDT(R)/R(n) of the relative TRS PDT (R)/R from Ex. 12 carries over to
pircR(n) of the original TRS R from the TPDB. AProVE uses rewrite lemmas
[22] to find the lower bound ircPDT(R)/R(n) ∈ Ω(n). Together with Ex. 13, we
have automatically inferred that this complexity bound is tight : pircR(n) ∈ Θ(n).

5 Implementation and Experiments

We have implemented the contributions of this paper in the automated termi-
nation and complexity analysis tool AProVE [24]. We added or modified 620
lines of Java code, including 1. the framework of parallel-innermost rewriting;
2. the generation of parallel DTs (Thm. 5); 3. a processor to convert them
to TRSs with the same complexity (Thm. 7, Thm. 8); 4. the confluence test
of Cor. 1. As far as we are aware, this is the first implementation of a fully
automated inference of complexity bounds for parallel-innermost rewriting. To
demonstrate the effectiveness of our implementation, we have considered the 663
TRSs from category Runtime Complexity Innermost Rewriting of the TPDB,
version 11.2 [42]. This category of the TPDB is the benchmark collection used
at termCOMP to compare tools that infer complexity bounds for runtime com-
plexity of innermost rewriting, ircR. To get meaningful results, we first applied
Thm. 6 to exclude TRSs R where pircR(n) = ircR(n) trivially holds. We obtained
294 TRSs with potential for parallelism as our benchmark set. We conducted
our experiments on the StarExec compute cluster [38] in the all.q queue.
The timeout per example and tool configuration was set to 300 seconds. Our
experimental data with analysis times and all examples are available online [1].

14

Tool O(1) ≤ O(n) ≤ O(n2) ≤ O(n3) ≤ O(n≥4)

TcT ircR 4 28 39 44 44
AProVE ircR 5 50 110 123 127
AProVE pircR Section 3 5 65 125 140 142
AProVE pircR Sections 3 & 4 5 69 125 139 141

TcT pircR Section 4 3 39 52 56 57
AProVE pircR Section 4 5 62 96 105 105

Table 1. Upper bounds for runtime complexity of (parallel-)innermost rewriting

Tool confluent ≥ Ω(n) ≥ Ω(n2) ≥ Ω(n3) ≥ Ω(n≥4)

AProVE pircR Sections 3 & 4 186 133 23 5 1

TcT pircR Section 4 186 59 0 0 0
AProVE pircR Section 4 186 155 22 5 1

Table 2. Lower bounds for runtime complexity of parallel-innermost rewriting

Tool Θ(1) Θ(n) Θ(n2) Θ(n3) Total

AProVE pircR Sections 3 & 4 5 32 1 3 41

TcT pircR Section 4 3 21 0 0 24
AProVE pircR Section 4 5 37 1 3 46

Table 3. Tight bounds for runtime complexity of parallel-innermost rewriting

As remarked earlier, we always have pircR(n) ≤ ircR(n), so an upper bound
for ircR(n) is always a legitimate upper bound for pircR(n). Thus, we include
upper bounds for ircR found by the state-of-the-art tools AProVE and TcT [2,9].
from termCOMP 2021 as a “baseline” in our evaluation. We compare with several
configurations of AProVE and TcT that use the techniques of this paper for
pircR: “AProVE pircR Section 3” also uses Thm. 5 to produce canonical parallel
DT problems as input for the DT framework. “AProVE pircR Sections 3 & 4”
additionally uses the transformation from Def. 12 to convert a TRS R to a relative
TRS PDT (R)/R and then to analyse ircPDT(R)/R(n) (for lower bounds only
together with a confluence proof via Cor. 1). We also extracted each of the TRSs
PDT (R)/R and used the files as inputs for AProVE and TcT from termCOMP
2021. “AProVE pircR Section 4” and “TcT pircR Section 4” provide the results
for ircPDT(R)/R (for lower bounds, only where i−→‖ R had been proved confluent).

