
An Innermost DP Framework for Constrained
Higher-Order Rewriting
Carsten Fuhs �

Birkbeck, University of London, The United Kingdom

Liye Guo �

Radboud University, Nijmegen, The Netherlands

Cynthia Kop �

Radboud University, Nijmegen, The Netherlands

Abstract
Logically constrained simply-typed term rewriting systems (LCSTRSs) are a higher-order formalism
for program analysis with support for primitive data types. The termination problem of LCSTRSs has
been studied so far in the setting of full rewriting. This paper modifies the higher-order constrained
dependency pair framework to prove innermost termination, which corresponds to the termination of
programs under call by value. We also show that the notion of universal computability with respect
to innermost rewriting can be effectively handled in the modified, innermost framework, which lays
the foundation for open-world termination analysis of programs under call by value via LCSTRSs.

2012 ACM Subject Classification Theory of computation→ Equational logic and rewriting; Theory
of computation → Logic and verification

Keywords and phrases Higher-order term rewriting, constrained rewriting, innermost termination,
call by value, open-world analysis, dependency pairs

Digital Object Identifier 10.4230/LIPIcs.FSCD.2025.17

Supplementary Material Software (Source Code): https://github.com/hezzel/cora [27]
Software (Source Code): https://zenodo.org/records/15318964 [28]

Funding Liye Guo: NWO VI.Vidi.193.075, project “CHORPE”
Cynthia Kop: NWO VI.Vidi.193.075, project “CHORPE”

Acknowledgements We thank the reviewers for helpful comments that allowed us to improve the
presentation.

1 Introduction

In the study of term rewriting, termination has been an active area of research for decades.
Hundreds of different termination techniques have been developed, along with a variety
of (fully automatic) termination analyzers that compete against each other in an annual
competition [6]. Many of those techniques have been adapted to different styles of term
rewriting (e.g., context-sensitive, relative, constrained and higher-order).

In a recent work [22], we have introduced logically constrained simply-typed term rewriting
systems (LCSTRSs): a variant of term rewriting that incorporates both higher-order terms
and primitive data types such as integers and bit vectors. This formalism is proposed to be
a stepping stone toward functional programming languages: by adapting analysis techniques
from traditional term rewriting to LCSTRSs, we obtain many of the ingredients needed by
the analysis of functional programs, without limiting ourselves to a particular language.

Our long-term goal is to use LCSTRSs as an intermediate verification language in a two-
step process to prove correctness properties (e.g., termination, reachability and equivalence)
of a program P written in a real-world programming language with higher-order features

© Carsten Fuhs, Liye Guo, and Cynthia Kop;
licensed under Creative Commons License CC-BY 4.0

10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025).
Editor: Maribel Fernández; Article No. 17; pp. 17:1–17:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:c.fuhs@bbk.ac.uk
https://orcid.org/0009-0007-3697-4383
mailto:l.guo@cs.ru.nl
https://orcid.org/0000-0002-3064-2691
mailto:c.kop@cs.ru.nl
https://orcid.org/0000-0002-6337-2544
https://doi.org/10.4230/LIPIcs.FSCD.2025.17
https://github.com/hezzel/cora
https://zenodo.org/records/15318964
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 An Innermost DP Framework for Constrained Higher-Order Rewriting

(e.g., OCaml and Scala): (1) soundly translate P to an LCSTRS RP (i.e., if RP is, say,
terminating, then so is P), and (2) analyze RP . This approach has been successfully applied
across paradigms to multiple languages, such as Prolog [44, 17], Haskell [16], Java [39]
and C [14], via various flavors of term rewriting. We consider LCSTRSs a highly suitable
intermediate language that allows for a direct representation of many programming language
features. We particularly study termination, both for its own relevance, and due to the fact
that it allows the reduction relation to be used as a decreasing measure in induction, which
is a powerful aid to proving many other properties.

Most modern termination techniques for term rewriting are defined within the dependency
pair (DP) framework [3, 18], which essentially studies groups of recursive function calls.
In [21], a higher-order variant of this framework [35, 36, 34, 13] has been adapted to LCSTRSs,
and its usefulness in open-world termination analysis has also been established through
the notion of universal computability. However, this method still faces limitations: many
commonly used DP processors (termination techniques within the DP framework) have not
yet been extended to the higher-order and constrained setting, and whereas the first-order
DP framework can deal with both full rewriting and innermost rewriting, most higher-order
versions—including the one for LCSTRSs—only concern full rewriting. The incapability to
handle innermost rewriting is particularly unfortunate since many functional languages use
call-by-value evaluation, which largely corresponds to innermost rewriting.

In this paper, we define the first innermost DP framework for LCSTRSs. We shall present
DP processors that explicitly benefit from innermost or call-by-value rewriting.

Contributions. We start in Section 2 with the preliminaries on LCSTRSs and the notion
of computability, which is fundamental to static dependency pairs. Then this paper’s
contributions follow:

In Section 3, we discuss the innermost and the call-by-value strategies, and present a
transformation that allows us to better utilize the call-by-value setting.
In Section 4, we recall the notion of a static dependency pair for LCSTRSs [21], and
extend it by introducing call-by-value dependency pairs and innermost chains.
In Section 5, we present an innermost DP framework, which can be used to prove
innermost (and call-by-value) termination through the use of various DP processors. We
first review three classes of existing DP processors defined for full rewriting, and see
how they adapt to the innermost setting. Then we define three more, specifically for the
innermost DP framework:

In Section 5.2, following the idea of chaining from first-order rewriting with integer
constraints [10, 11, 15], we propose a class of DP processors that merge call-by-value
dependency pairs. These DP processors can be particularly useful in the analysis of
automatically generated systems, which often give rise to a large body of dependency
pairs representing intermediate steps of computation.
In Section 5.3, we extend the idea of usable rules [3, 19, 24]. While this idea has been
applied to higher-order rewriting [2, 40], logical constraints still pose challenges. In
the innermost setting, we are able to define this class of DP processors in their most
powerful form, which permanently removes rewrite rules from a DP problem.
In Section 5.4, we show how usable rules with respect to an argument filtering may be
defined, and how this technique makes first-order reduction pairs applicable. This way
a large number of first-order techniques can be employed for higher-order termination
without a higher-order modification; to be applied to LCSTRSs, those reduction pairs
only need to adapt to logical constraints.

C. Fuhs, L. Guo, and C. Kop 17:3

In Section 6, we discuss the notion of universal computability [21] with respect to innermost
rewriting. We will see that the employment of usable rules significantly increases the
potential of the innermost DP framework to analyze universal computability: now we
can use fully-fledged reduction pair processors for open-world termination analysis, and
thereby harness one of the main benefits of the DP framework in this practical setting.
We have implemented all the results in our open-source analyzer Cora. The implementation
and the evaluation thereof are described in Section 7.

2 Preliminaries

This section collects the preliminaries from the literature. First, we recall the definition
of an LCSTRS [22].1 Then, we recollect from [13] the definition of computability (with
accessibility), particularly under the strategies. We borrow several definitions from the
phrasing in [21].

2.1 Logically Constrained STRSs
Terms Modulo Theories. Given a non-empty set S of sorts (or base types), the set T of
(simple) types over S is generated by the grammar T ::= S | (T → T). Right-associativity
is assigned to → so we can omit some parentheses. Given disjoint sets F and V, whose
elements we call function symbols and variables, respectively, the set T of pre-terms over F
and V is generated by the grammar T ::= F | V | (T T). Left-associativity is assigned to the
juxtaposition operation, called application, so for instance t0 t1 t2 stands for ((t0 t1) t2).

We assume every function symbol and variable is assigned a unique type. Typing works
as expected: if pre-terms t0 and t1 have types A→ B and A, respectively, t0 t1 has type B.
The set T (F ,V) of terms over F and V consists of pre-terms that have a type. We write
t : A if a term t has type A. We assume there are infinitely many variables of each type.

The set Var(t) of variables in t ∈ T (F ,V) is defined by Var(f) = ∅ for f ∈ F , Var(x) = {x }
for x ∈ V and Var(t0 t1) = Var(t0) ∪Var(t1). A term t is called ground if Var(t) = ∅.

For constrained rewriting, we make further assumptions. First, we assume there is a
distinguished subset Sϑ of S, called the set of theory sorts. The grammar Tϑ ::= Sϑ | (Sϑ → Tϑ)
generates the set Tϑ of theory types over Sϑ. Note that a theory type is essentially a non-empty
list of theory sorts. Next, we assume there is a distinguished subset Fϑ of F , called the set
of theory symbols, and the type of every theory symbol is in Tϑ, which means the type of any
argument passed to a theory symbol is a theory sort. Theory symbols whose type is a theory
sort are called theory values.2 Elements of T (Fϑ,V) are called theory terms.

Theory symbols are interpreted in an underlying theory: given an Sϑ-indexed family of
sets (XA)A∈Sϑ

, we extend it to a Tϑ-indexed family by letting XA→B be the set of mappings
from XA to XB; an interpretation of theory symbols is a Tϑ-indexed family of mappings
([[·]]A)A∈Tϑ

where [[·]]A assigns to each theory symbol of type A an element of XA and is
bijective if A ∈ Sϑ. Given an interpretation of theory symbols ([[·]]A)A∈Tϑ

, we extend each
indexed mapping [[·]]B to one that assigns to each ground theory term of type B an element of
XB by letting [[t0 t1]]B be [[t0]]A→B([[t1]]A). We write just [[·]] when the type can be deduced.

1 In contrast to [22] and following [21], we assume that ` is a pattern in every rewrite rule `→ r [ϕ]. For
notational convenience, we also assume that Var(r) \Var(`) ⊆ Var(ϕ), which can be guaranteed by a
simple transformation and is also adopted in the second half of [22].

2 Such theory symbols are simply called values in [22]. In this paper, we call them differently so that they
are not to be confused with term values as in call by value.

FSCD 2025

17:4 An Innermost DP Framework for Constrained Higher-Order Rewriting

I Example 1. Let Sϑ be { int }. Then int → int → int is a theory type over Sϑ while
(int → int) → int is not. Let Fϑ be {−} ∪ Z where − : int → int → int and n : int for all
n ∈ Z. The theory values are the elements of Z. Let Xint be Z, [[·]]int be the identity mapping
and [[−]] be the mapping λm. λn.m−n. The interpretation of (−) 1 is the mapping λn. 1−n
(note that functions in our setting are curried).

Type-preserving mappings from V to T (F ,V) are called substitutions. The domain of a
substitution σ is the set dom(σ) = {x ∈ V |σ(x) 6= x }. Let [x1 :− t1, . . . , xn :− tn] denote the
substitution σ such that dom(σ) ⊆ {x1, . . . , xn } and σ(xi) = ti for all i. Every substitution
σ extends to a type-preserving mapping σ̄ from T (F ,V) to T (F ,V). We write tσ for σ̄(t)
and define it as follows: fσ = f for f ∈ F , xσ = σ(x) for x ∈ V and (t0 t1)σ = (t0σ) (t1σ).

A context is a term containing a hole. That is, if we let � be a special symbol and assign
to it a type A, a context C[] is an element of T (F ,V ∪{� }) such that � occurs in C[] exactly
once. Given a term t : A, let C[t] denote the term produced by replacing � in C[] with t.

A term t is called a (maximally applied) subterm of a term s, written as s D t, if either
s = t, s = s0 s1 where s1 D t, or s = s0 s1 where s0 D t and s0 6= t; i.e., s = C[t] for C[] that
is not of form C ′[� t1]. We write s B t and call t a proper subterm of s if s D t and s 6= t.

Constrained Rewriting. Constrained rewriting requires the theory sort bool: we henceforth
assume that bool ∈ Sϑ, { f, t } ⊆ Fϑ, Xbool = { 0, 1 }, [[f]]bool = 0 and [[t]]bool = 1. Moreover, we
require that Fϑ includes symbols ∧ : bool→ bool→ bool, and for each sort A ∈ Sϑ also a
symbol ≡A: A→ A→ bool, interpreted respectively as conjunction and equality operators.

A logical constraint is a theory term ϕ such that ϕ has type bool and the type of each
variable in Var(ϕ) is a theory sort. A (constrained) rewrite rule is a triple `→ r [ϕ] where `
and r are terms which have the same type, ϕ is a logical constraint, Var(r)\Var(`) ⊆ Var(ϕ),
and ` is a pattern that takes the form f t1 · · · tn for some f ∈ F and contains at least one
function symbol in F \ Fϑ. Here a pattern is a term whose subterms are either f t1 · · · tn for
some f ∈ F or a variable.3 A substitution σ is said to respect a logical constraint ϕ if σ(x) is
a theory value for all x ∈ Var(ϕ) and [[ϕσ]] = 1; σ respects the rule `→ r [ϕ] if it respects ϕ.

A logically constrained simply-typed term rewriting system (LCSTRS) collects the above
data—S, Sϑ, F , Fϑ, V , (XA) and [[·]]—along with a set R of rewrite rules. We usually let R
alone stand for the system. The set R induces the rewrite relation →R over terms: t→R t′

if and only if there exists a context C[] such that one of the following holds:
(1) t = C[`σ] and t′ = C[rσ] for some `→ r [ϕ] ∈ R and substitution σ which respects ϕ, or
(2) t = C[f v1 · · · vn] and t′ = C[v′] for some theory symbol f and some theory values

v1, . . . , vn, v
′ with n > 0 and [[f v1 · · · vn]] = [[v′]].

If t→R t′ due to the second condition, we also write t→κ t
′ and call it a calculation step.

Theory symbols that are not a theory value are called calculation symbols. Let t ↓κ denote
the (unique) κ-normal form of t, i.e., the term t′ such that t→∗κ t′ and t′ 6→κ t

′′ for any t′′.
For example, (f (7 ∗ (3 ∗ 2))) ↓κ = f 42 if f is not a calculation symbol, or if f : int→ A→ B.

A term t is in normal form if there is no term t′ such that t→R t′. Given an LCSTRS
R, the set NF(R) contains all terms that are in normal form with respect to →R.

Given an LCSTRS R, f is called a defined symbol if there is at least one rewrite rule of
the form f t1 · · · tn → r [ϕ]. Let D denote the set of defined symbols. Theory values and
function symbols in F \ (Fϑ ∪ D) are called constructors.

3 As usual in term rewriting, we do not require that each variable occurs at most once in a pattern.

C. Fuhs, L. Guo, and C. Kop 17:5

I Example 2. Consider the following LCSTRS R, where gcdlist : intlist→ int, fold : (int→
int→ int)→ int→ intlist→ int and gcd : int→ int→ int:

gcdlist→ fold gcd 0 fold f y nil→ y fold f y (cons x l)→ f x (fold f y l)
gcd m n→ gcd (−m) n [m < 0] gcd m n→ gcd m (−n) [n < 0]
gcd m 0→ m [m ≥ 0] gcd m n→ gcd n (m mod n) [m ≥ 0 ∧ n > 0]

We use infix notation for some binary operators, and omit logical constraints that are t.
Here is a rewrite sequence: gcdlist (cons (1 + 1) nil) →R fold gcd 0 (cons (1 + 1) nil) →R
gcd (1 + 1) (fold gcd 0 nil)→R gcd (1 + 1) 0→κ gcd 2 0→R 2.

Innermost Rewriting. The innermost rewrite relation i−→R requires all the proper subterms
of a redex to be in normal form: t i−→R t′ if and only if either (1) there exist a context C[], a
substitution σ and a rewrite rule `→ r [ϕ] ∈ R such that t = C[`σ], s 6→R s′ for any proper
subterm s of `σ and any s′, t′ = C[rσ] and σ respects ϕ, or (2) t→κ t

′.
Similarly, for an LCSTRS Q we define the relation Q−→R as reduction using →R where all

proper subterms of a redex are in →Q-normal form: t Q−→R t′ if and only if either (1) there
exist C[], σ and `→ r [ϕ] ∈ R such that t = C[`σ], s 6→Q s′ for any proper subterm s of `σ
and any s′, t′ = C[rσ] and σ respects ϕ, or (2) t→κ t

′. Note that i−→R is the same as R−→R.