Table 1 gives an overview over our experimental results for upper bounds. For
each configuration, we state the number of examples for which the corresponding
asymptotic complexity bound was inferred. A column “≤ O(nk)” means that the
corresponding tools proved a bound ≤ O(nk) (e.g., the configuration “AProVE
ircR” proved constant or linear upper bounds in 50 cases). Maximum values in
a column are highlighted in bold. We observe that upper complexity bounds
improve in a noticeable number of cases, e.g., linear bounds on pircR can now
be inferred for 69 TRSs rather than for 50 TRSs (using upper bounds on ircR
as an over-approximation), an improvement by 38%. Note that this does not
indicate deficiencies in the existing tools for ircR, which had not been designed
with analysis of pircR in mind – rather, it shows that specialised techniques for
analysing pircR are a worthwhile subject of investigation. Note also that Ex. 4
and Ex. 9 show that even for TRSs with potential for parallelism, the actual

15

parallel and sequential complexity may still be asymptotically identical, which
further highlights the need for dedicated analysis techniques for pircR.

The improvement from ircR to pircR can be drastic: for example, for the TRS
TCT 12/recursion 10, the bounds found by AProVE change from an upper
bound of sequential complexity of O(n10) to a (tight) upper bound for parallel
complexity of O(n). (This TRS models a specific recursion structure, with rules
{f0(x) → a} ∪ {fi(x) → gi(x, x), gi(s(x), y) → b(fi−1(y), gi(x, y)) | 1 ≤ i ≤ 10},
and is highly amenable to parallelisation.) We observe that adding the techniques
from Sect. 4 to the techniques from Sect. 3 leads to only few examples for which
better upper bounds can be found (one of them is Ex. 13).

Table 2 shows our results for lower bounds on pircR. Here we evaluated only
configurations including Def. 12 to make inference techniques for lower bounds
of ircR applicable to pircR. The reason is that a lower bound on ircR is not
necessarily also a lower bound for pircR (the whole point of performing innermost
rewriting in parallel is to reduce the asymptotic complexity!), so using results by
tools that compute lower bounds on ircR for comparison would not make sense.
We observe that non-trivial lower bounds can be inferred for 155 out of the 186
examples proved confluent via Cor. 1. This shows that our transformation from
Sect. 4 has practical value since it produces relative TRSs that are generally
amenable to analysis by existing program analysis tools. Finally, Table 3 shows
that for overall 46 TRSs, the bounds that were found are asymptotically precise.

6 Related Work, Conclusion, and Future Work

Related work. We provide pointers to work on automated analysis of (sequential)
innermost runtime complexity of TRSs at the start of Sect. 4. We now focus on
automated techniques for complexity analysis of parallel/concurrent computation.

Our notion of parallel complexity follows a large tradition of static cost
analysis, notably for concurrent programming. The two notable works [4,5]
address async/finish programs where tasks are explicitly launched. The authors
propose several metrics such as the total number of spawned tasks (in any
execution of the program) and a notion of parallel complexity that is roughly the
same as ours. They provide static analyses that build on techniques for estimating
costs of imperative languages with functions calls [3], and/or recurrence equations.
Recent approaches for the Pi Calculus [11,12] compute the span (our parallel
complexity) through a new typing system. Another type-based calculus for the
same purpose has been proposed with session types [17].

For logic programs, which – like TRSs – express an implicit parallelism,
parallel complexity can be inferred using recurrence solving [31].

The tool RAML [29] derives bounds on the worst-case evaluation cost of
first-order functional programs with list and pair constructors as well as pattern
matching and both sequential and parallel composition [30]. They use two typing
derivations with specially annotated types, one for the work and one for the depth
(parallel complexity). Our setting is more flexible wrt the shape of user-defined

16

data structures (we allow for tree constructors of arbitrary arity), and our analysis
deals with both data structure and control in an integrated manner.

Conclusion and future work. We have defined parallel-innermost runtime
complexity for TRSs and proposed an approach to its automated analysis. Our
approach allows for finding both upper and lower bounds and builds on existing
techniques and tools. Our experiments on the TPDB indicate that our approach is
practically usable, and we are confident that it captures the potential parallelism
of programs with pattern matching.

Parallel rewriting is a topic of active research, e.g., for GPU-based massively
parallel rewrite engines [18]. Here our work could be useful to determine which
functions to evaluate on the GPU. More generally, parallelising compilers which
need to determine which function calls should be compiled into parallel code may
benefit from an analysis of parallel-innermost runtime complexity such as ours.

DTs have been used [43] in runtime complexity analysis of Logically Con-
strained TRSs (LCTRSs) [32], an extension of TRSs by built-in data types
from SMT theories (integers, arrays, . . .). This work could be extended to
parallel rewriting. Moreover, analysis of derivational complexity [28] of parallel-
innermost term rewriting can be a promising direction. Derivational complex-
ity considers the length of rewrite sequences from arbitrary start terms, e.g.,
d(d(. . . (d(S(Zero))) . . .)) in Ex. 10, which can have longer derivations than basic
terms of the same size. Finally, towards automated parallelisation we aim to infer
complexity bounds wrt term height (terms = trees!), as suggested in [6].

Acknowledgements. We thank the anonymous reviewers for helpful comments.

References

1. https://www.dcs.bbk.ac.uk/~carsten/eval/parallel_complexity/

2. https://www.starexec.org/starexec/secure/details/solver.jsp?id=29575

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theor. Comput. Sci. 413(1), 142–159 (2012),
https://doi.org/10.1016/j.tcs.2011.07.009

4. Albert, E., Arenas, P., Genaim, S., Zanardini, D.: Task-level analysis for a language
with async/finish parallelism. In: Vitek, J., Sutter, B.D. (eds.) Proceedings of the
ACM SIGPLAN/SIGBED 2011 conference on Languages, compilers, and tools for
embedded systems, LCTES 2011, Chicago, IL, USA, April 11-14, 2011. pp. 21–30.
ACM (2011), https://doi.org/10.1145/1967677.1967681

5. Albert, E., Correas, J., Johnsen, E.B., Pun, V.K.I., Román-Dı́ez, G.: Parallel cost
analysis. ACM Trans. Comput. Log. 19(4), 31:1–31:37 (2018), https://doi.org/
10.1145/3274278

6. Alias, C., Fuhs, C., Gonnord, L.: Estimation of Parallel Complexity with Rewriting
Techniques. In: Proceedings of the 15th Workshop on Termination (WST 2016).
pp. 2:1–2:5 (2016), https://hal.archives-ouvertes.fr/hal-01345914

7. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical
Computer Science 236, 133–178 (2000)

8. Avanzini, M., Moser, G.: A combination framework for complexity. Information and
Computation 248, 22–55 (2016), https://doi.org/10.1016/j.ic.2015.12.007

17

https://www.dcs.bbk.ac.uk/~carsten/eval/parallel_complexity/
https://www.starexec.org/starexec/secure/details/solver.jsp?id=29575
https://doi.org/10.1016/j.tcs.2011.07.009
https://doi.org/10.1145/1967677.1967681
https://doi.org/10.1145/3274278
https://doi.org/10.1145/3274278
https://hal.archives-ouvertes.fr/hal-01345914
https://doi.org/10.1016/j.ic.2015.12.007

9. Avanzini, M., Moser, G., Schaper, M.: TcT: Tyrolean Complexity Tool. In:
Chechik, M., Raskin, J. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 22nd International Conference, TACAS 2016, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. Lec-
ture Notes in Computer Science, vol. 9636, pp. 407–423. Springer (2016), https:
//doi.org/10.1007/978-3-662-49674-9_24

10. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge Univ. Press (1998)
11. Baillot, P., Ghyselen, A.: Types for complexity of parallel computation in pi-

calculus. In: Yoshida, N. (ed.) Programming Languages and Systems - 30th
European Symposium on Programming, ESOP 2021, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2021,
Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings. Lec-
ture Notes in Computer Science, vol. 12648, pp. 59–86. Springer (2021), https:
//doi.org/10.1007/978-3-030-72019-3_3

12. Baillot, P., Ghyselen, A., Kobayashi, N.: Sized Types with Usages for Parallel
Complexity of Pi-Calculus Processes. In: Haddad, S., Varacca, D. (eds.) 32nd
International Conference on Concurrency Theory, CONCUR 2021, August 24-27,
2021, Virtual Conference. LIPIcs, vol. 203, pp. 34:1–34:22. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021), https://doi.org/10.4230/LIPIcs.CONCUR.2021.
34