Call-By-Value Rewriting. We may further restrict a redex by requiring each proper subterm
to be a ground term value. Here a term value is either a variable or a term f v1 · · · vn where f
is a function symbol, vi is a term value for all i, and (1) if there is a rule f t1 · · · tk → r [ϕ] ∈ R,
then k > n; (2) if f is a calculation symbol, then it takes at least n + 1 arguments (i.e.,
f : A1 → · · · → An+1 → B). In this paper, we will typically refer to term values as just
values. By definition, all theory values are values, and all values are in normal form.

The definition of the call-by-value rewrite relation v−→R follows the pattern of i−→R: t
v−→R t′

if and only if either (1) there exist a context C[], a substitution σ and a rewrite rule
` → r [ϕ] ∈ R such that t = C[`σ], s is a ground value for each proper subterm s of `σ,
t′ = C[rσ] and σ respects ϕ, or (2) t→κ t

′.

I Example 3. The rewrite sequence in Example 2 is not innermost (and therefore not call-
by-value). An example of a call-by-value rewrite sequence is: gcdlist (cons (1 + 1) nil) v−→R
fold gcd 0 (cons (1 + 1) nil)→κ fold gcd 0 (cons 2 nil) v−→R gcd 2 (fold gcd 0 nil) v−→R gcd 2 0
v−→R 2. Note that the redex in the first step is gcdlist, which does not have 1 + 1 as subterm.

I Example 4. Consider the LCSTRS R = {hd (cons x l) → x, tl (cons x l) → l}. Then
the rewrite step hd (cons 42 (tl nil)) i−→R 42 is an innermost step, but not a call-by-value
step. The reason is that the subterm tl nil of the redex is in normal form, but not a value:
innermost rewriting also allows for rewriting above function calls that are not defined on the
given arguments; in a language like OCaml, the computation would abort with an error.

2.2 Accessibility and Computability
Accessibility. Assume given a sort ordering—a quasi-ordering % over S whose strict part
� = % \- is well-founded. We inductively define two relations %+ and �− over S and T :
for a sort A and a type B = B1 → · · · → Bn → C where C is a sort and n ≥ 0, A %+ B if
A % C and A �− Bi for all i, and A �− B if A � C and A %+ Bi for all i.

Given a function symbol f : A1 → · · · → An → B where B is a sort, the set Acc(f) of the
accessible argument positions of f is defined as { i |B %+ Ai }. A term t is called an accessible

FSCD 2025

17:6 An Innermost DP Framework for Constrained Higher-Order Rewriting

subterm of a term s, written as s Dacc t, if either s = t, or s = f s1 · · · sn for some f ∈ F
and there exists k ∈ Acc(f) such that sk Dacc t. An LCSTRS R is called accessible function
passing (AFP) if there exists a sort ordering such that for all f s1 · · · sn → r [ϕ] ∈ R where
f ∈ F and x ∈ Var(r) \Var(ϕ), there exists k such that sk Dacc x.

I Example 5. An LCSTRS R is AFP (with % equating all the sorts) if for all f s1 · · · sn →
r [ϕ] ∈ R where f ∈ F and i ∈ { 1, . . . , n }, the type of each proper subterm of si is a sort.
This is typical for many common examples of higher-order programs manipulating first-order
data; e.g., integer recursion or list folding, mapping or filtering; hence, Example 2 is AFP.

Consider { complst fnil x→ x, complst (fcons f l) x→ complst l (f x) }, where complst :
funlist→ int→ int composes a list of functions. This system is AFP with funlist � int.

Consider { app (lam f)→ f } where app : o→ o→ o and lam : (o→ o)→ o. This system
encodes the untyped lambda-calculus, with app serving as the application symbol and lam as
a wrapper for abstractions. It is not AFP since o � o cannot be true.

Computability. A term is called neutral if it takes the form x t1 · · · tn for some variable
x. A set of reducibility candidates, or an RC-set, for a type-preserving relation → over
terms—which may stand for→R,

i−→R, but also
v−→R—is an S-indexed family of sets (IA)A∈S

(let I denote
⋃
A IA) satisfying the following conditions:

(1) Each element of IA is a terminating (with respect to →) term of type A.
(2) Given terms s and t such that s→ t, if s is in IA, so is t.
(3) Given a neutral term s, if t is in IA for all t such that s→ t, so is s.
A term t0 is called I-computable if either the type of t0 is a sort and t0 ∈ I, or the type of t0
is A→ B and t0 t1 is I-computable for all I-computable t1 : A.

We are interested in a specific RC-set C:

I Theorem 6 (see [13]). Given a sort ordering and an RC-set I for →, let VI be the relation
over terms such that sVI t if and only if both s and t have a base type, s = f s1 · · · sm for
some function symbol f, t = sk t1 · · · tn for some k ∈ Acc(f) and ti is I-computable for all i.

Given an LCSTRS R with a sort ordering, there exists an RC-set C for → such that
t ∈ CA if and only if t : A is terminating with respect to →∪VC, and for all t′ such that
t→∗ t′, if t′ = f t1 · · · tn for some function symbol f, ti is C-computable for all i ∈ Acc(f).

C-computability with respect to the innermost reduction relation i−→R is at the heart of the
soundness proofs for the DP framework defined in this paper (Theorems 14 and 36).

3 The Transformation of Call-By-Value Systems

Let us reflect on the shape of call-by-value LCSTRSs. First, we observe that if a pattern t is
not a value, neither are its instances, i.e., tσ is not a value for any substitution σ. Hence,
under call by value, a rewrite rule `→ r [ϕ] where not all the proper subterms of ` are values
is never applicable, and we can exclude such rewrite rules without loss of generality.

Second, programming languages hardly allow the addition of constructors to pre-defined
(in particular, primitive) data types, such as integers. Given an LCSTRS, in practice, we
would also expect, for example, that integer literals are the only constructors for int. Formally,
we call a theory sort B inextensible if every function symbol f : A1 → · · · → An → B is a
theory symbol or a defined symbol. We do not require that all theory sorts are inextensible;
rather, we assume that for each rewrite rule `→ r [ϕ], all the variables in Var(`) whose type
is an inextensible theory sort are also in Var(ϕ). We can do so without loss of generality

C. Fuhs, L. Guo, and C. Kop 17:7

because such a variable can only be instantiated to a theory value under call by value. We
only consider inextensible theory sorts in examples below.

We write ϕ, x1, . . . , xn for ϕ∧x1 ≡ x1 ∧ · · · ∧xn ≡ xn, and conclude the above discussion:

I Lemma 7. We apply the below transformation to an LCSTRS R and let R′ be the outcome.
(1) Remove all `→ r [ϕ] where ` has a proper subterm that is not a value.
(2) Replace all remaining ` → r [ϕ] with ` → r [ϕ, x1, . . . , xn] where x1, . . . , xn are the

variables in Var(`) \Var(ϕ) whose type is an inextensible theory sort.
Then t v−→R t′ if and only if t v−→R′ t′ for all t and t′.

I Example 8. The LCSTRS R from Example 2 is transformed as follows: (1) no rewrite
rules are removed, and (2) four rewrite rules are replaced by the ones below.

fold f y nil→ y [t, y] gcd m n→ gcd (−m) n [m < 0, n]
fold f y (cons x l)→ f x (fold f y l) [t, x, y] gcd m n→ gcd m (−n) [n < 0,m]

We will refer to the result of the transformation as Rgcd.

We are particularly interested in call-by-value termination. However, innermost ter-
mination is more commonly considered in the term rewriting community, and has been
studied extensively for first-order term rewriting. In practice, its difference from call-by-value
termination is often irrelevant, and their respective techniques are generally similar. Since
all values are in normal form, v−→R is terminating if i−→R′ is. Hence, we shall formulate our
results in terms of innermost rewriting, for the sake of more generality and less bookkeeping.

4 Static Dependency Pairs and Chains

The dependency pair method [3] analyzes the recursive structure of function calls. Its variants
are at the heart of most modern automatic termination analyzers for various styles of term
rewriting. Static dependency pairs [35, 13], a higher-order generalization of the method, are
adapted to LCSTRSs in [21]. Now we extend this adaptation for the evaluation strategies.

First, we recall a notation:

I Definition 9. Given an LCSTRS R, let F] be F]{ f] | f ∈ D } where D is the set of defined
symbols in R and f] is a fresh function symbol for all f. Let dp be a fresh sort, and for each
defined symbol f : A1 → · · · → An → B where B ∈ S, we assign f] : A1 → · · · → An → dp.
Given a term t = f t1 · · · tn ∈ T (F ,V) where f ∈ D, let t] denote f] t1 · · · tn ∈ T (F],V).

The definition of a static dependency pair is adapted as follows:

I Definition 10. A static dependency pair (SDP) is a triple s] ⇒ t] [ϕ] where s] and t] are
terms of type dp, and ϕ is a logical constraint. This SDP is considered call-by-value if all
the proper subterms of s] are values. For a rewrite rule `→ r [ϕ], let SDP(`→ r [ϕ]) denote
the set of SDPs of form `] x1 · · ·xm ⇒ g] t1 · · · tq yq+1 · · · yn [ϕ] such that
(1) `] : A1 → · · · → Am → dp with fresh variables x1, . . . , xm,
(2) r x1 · · ·xm D g t1 · · · tq for g ∈ D, and
(3) g] : B1 → · · · → Bn → dp with fresh variables yq+1, . . . , yn.
Let SDP(R) be

⋃
`→r [ϕ]∈R SDP(`→ r [ϕ]). For s] ⇒ t] [t], we just write s] ⇒ t].

Compared to the quadruple definition in [21], this definition omits the L component, because
here its bookkeeping role can be assumed by the logical constraint.

FSCD 2025

17:8 An Innermost DP Framework for Constrained Higher-Order Rewriting

Intuitively, every dependency pair in SDP(R) represents a function call in R. If R is
non-terminating, there must be an infinite “chain” of function calls whose arguments are
terminating (in other words, the chain is “minimal”: all the proper subterms are terminating).
To distinguish the head symbols of those minimal potentially non-terminating terms, we
write f] instead of f at head positions in SDPs. Then calls to a defined symbol f (the original)
can be assumed to terminate, which is shown separately via f]. And the non-existence of an
infinite chain starting from a call to any f] in SDP(R) implies the termination of R.

I Example 11. Following Example 8, SDP(Rgcd) consists of the following SDPs:

(1) gcdlist] l′ ⇒ gcd] m′ n′
(2) gcdlist] l′ ⇒ fold] gcd 0 l′
(3) gcd] m n⇒ gcd] (−m) n [m < 0, n]

(4) gcd] m n⇒ gcd] m (−n) [n < 0,m]
(5) gcd] m n⇒ gcd] n (m mod n) [m ≥ 0∧n > 0]
(6) fold] f y (cons x l)⇒ fold] f y l [t, x, y]

In this paper, a set R of rewrite rules plays two roles: (1) it specifies how to rewrite
arguments in SDPs, and (2) it determines which rewrite steps are innermost and which terms
are values. In Sections 5 and 6, a given set R in its first role may be modified (with rewrite
rules removed). In this process, if we do not keep the original set, there can be unintended
consequences for its second role. For example, consider R = { f x→ r1, a→ r2 }. Note that
the first rewrite rule is not applicable to f a with respect to innermost rewriting. Now if we
remove the second rewrite rule from R and consider the new set, the remaining rewrite rule
will be applicable, and the term a will be a value, which is generally an unwanted change.

Hence, we keep a copy of the original set R of rewrite rules to faithfully determine which
rewrite steps are innermost and which terms are values. Following [18, 41], we let Q denote
this copy. In contrast to the literature, we consider Q fixed throughout the analysis of a given
system.4 Now we formalize the idea of a chain of function calls in the innermost setting:

I Definition 12. Given a set P of SDPs and a set R of rewrite rules, an innermost (P,R)-
chain is a (finite or infinite) sequence (s]0 ⇒ t]0 [ϕ0], σ0), (s]1 ⇒ t]1 [ϕ1], σ1), . . . such that for
all i, s]i ⇒ t]i [ϕi] ∈ P, σi is a substitution which respects ϕi, s]iσi is in normal form with
respect to →Q, and t]i−1σi−1

Q−→
∗
R s]iσi if i > 0.

I Example 13. Following Example 11, (1, [l′ :− nil,m′ :− 24, n′ :− 18]), (5, [m :− 24, n :−
18]), (5, [m :− 18, n :− 6]) is an innermost (SDP(Rgcd),Rgcd)-chain.

In the above definition, the requirement that s]iσi is in normal form implies that σi(x) is
in normal form for all x ∈ Var(s]i), including fresh variables such as l′ in SDP (1). Hence,
the call-by-value (and therefore innermost) rewrite sequence in Example 3 does not directly
translate to an innermost (SDP(R),R)-chain. Nevertheless, we have the following result:

I Theorem 14. An AFP system R is innermost (and therefore call-by-value) terminating if
there exists no infinite innermost (SDP(R),R)-chain.

Proof Idea. The full proof is in Appendix A.2, and is very similar to its counterpart for
termination with respect to full rewriting [21]: in a non-terminating LCSTRS, we can
always identify a non-terminating base-type term t = f t1 · · · tn such that all ti are C-
computable; and from an infinite reduction t i−→R t′

i−→R t′′
i−→R . . . we can find s, u such

that s = f (t1 ↓R) · · · (tn ↓R), (s], u]) is an instance of a dependency pair, and u is again

4 A fixed set Q suffices in this paper because our DP processors may remove rewrite rules, but may not
add new rewrite rules or change the signature (e.g., with semantic labeling [45]).

C. Fuhs, L. Guo, and C. Kop 17:9

non-terminating with C-computable arguments. The primary difference from [21] is the need
to ensure all variables are instantiated to normal forms, which for the fresh variables discussed
above means that we must choose the right normal form that still yields non-termination. J

5 The Innermost DP Framework

In this section, we modify the constrained DP framework [21] to prove innermost termination.
The DP framework is a collection of DP processors, each of which represents a technique.

I Definition 15. A DP problem is a pair (P,R) where P is a set of SDPs and R is a set
of rewrite rules. If no infinite innermost (P,R)-chain exists, (P,R) is called finite. A DP
processor is a partial mapping which possibly assigns to a DP problem a set of DP problems.
A DP processor ρ is called sound if (P,R) is finite whenever all the elements of ρ(P,R) are.

Theorem 14 tells us that an AFP system R is innermost terminating if (SDP(R),R)
is a finite DP problem. Given a collection of sound DP processors, we have the following
procedure: (1) Q :− R, S :− { (SDP(R),R) }; (2) while S contains a DP problem (P,R)
to which some sound DP processor ρ is applicable, S :− (S \ { (P,R) }) ∪ ρ(P,R). If this
procedure ends with S = ∅, we can conclude that R is innermost terminating.

5.1 Graph, Subterm Criterion and Integer Mapping Processors
Three classes of DP processors in [21] remain essentially unchanged in the innermost setting.
Let us review their application to the system Rgcd from Example 8, which is discussed by [21]
in the form of Example 2. First, we consider a graph approximation for (SDP(Rgcd),Rgcd):

I Definition 16. For a DP problem (P,R), a graph approximation (G, θ) consists of a finite
directed graph G and a mapping θ from P to the vertices of G such that there is an edge from
θ(p0) to θ(p1) whenever (p0, σ0), (p1, σ1) is an innermost (P,R)-chain for some σ0 and σ1.

Compared to [21], the main change is that we now check for innermost (P,R)-chains to
determine which edges must exist. A graph approximation for (SDP(Rgcd),Rgcd) is in
Figure 1. Despite the slightly different SDPs (due to the transformation of the call-by-value
system), this graph approximation is the same as the one in [21].