13. Baudon, T., Fuhs, C., Gonnord, L.: Parallel complexity of term rewriting systems.
In: 17th International Workshop on Termination (WST 2021). pp. 45–50 (2021),
https://hal.archives-ouvertes.fr/hal-03418400/document

14. Baudon, T., Fuhs, C., Gonnord, L.: Analysing parallel complexity of term rewriting
(2022). https://doi.org/10.48550/ARXIV.2208.01005, https://arxiv.org/abs/
2208.01005

15. Blelloch, G.E., Greiner, J.: Parallelism in sequential functional languages. In:
Williams, J. (ed.) Proceedings of the seventh international conference on Functional
programming languages and computer architecture, FPCA 1995, La Jolla, California,
USA, June 25-28, 1995. pp. 226–237. ACM (1995), https://doi.org/10.1145/
224164.224210

16. Community: The international Confluence Competition (CoCo), http://

project-coco.uibk.ac.at/

17. Das, A., Hoffmann, J., Pfenning, F.: Parallel complexity analysis with temporal
session types. Proc. ACM Program. Lang. 2(ICFP), 91:1–91:30 (2018), https:

//doi.org/10.1145/3236786

18. van Eerd, J., Groote, J.F., Hijma, P., Martens, J., Wijs, A.: Term rewriting on
GPUs. In: Hojjat, H., Massink, M. (eds.) Fundamentals of Software Engineering -
9th International Conference, FSEN 2021, Virtual Event, May 19-21, 2021, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 12818, pp. 175–189.
Springer (2021), https://doi.org/10.1007/978-3-030-89247-0_12

19. Fernández, M., Godoy, G., Rubio, A.: Orderings for innermost termination. In:
Giesl, J. (ed.) Term Rewriting and Applications, 16th International Conference,
RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings. Lecture Notes in Com-
puter Science, vol. 3467, pp. 17–31. Springer (2005), https://doi.org/10.1007/
978-3-540-32033-3_3

20. Flores-Montoya, A.: Upper and lower amortized cost bounds of programs expressed
as cost relations. In: Fitzgerald, J.S., Heitmeyer, C.L., Gnesi, S., Philippou, A.
(eds.) FM 2016: Formal Methods - 21st International Symposium, Limassol, Cyprus,

18

https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-030-72019-3_3
https://doi.org/10.1007/978-3-030-72019-3_3
https://doi.org/10.4230/LIPIcs.CONCUR.2021.34
https://doi.org/10.4230/LIPIcs.CONCUR.2021.34
https://hal.archives-ouvertes.fr/hal-03418400/document
https://doi.org/10.48550/ARXIV.2208.01005
https://doi.org/10.48550/ARXIV.2208.01005
https://arxiv.org/abs/2208.01005
https://arxiv.org/abs/2208.01005
https://doi.org/10.1145/224164.224210
https://doi.org/10.1145/224164.224210
http://project-coco.uibk.ac.at/
http://project-coco.uibk.ac.at/
https://doi.org/10.1145/3236786
https://doi.org/10.1145/3236786
https://doi.org/10.1007/978-3-030-89247-0_12
https://doi.org/10.1007/978-3-540-32033-3_3
https://doi.org/10.1007/978-3-540-32033-3_3

November 9-11, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9995,
pp. 254–273 (2016), https://doi.org/10.1007/978-3-319-48989-6_16

21. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Garrigue, J. (ed.) Programming Languages and Systems - 12th
Asian Symposium, APLAS 2014, Singapore, November 17-19, 2014, Proceedings.
Lecture Notes in Computer Science, vol. 8858, pp. 275–295. Springer (2014), https:
//doi.org/10.1007/978-3-319-12736-1_15

22. Frohn, F., Giesl, J., Hensel, J., Aschermann, C., Ströder, T.: Lower bounds for
runtime complexity of term rewriting. J. Autom. Reason. 59(1), 121–163 (2017),
https://doi.org/10.1007/s10817-016-9397-x

23. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
Maximal termination. In: Voronkov, A. (ed.) Rewriting Techniques and Applications,
19th International Conference, RTA 2008, Hagenberg, Austria, July 15-17, 2008,
Proceedings. Lecture Notes in Computer Science, vol. 5117, pp. 110–125. Springer
(2008), https://doi.org/10.1007/978-3-540-70590-1_8

24. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C.,
Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski,
S., Thiemann, R.: Analyzing program termination and complexity automatically
with AProVE. J. Autom. Reason. 58(1), 3–31 (2017), https://doi.org/10.1007/
s10817-016-9388-y

25. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination and
complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 25 Years of
TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, Part III. Lecture Notes in Computer Science, vol. 11429,
pp. 156–166. Springer (2019), https://doi.org/10.1007/978-3-030-17502-3_10

26. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency
pair method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated
Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia,
August 12-15, 2008, Proceedings. Lecture Notes in Computer Science, vol. 5195,
pp. 364–379. Springer (2008), https://doi.org/10.1007/978-3-540-71070-7_32

27. Hirokawa, N., Moser, G.: Automated complexity analysis based on context-
sensitive rewriting. In: Dowek, G. (ed.) Rewriting and Typed Lambda Calculi
- Joint International Conference, RTA-TLCA 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings.
Lecture Notes in Computer Science, vol. 8560, pp. 257–271. Springer (2014),
https://doi.org/10.1007/978-3-319-08918-8_18

28. Hofbauer, D., Lautemann, C.: Termination proofs and the length of deriva-
tions. In: Dershowitz, N. (ed.) Rewriting Techniques and Applications, 3rd In-
ternational Conference, RTA-89, Chapel Hill, North Carolina, USA, April 3-
5, 1989, Proceedings. Lecture Notes in Computer Science, vol. 355, pp. 167–
177. Springer (1989). https://doi.org/10.1007/3-540-51081-8_107, https://

doi.org/10.1007/3-540-51081-8_107

29. Hoffmann, J., Aehlig, K., Hofmann, M.: Resource aware ML. In: Madhusudan, P.,
Seshia, S.A. (eds.) Computer Aided Verification - 24th International Conference,
CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings. Lecture Notes in
Computer Science, vol. 7358, pp. 781–786. Springer (2012), https://doi.org/10.
1007/978-3-642-31424-7_64

30. Hoffmann, J., Shao, Z.: Automatic static cost analysis for parallel programs. In:
Vitek, J. (ed.) Programming Languages and Systems - 24th European Symposium

19

https://doi.org/10.1007/978-3-319-48989-6_16
https://doi.org/10.1007/978-3-319-12736-1_15
https://doi.org/10.1007/978-3-319-12736-1_15
https://doi.org/10.1007/s10817-016-9397-x
https://doi.org/10.1007/978-3-540-70590-1_8
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1007/978-3-319-08918-8_18
https://doi.org/10.1007/3-540-51081-8_107
https://doi.org/10.1007/3-540-51081-8_107
https://doi.org/10.1007/3-540-51081-8_107
https://doi.org/10.1007/3-540-51081-8_107
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64

on Programming, ESOP 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings. Lecture Notes in Computer Science, vol. 9032, pp. 132–157. Springer
(2015), https://doi.org/10.1007/978-3-662-46669-8_6

31. Klemen, M., López-Garćıa, P., Gallagher, J.P., Morales, J.F., Hermenegildo, M.V.:
A general framework for static cost analysis of parallel logic programs. In: Gabbrielli,
M. (ed.) Logic-Based Program Synthesis and Transformation - 29th International
Symposium, LOPSTR 2019, Porto, Portugal, October 8-10, 2019, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 12042, pp. 19–35. Springer (2019),
https://doi.org/10.1007/978-3-030-45260-5_2

32. Kop, C., Nishida, N.: Term rewriting with logical constraints. In: Fontaine, P.,
Ringeissen, C., Schmidt, R.A. (eds.) Frontiers of Combining Systems - 9th In-
ternational Symposium, FroCoS 2013, Nancy, France, September 18-20, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 8152, pp. 343–358. Springer
(2013), https://doi.org/10.1007/978-3-642-40885-4_24

33. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978), https://doi.org/10.1145/359545.359563

34. Lankford, D.S.: Canonical algebraic simplification in computational logic. Tech.
Rep. ATP-25, University of Texas (1975)

35. Moser, G., Schneckenreither, M.: Automated amortised resource analysis for term
rewrite systems. Sci. Comput. Program. 185 (2020), https://doi.org/10.1016/j.
scico.2019.102306

36. Naaf, M., Frohn, F., Brockschmidt, M., Fuhs, C., Giesl, J.: Complexity analysis
for term rewriting by integer transition systems. In: Dixon, C., Finger, M. (eds.)
Frontiers of Combining Systems - 11th International Symposium, FroCoS 2017,
Braśılia, Brazil, September 27-29, 2017, Proceedings. Lecture Notes in Computer
Science, vol. 10483, pp. 132–150. Springer (2017), https://doi.org/10.1007/

978-3-319-66167-4_8

37. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity
of term rewriting by dependency pairs. J. Autom. Reason. 51(1), 27–56 (2013),
https://doi.org/10.1007/s10817-013-9277-6

38. Stump, A., Sutcliffe, G., Tinelli, C.: Starexec: A cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Automated
Reasoning - 7th International Joint Conference, IJCAR 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings.
Lecture Notes in Computer Science, vol. 8562, pp. 367–373. Springer (2014), https:
//doi.org/10.1007/978-3-319-08587-6_28, https://www.starexec.org/

39. Thiemann, R., Sternagel, C., Giesl, J., Schneider-Kamp, P.: Loops under strategies ...
continued. In: Kirchner, H., Muñoz, C.A. (eds.) Proceedings International Workshop
on Strategies in Rewriting, Proving, and Programming, IWS 2010, Edinburgh, UK,
9th July 2010. EPTCS, vol. 44, pp. 51–65 (2010). https://doi.org/10.4204/

EPTCS.44.4, https://doi.org/10.4204/EPTCS.44.4

40. Vuillemin, J.: Correct and optimal implementations of recursion in a simple
programming language. J. Comput. Syst. Sci. 9(3), 332–354 (1974), https:

//doi.org/10.1016/S0022-0000(74)80048-6

41. Wiki: The International Termination Competition (TermComp), http://

termination-portal.org/wiki/Termination_Competition

42. Wiki: Termination Problems DataBase (TPDB), http://termination-portal.

org/wiki/TPDB

20

https://doi.org/10.1007/978-3-662-46669-8_6
https://doi.org/10.1007/978-3-030-45260-5_2
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1145/359545.359563
https://doi.org/10.1016/j.scico.2019.102306
https://doi.org/10.1016/j.scico.2019.102306
https://doi.org/10.1007/978-3-319-66167-4_8
https://doi.org/10.1007/978-3-319-66167-4_8
https://doi.org/10.1007/s10817-013-9277-6
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://www.starexec.org/
https://doi.org/10.4204/EPTCS.44.4
https://doi.org/10.4204/EPTCS.44.4
https://doi.org/10.4204/EPTCS.44.4
https://doi.org/10.4204/EPTCS.44.4
https://doi.org/10.4204/EPTCS.44.4
https://doi.org/10.1016/S0022-0000(74)80048-6
https://doi.org/10.1016/S0022-0000(74)80048-6
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/TPDB
http://termination-portal.org/wiki/TPDB

43. Winkler, S., Moser, G.: Runtime complexity analysis of logically constrained rewrit-
ing. In: Fernández, M. (ed.) Logic-Based Program Synthesis and Transformation -
30th International Symposium, LOPSTR 2020, Bologna, Italy, September 7-9, 2020,
Proceedings. Lecture Notes in Computer Science, vol. 12561, pp. 37–55. Springer
(2020), https://doi.org/10.1007/978-3-030-68446-4_2

21

https://doi.org/10.1007/978-3-030-68446-4_2

	Analysing Parallel Complexity of Term Rewriting