1 2 6

43 5

Figure 1 A graph approximation for (SDP(Rgcd),Rgcd).

Given a graph approximation, we can decompose the DP problem:

I Definition 17. Given a DP problem (P,R), a graph processor computes a graph approxi-
mation (G, θ) for (P,R) and the strongly connected components (SCCs) of G, then returns
{ ({ p ∈ P | θ(p) belongs to S },R) |S is a non-trivial SCC of G }.

If a graph processor produces the graph approximation in Figure 1, it will return the set
{ ({ 6 },Rgcd), ({ 3, 4 },Rgcd), ({ 5 },Rgcd) }. Next, we observe that fold is defined by structural
recursion, which can be handled by subterm criterion processors. Let heads(P) denote the set
of function symbols heading either side of an SDP in P , and we have the following definition:

FSCD 2025

17:10 An Innermost DP Framework for Constrained Higher-Order Rewriting

I Definition 18. A projection ν for a set P of SDPs is a mapping from heads(P) to integers
such that 1 ≤ ν(f]) ≤ n if f] : A1 → · · · → An → dp. Let ν̄(f] t1 · · · tn) denote tν(f]). A
projection ν is said to B-orient a subset P ′ of P if ν̄(s]) B ν̄(t]) for all s] ⇒ t] [ϕ] ∈ P ′ and
ν̄(s]) = ν̄(t]) for all s] ⇒ t] [ϕ] ∈ P \ P ′. A subterm criterion processor maps (P,R) to
{ (P \ P ′,R) } for some non-empty P ′ ⊆ P which is B-oriented by some projection for P.

Choosing ν(fold]) = 3, we have ν̄(fold] f y (cons x l)) = cons x l B l = ν̄(fold] f y l), so a
subterm criterion processor maps ({ 6 },Rgcd) to { (∅,Rgcd) }, and (∅,Rgcd) can (trivially) be
removed by a graph processor. Now we are left with ({ 3, 4 },Rgcd) and ({ 5 },Rgcd), which
involve recursion over integers. We deal with those by means of integer mappings:

I Definition 19. Given a set P of SDPs, for all f] ∈ heads(P) where f] : A1 → · · · → An →
dp, let ι(f]) be the subset of { 1, . . . , n } such that i ∈ ι(f]) if and only if Ai ∈ Sϑ and the
i-th argument of any occurrence of f] in an SDP s] ⇒ t] [ϕ] ∈ P is in T (Fϑ,Var(ϕ)). Let
X (f]) be a set of fresh variables {xi | i ∈ ι(f]) } where xi : Ai for all i. An integer mapping
J for P is a mapping from heads(P) to theory terms such that for all f], J (f]) : int and
Var(J (f])) ⊆ X (f]). Let J̄ (f] t1 · · · tn) denote J (f])[xi :− ti]i∈ι(f]).

Integer mapping processors handle decreasing integer values:

I Definition 20. Given a set P of SDPs, an integer mapping J is said to >-orient a subset
P ′ of P if ϕ |= J̄ (s]) ≥ 0 ∧ J̄ (s]) > J̄ (t]) for all s] ⇒ t] [ϕ] ∈ P ′, and ϕ |= J̄ (s]) ≥ J̄ (t])
for all s] ⇒ t] [ϕ] ∈ P \ P ′, where ϕ |= ϕ′ denotes that [[ϕσ]] = 1 implies [[ϕ′σ]] = 1 for each
substitution σ which maps variables in Var(ϕ)∪Var(ϕ′) to theory values. An integer mapping
processor maps (P,R) to { (P \ P ′,R) } for some non-empty P ′ ⊆ P which is >-oriented by
some integer mapping for P.

To deal with ({ 5 },Rgcd), let J (gcd]) be x2 so J̄ (gcd] m n) = n, J̄ (gcd] n (m mod n)) =
m mod n and m ≥ 0 ∧ n > 0 |= n ≥ 0 ∧ n > m mod n. Then an integer mapping processor
returns { (∅,Rgcd) }, and (∅,Rgcd) can (trivially) be removed by a graph processor.

Unlike [21], here an integer mapping processor is applicable to ({ 3, 4 },Rgcd): J (gcd]) =
−x1 and the processor returns { ({ 4 },Rgcd) }. Then ({ 4 },Rgcd) can be removed by a graph
processor. This simpler proof is due to the transformation of the call-by-value system; in
both SDPs, m and n can be instantiated only to theory values, which is not the case in [21],
and a theory argument processor is needed there. To elaborate, we consider the system R:

f x y z → f x (x+ 1) (x− 1) [y < z] c x y → x c x y → y

We have f (c 0 3) 1 2→R f (c 0 3) ((c 0 3) + 1) ((c 0 3)− 1)→+
R f (c 0 3) 1 2, and therefore

R is not terminating with respect to full rewriting. Under call by value, R is terminating:
the first rewrite rule with x appended to the logical constraint gives the only SDP f] x y z ⇒
f] x (x+ 1) (x− 1) [y < z, x], then let J (f]) be x3 − x2. Here we benefit from call by value.

5.2 The Chaining of Call-By-Value SDPs
Another benefit of call by value is that we may chain together consecutive SDPs, e.g., fact] x⇒
u]1 x 1 [t, x] and u]1 x z ⇒ u]2 x z 1 [t, x, z] may merge to form fact] x⇒ u]2 x 1 1 [t, x]. This
capability can be important for automatically generated systems.

I Definition 21. Given SDPs p0 = (s]0 ⇒ f] t′1 · · · t′n [ϕ0]) and p1 = (f] s′1 · · · s′n ⇒
t]1 [ϕ1]) where f ∈ D and variables are renamed if necessary to avoid name collisions, p0
and p1 are called chainable if p1 is a call-by-value SDP and there exists a substitution σ

such that dom(σ) =
⋃n
i=1 Var(s′i), t′i = s′iσ for all i, and σ(x) ∈ T (Fϑ,Var(ϕ0)) for all

x ∈ dom(σ) ∩Var(ϕ1). The chaining ch(p0, p1) of p0 and p1 is s]0 ⇒ t]1σ [ϕ0 ∧ (ϕ1σ)].

C. Fuhs, L. Guo, and C. Kop 17:11

Note that in the context of call-by-value rewriting, all SDPs can be assumed to be
call-by-value, and therefore it is not particularly restrictive to so require p1 above. To see the
importance of this requirement, consider the DP problem ({ f] a b⇒ g] (h b a), g] (h x y)⇒
f] x y }, { h b a→ h a b }). If we dropped the call-by-value requirement for the second SDP,
the two SDPs would be chainable and yield f] a b⇒ f] b a. However, f] b a is not reachable
from f] a b initially, and replacing the original SDPs with the new one is not sound.

I Definition 22. Given a set P of SDPs and f ∈ D such that P`f 6= ∅, Prf 6= ∅, P`f ∩ Prf = ∅
and every pair in Prf × P`f is chainable where P`f = { s] ⇒ t] [ϕ] ∈ P | s] = f] s1 · · · sn } and
Prf = { s] ⇒ t] [ϕ] ∈ P | t] = f] t1 · · · tn }, a chaining processor assigns to a DP problem (P,R)
the singleton { ((P \ (P`f ∪ Prf)) ∪ P ′,R) } where P ′ = { ch(p0, p1) | p0 ∈ Prf and p1 ∈ P`f }.

I Example 23. Consider the below set P of SDPs generated from an imperative program [14]:

fact] x⇒ u]1 x 1 [t, x] u]1 x z ⇒ u]2 x z 1 [t, x, z]

u]2 x z i⇒ u]3 x z i [i ≤ x, z] u]3 x z i⇒ u]4 x (z ∗ i) i [t, x, z, i]

u]2 x z i⇒ u]5 x z [¬(i ≤ x), z] u]4 x z i⇒ u]2 x z (i+ 1) [t, x, z, i]

Chaining processors can iteratively remove the occurrences of u]1, u]3 and u]4, and end with
(1) fact] x⇒ u]2 x 1 1 [t, x], (2) u]2 x z i⇒ u]2 x (z ∗ i) (i+ 1) [i ≤ x, z], and (3) u]2 x z i⇒
u]5 x z [¬(i ≤ x), z]. Note that a chaining processor for f ∈ D removes all the occurrences of f]
in P , and therefore the process of iteratively applying chaining processors always terminates
(on the assumption that heads(P) is finite). In this example, the above outcome cannot be
further chained; there is no chaining processor for u2 because P`u2

∩ Pru2
contains SDP (2).

I Example 24. Consider the following set P of SDPs:

f] x y ⇒ g] (comb x y) [x ≥ 0, y] g] (comb z w)⇒ h] (z + w) [w ≥ 0, z]
f] x y ⇒ g] (comb (−x) y) [x < 0, y] g] (comb z w)⇒ h] (z − w) [w < 0, z]

where comb : int→ int→ intpair is a constructor. Note that comb z w is a value. Chaining
processors can remove the occurrences of g], and end with (1) f] x y ⇒ h] (x+ y) [x ≥
0 ∧ y ≥ 0], (2) f] x y ⇒ h] (x− y) [x ≥ 0 ∧ y < 0], (3) f] x y ⇒ h] (−x+ y) [x < 0 ∧ y ≥ 0],
and (4) f] x y ⇒ h] (−x− y) [x < 0 ∧ y < 0].

5.3 Usable Rules
A key processor in the DP framework for full rewriting, which also applies in the innermost
setting, is the reduction pair processor [21, Definition 25]. This processor is so powerful
because it can potentially be used with a wide variety of different reduction pairs and does
not require � to be monotonic: we must show s] �ϕ t] or s] �ϕ t] for all SDPs s] ⇒ t] [ϕ],
and s �ϕ t for all rules s→ t [ϕ], and we may then remove the SDPs oriented with �.

The challenge is that, no matter how small P, we must orient all rules R in the DP
problem—and all processors considered so far only modify the set P of SDPs. Fortunately,
in the innermost setting, we can see that only some of the rules could potentially be relevant.

To illustrate the idea, consider a system Rdrop which includes at least the following rewrite
rules and no other defining drop, dfoldr, cons, or nil:

drop n l→ l [n ≤ 0] drop n nil→ nil [t, n] drop n (cons x l)→ drop (n− 1) l [n > 0]
dfoldr f y n nil→ y [t, n]

dfoldr f y n (cons x l)→ f x (dfoldr f y n (drop n l)) [t, n]

FSCD 2025

17:12 An Innermost DP Framework for Constrained Higher-Order Rewriting

where drop : int → alist → alist and dfoldr : (a → b → b) → b → int → alist → b. To deal
with the SDP ({ dfoldr] f y n (cons x l)⇒ dfoldr] f y n (drop n l) [t, n] },Rdrop), we need a
reduction pair processor; roughly, we should show that cons x l is somehow “greater” than
drop n l, which cannot be done by a subterm criterion or an integer mapping processor.
However, since the variables are to be instantiated to normal forms, any rules other than the
ones defining drop would not be used in a chain for this problem. Hence, only these three
rules need to be oriented. This observation leads to the notion of usable rules [3, 13]. We
base our formulation on a higher-order version [26] and start with two auxiliary definitions:

I Definition 25. For `→ r [ϕ] where ` : A1 → · · · → An → B for B ∈ S, let (`→ r [ϕ])ex

be { `→ r [ϕ], ` x1 → r x1 [ϕ], . . . , ` x1 · · ·xn → r x1 · · ·xn [ϕ] } where x1, . . . , xn are fresh
variables. Let Rex denote

⋃
`→r [ϕ]∈R(`→ r [ϕ])ex.

I Definition 26. The set of usable symbols in a term t with respect to a logical constraint
ϕ, denoted by UF (t)[ϕ], is defined inductively as follows:
(1) Suppose t = f t1 · · · tn for f ∈ F]. If t ∈ T (Fϑ,Var(ϕ)), then UF (t)[ϕ] = ∅; otherwise
UF (t)[ϕ] = { (f, n) } ∪

⋃n
i=1 UF (ti)[ϕ].

(2) Suppose t = x t1 · · · tn for x ∈ V. If n = 0, then UF (t)[ϕ] = ∅; otherwise UF (t)[ϕ] = {⊥}.
Here ⊥ is a special symbol indicating that potentially any symbol could be usable.

The set of usable symbols for a set P of SDPs and a set R of rewrite rules, denoted by
UF (P,R), is the smallest set U such that (1) UF (t])[ϕ] ⊆ U for all s] ⇒ t] [ϕ] ∈ P, and
(2) UF (r)[ϕ] ⊆ U for all (f, n) ∈ U and f t1 · · · tn → r [ϕ] ∈ Rex. Then UF (P,R) exists
because it is the least pre-fixed point of an order-preserving mapping on a complete lattice.

We present usable rules as a class of DP processors:

I Definition 27. Given sets P of SDPs and R of rules: if ⊥ /∈ UF (P,R), the set U(P,R)
of usable rules is defined as { f t1 · · · tk → r [ϕ] ∈ R | (f, n) ∈ UF (P,R) and k ≤ n };
otherwise, U(P,R) is undefined. A usable-rules processor assigns to a DP problem (P,R)
with NF(Q) ⊆ NF(R) the singleton { (P,U(P,R)) }.

I Example 28. We continue the discussion about drop and dfoldr. Consider the DP prob-
lem (P,Rdrop) where P = { dfoldr] f y n (cons x l) ⇒ dfoldr] f y n (drop n l) [t, n] }. We
have UF (dfoldr] f y n (drop n l))[t, n] = { (dfoldr], 4), (drop, 2) } and can derive UF (P,R) =
{ (dfoldr], 4), (drop, 2), (nil, 0) }. Hence, U(P,R) consists of the three rules defining drop.

5.4 Argument Filterings
Let us consider the role of ⊥ in the definition of usable rules: U(P,R) is undefined if
⊥ ∈ UF (P,R)—which occurs if the right-hand side of some SDP in P , or the right-hand side
of any rule f t1 · · · tn → r [ϕ] ∈ Rex with (f, n) ∈ UF (P,R), is not a pattern. This is not a
rare occasion in higher-order rewriting. For example, let us rework dfoldr into dfoldl:

dfoldl f y n nil→ y [t, n] dfoldl f y n (cons x l)→ dfoldl f (f y x) n (drop n l) [t, n]

where drop is defined by the same rules as before. Now we have dfoldl] f y n (cons x l)⇒
dfoldl] f (f y x) n (drop n l) [t, n], which produces ⊥.

However, observe that the problematic subterm f y x and the decreasing subterm drop n l
occur in different arguments of dfoldl]. If we use a reduction pair that considers only the
fourth argument, intuitively we can disregard any rules that may be used to reduce the
second. This is formalized via an argument filtering [3, 26], which temporarily removes

C. Fuhs, L. Guo, and C. Kop 17:13

certain subterms from both sides of an ordering requirement before computing usable rules,
often drastically reducing the number of usable rules that the reduction pair must consider.

Traditionally, argument filterings are defined for function symbols with a fixed number of
arguments. Extending this notion to our curried setting imposes new technical challenges;
e.g., if we filter away the second argument of f : A → B → C, what type to use for the
filtering of f x, C or B → C? Fortunately, this problem is solvable if we do not allow variables
to occur at the head of an application in the result of a filtering. This is very different
from the approach in [2], which heavily restricts what filtering can be used, to ensure that a
variable of higher type and all its possible instances have the same filtering applied to them.

I Definition 29. We assume given a set S1 of sorts such that Sϑ ⊆ S1, and a mapping µ
from T to S1 such that µ(A) = A for all A ∈ Sϑ. In addition, for each function symbol
f : A1 → · · · → An → B with B ∈ S, we assume given a set regard(f) ⊆ { 1, . . . , n }. Define:

Σ = Fϑ ∪ { fm : µ(Ai1)→ . . .→ µ(Aik)→ µ(Am+1 → . . .→ An → B) |
f : A1 → · · · → An → B ∈ F] with B ∈ S and 0 ≤ m ≤ n and
regard(f) ∩ { 1, . . . ,m } = { i1, . . . , ik } and i1 < · · · < ik }

∪ { •µ(A) : µ(A) | A ∈ T }

The argument filtering with respect to a logical constraint ϕ is a mapping πϕ from T (F],V)
to T (Σ], {x : µ(A) | x : A ∈ V}), defined as follows:
(1) πϕ(f t1 · · · tn) = f t1 · · · tn if f t1 · · · tn ∈ T (Fϑ,Var(ϕ)) and has a base type
(2) πϕ(f t1 · · · tn) = fn πϕ(ti1) · · ·πϕ(tik) otherwise, where { i1, . . . , ik } = regard(f) ∩
{ 1, . . . , n } and i1 < · · · < ik

(3) πϕ(x) = x for x ∈ V; and πϕ(x t1 · · · tn) = •µ(A) if x ∈ V and n > 0
By definition, πϕ(t) : µ(A) for all t : A. Moreover, no subterm of πϕ(t) has a variable at the
head of an application, and all function symbols have a first-order type and occur maximally
applied. Hence, πϕ(t) is a (many-sorted) first-order term, just written in applicative notation.
For S1, we may for instance choose Sϑ ∪ { o }, i.e., there is a single sort besides theory sorts.

Now we define usable rules with respect to an argument filtering:

I Definition 30. Given the mapping regard(·), UF (f t1 · · · tn)[ϕ] is redefined as { (f, n) } ∪⋃
i∈regard(f)∩{ 1,...,n } UF (ti)[ϕ] in the case where f t1 · · · tn /∈ T (Fϑ,Var(ϕ)). The definition

in other cases is unchanged, and so is the definition of UF (P,R).
Let U1 be {πϕ(f t1 · · · tn)→ πϕ(r) [ϕ] | (f, n) ∈ UF (P,R) and f t1 · · · tn → r [ϕ] ∈ Rex },

and U2 be { fn xi1 · · ·xik → y [y = f x1 · · ·xn] | (f, n) ∈ UF (P,R), f ∈ Fϑ, n > 0, f : A1 →
· · · → An → B with B ∈ S, regard(f) = { i1, . . . , ik } and i1 < · · · < ik }.

We redefine U(P,R) as U1 ∪ U2 if ⊥ /∈ UF (P,R), and p+ i ∈ regard(f) for all (f, n) ∈
UF (P,R), f s1 · · · sp → g t1 · · · tq [ϕ] ∈ R where p < n and g ∈ F , and i ∈ { 1, . . . , n − p }
such that q + i ∈ regard(g). Otherwise, U(P,R) is undefined.

That is, we consider usable rules only with respect to the positions that are not filtered
away. The requirement that p + i ∈ regard(f) if (f, n) is a usable symbol and p + i ≤ n

is a technical limitation needed to ensure that applying a rewrite rule at the head of an
application does not conflict with the argument filtering.

Next, we recall the notion of a constrained reduction pair from [21], but use a more liberal
monotonicity requirement due to the first-order setting created by the filtering.

I Definition 31. A constrained relation R is a set of triples (s, t, ϕ) where s and t are
(first-order) terms which have the same sort and ϕ is a logical constraint. We write s Rϕ t

FSCD 2025

17:14 An Innermost DP Framework for Constrained Higher-Order Rewriting

if (s, t, ϕ) ∈ R. A binary relation R′ over terms is said to cover a constrained relation R if
s Rϕ t implies that (sσ) ↓κ R′ (tσ) ↓κ for each substitution σ which respects ϕ.

A constrained reduction pair (�,�) is a pair of constrained relations where � is covered by
some reflexive and transitive relation w such that tk w t′k implies f t1 · · · tk−1 tk tk+1 · · · tn w
f t1 · · · tk−1 t

′
k tk+1 · · · tn (i.e., monotonicity) for all f ∈ Σ and k ∈ { 1, . . . , n }, � is covered

by some well-founded relation A, and A ; w ⊆ A+.

Having this, we can define reduction pair processors with respect to an argument filtering:

I Definition 32. A reduction pair processor with argument filterings assigns to a DP
problem (P,R) with NF(Q) ⊆ NF(R) the singleton { (P \ P ′,R) } for some non-empty
P ′ ⊆ P if there exists a mapping regard(·) and a constrained reduction pair (�,�) such that
(1) πϕ(s]) �ϕ πϕ(t]) for all s] ⇒ t] [ϕ] ∈ P ′, (2) πϕ(s]) �ϕ πϕ(t]) for all s] ⇒ t] [ϕ] ∈ P\P ′,
and (3) ` �ϕ r for all `→ r [ϕ] ∈ U(P,R).

I Example 33. Consider dfoldl, with the following DP problem: ({ dfoldl] f y n (cons x l)⇒
dfoldl] f (f y x) n (drop n l) [t, n] },R) Let regard(dfoldl]) be { 4 }, regard(drop) be { 2 },
and regard(cons) be { 2 }. We are obliged to prove (1) dfoldl]4 (cons2 l) �t,n dfoldl]4 (drop2 l),
(2) drop2 l �n≤0 l, (3) drop2 nil0 �t,n nil0, and (4) drop2 (cons2 l) �n>0 drop2 l. The
recursive path ordering for first-order LCTRSs [29] can be used to fulfill these obligations.

6 Universal Computability with Usable Rules

In this section, we study universal computability [21] with respect to innermost rewriting.
This concept concerns a modular programming scenario where the LCSTRS represents a
single module in a larger program, and corresponds to the termination of a function in all
“reasonable” uses, including unknown uses. We recall the notion of a hierarchical combination
[31, 32, 33, 9] rephrased in terms of LCSTRSs:

I Definition 34 ([21]). An LCSTRS R1 is called an extension of a base system R0 if the two
systems’ interpretations of theory symbols coincide over all the theory symbols in common,
and function symbols in R0 are not defined by any rewrite rule in R1. Given a base system
R0 and an extension R1 of R0, the system R0 ∪R1 is called a hierarchical combination.

In a hierarchical combination, function symbols in the base system can occur in the extension,
but cannot be (re)defined; one may think of R0 as an imported module.

Universal computability is defined on the basis of hierarchical combinations:

I Definition 35 ([21]). Given an LCSTRS R0 with a sort ordering %, a term t is called
universally computable if for each extension R1 of R0 and each extension %′ of % to sorts
in R0 ∪R1 (i.e., %′ coincides with % over sorts in R0), t is C-computable in R0 ∪R1 with
%′. R0 is called universally computable if all its terms are.

In summary, we consider passing C-computable arguments to a defined symbol in R0 the
“reasonable” way of calling the function. We use SDPs to establish universal computability:

I Theorem 36. An accessible function passing system R0 with sort ordering % is universally
computable if there exists no infinite innermost (SDP(R0),R0 ∪R1)-chain for any extension
R1 of R0 and extension %′ of % to sorts in R0 ∪R1.

This is a more general version of Theorem 14 and will be proved alongside it in Appendix A.2.
Note that the original set of rules, Q, in the definition of innermost chain is now R0 ∪R1.
We modify the DP framework to prove universal computability for a fixed base system R0.

C. Fuhs, L. Guo, and C. Kop 17:15

I Definition 37. A (universal) DP problem (P,R, p) consists of a set P of SDPs, a set
R of rewrite rules and a flag p ∈ { def, ind } (for definite or indefinite). A DP problem
(P,R, p) is finite if either (1) p = def and there exists no infinite innermost (P,R)-chain
(with Q :− R0), or (2) p = ind and there exists no infinite innermost (P,R∪R1)-chain for
any extension R1 of R0 (with Q :− R0 ∪R1).

DP processors are defined in the same way as before, now for universal DP problems. The goal
is to show that (SDP(R0),R0, ind) is finite, and the procedure for termination in Section 5
still works if we change the initialization accordingly. Unlike [21], here we have the advantage
of usable rules: if U(P,R) is defined, then U(P,R ∪R1) = U(P,R) for any extension R1
(provided all symbols in P and R are from R0, which is typically the case as DP processors
generally do not introduce new symbols). Hence a usable-rules processor assigns to a DP
problem (P,R, p) the singleton { (P,U(P,R), def) }.

Even if usable-rules processors are not applicable, we may still use a reduction pair
processor with an argument filtering: we do not have to orient the rules in R1 since they
cannot be usable. Referring to Definition 32, a reduction pair processor now assigns to a DP
problem (P,R, p) the singleton { (P \ P ′,R, p) } without changing the input flag because it
does not permanently discard any rule. The other DP processors discussed in Section 5 apply
to universal DP problems similarly; they just keep the input flag unchanged in the output.

7 Implementation and Evaluation

We have implemented our results in Cora [27], using a version of HORPO (based on the initial
definition in [22]) and its first-order limitation RPO as the only reduction pair. Constraint
validity checks are delegated to the SMT solver Z3 [8]. We also use Z3 to seek a good
argument filtering and HORPO instance by encoding the requirements into an SMT problem.

Our implementation of the chaining processor from Definition 22 aims to minimize the
number of DPs in the resulting problem. To this end, it chooses a function symbol f such
that the expression |P ′| − |P`f ∪ Prf | with the sets defined as in Definition 22 is minimized.

We evaluated Cora on three groups of benchmarks: our own collected LCSTRS benchmarks,
the lambda-free problems from the higher-order category of the TPDB [7], and problems
from the first-order “integer TRS innermost” category. The results are summarized below,
where “full” considers the framework for full termination with the methods from [21], and
“call-by-value” does the transformation of Lemma 7 before applying the innermost framework:

Termination Universal Computability
Full Innermost Call-by-value Full Innermost Call-by-value

Total yes 171 179 182 155 179 182
Total maybe 104 96 93 116 96 93

Note that we gain significant power compared to [21] when analyzing universal computability.
This is largely due to the two usable-rules processors: the reduction pair processor cannot be
applied on its own in an indefinite DP problem, so either changing the flag from ind to def,
or being able to omit the extra rules in a reduction pair, gives a lot of power.

However, the gains for termination are more modest. We suspect the reason is that the
new processors primarily find their power in large systems (where it is essential to eliminate
many rules when searching for a reduction pair), and automatically generated systems (where
there are often many chainable rules), not in the handcrafted benchmarks of the TPDB.

Another observation is that there is no difference in proving power between termination
or universal computability, both for innermost and for call-by-value reduction. This may be

FSCD 2025

17:16 An Innermost DP Framework for Constrained Higher-Order Rewriting

due to Cora having only one reduction pair (HORPO): on this benchmark set, when HORPO
can be applied to simplify a DP problem, then it is also possible to filter away problematic
subterms that would stop us from applying usable rules.

A detailed evaluation page is available through the following link:

https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/

Comparison to Other Analyzers. While we have made progress, the additions of this paper
are not yet sufficient for Cora to compete with dedicated analyzers for first-order integer
rewriting, or unconstrained higher-order term rewriting.

In the “integer TRS innermost” category, AProVE [15] can prove innermost termination of
102 benchmarks, while Cora can handle 72 for innermost evaluation and 73 for call-by-value.
The most important difference seems to be that AProVE has a much more sophisticated
implementation of what we call the integer mapping processor as a reduction pair processor
with polynomial interpretations and usable rules with respect to argument filterings [12]. In
addition, these benchmarks often have rules such as f(x)→ g(x > 0, x), g(t)→ r1, g(f)→ r2,
which would benefit from a transformation to turn the Boolean subterm x > 0 into a proper
constraint. Improving on these points is obvious future work.

In the “higher-order union beta” category, Wanda [25] can prove termination of full
rewriting of 105 benchmarks, while Cora can handle 79 for innermost or call-by-value
reduction. Since these benchmarks are unconstrained, Cora does not benefit here from any
of the processors that consider the theory, while Wanda does have many more features to
increase its prover ability; for example, polynomial interpretations, dynamic dependency
pairs, and delegation of partial problems to a first-order termination tool.

8 Related Work

Dependency Pair frameworks are the cornerstone of most fully automated termination
analysis tools for various flavors of first-order [1, 19, 23] and higher-order [2, 13, 30] rewriting.
A common theme of these DP frameworks lies in the notions of a problem to be analyzed
for presence of infinite chains and processors to advance the proofs of (non-)termination.
The notion of DP frameworks has been lifted to constrained rewriting, both in the first-
order [10, 12] and recently also in the higher-order [21] setting. The latter work also includes
the notion of universal computability, allowing for termination proofs also in the presence of
further library functions that are not known at the time of analysis.

Our present DP framework for innermost rewriting is specially designed with termination
analysis of functional programs in call-by-value languages (e.g., Scala, OCaml) in mind as
a target application. Such LCSTRSs may come from an automated syntactic translation
and thus have more rewrite rules with “intermediate” defined symbols than hand-optimized
rewrite systems. Our chaining processor renders the analysis of such problems feasible. This
kind of program transformation is used also in other program analysis tools [4, 10, 14, 15];
here, we have adapted the technique to higher-order rewriting with constraints.

Usable rules w.r.t. an argument filtering were introduced for first-order rewriting in [19]
and soon extended to simply-typed higher-order rewriting for arbitrary rewrite strategies
in [2]. Our contribution here is to lift usable rules w.r.t. an argument filtering to a setting with
theory constraints and to universal computability, thus opening up the door for applications
in analysis of programs for real-world languages. Moreover, we adapt the technique to
innermost rewriting and thus do not require that the constrained reduction pair (�,�)
satisfies c x y � x and c x y � y for fresh symbols c.

https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/

C. Fuhs, L. Guo, and C. Kop 17:17

9 Conclusion and Future Work

In this paper, we have extended the static dependency pair framework for LCSTRSs to
innermost and call-by-value evaluation strategies. In doing so, we have adapted several
existing processors for full termination and proposed three processors—chaining, usable rules,
reduction pairs with usable rules w.r.t. argument filterings—that were not present for the
setting of full termination. These processors apply not only to conventional closed-world
termination analysis, but also to open-world termination analysis via universal computability,
where the presence of further rewrite rules for library functions is assumed, thus broadening
the set of potential start terms that must be considered. Our experimental results on several
benchmark collections indicate improvements over the state of the art by exploiting the
evaluation strategy via the new processors, most pronounced for universal computability.

There are several directions for future work. Our chaining processors could be improved,
e.g., by using unification instead of matching, thus defining a form of narrowing for our
constrained DPs in the higher-order setting. Moreover, so far our implementation prohibits
chaining a DP with itself to prevent non-termination of repeated applications of the chaining
processors. We might loosen this restriction via appropriate heuristics to detect cases in
which such self-chaining could be beneficial. In addition, we could investigate chaining not
just for DPs, but also for rewrite rules. The integer mapping processor could be improved by
lifting polynomial interpretations [43] for higher-order rewriting to the constrained setting
of LCSTRSs. Another improvement would consist of moving Boolean expressions from the
right-hand side of rewrite rules into their constraints. Techniques like the integer mapping
processor or the subterm criterion, which establish weak or strict decrease between certain
arguments of dependency pairs, could also be improved by combining them with the size-
change termination principle [37]. Size-change termination has been integrated into the
first-order DP framework [42, 5], and a natural next step would be to lift this integration to
the higher-order DP framework for LCSTRSs, both for innermost and for full termination.

A different avenue could be to research to what extent the termination analysis techniques
in this paper can be ported from innermost or call-by-value evaluation to arbitrary evaluation
strategies, or to lazy evaluation, as used in Haskell. For the latter, we might consider an
approximation of lazy evaluation via a higher-order form of context-sensitive rewriting [1, 38].

Finally, to go back to one of the main motivations of this work, we could devise translations
from higher-order functional programming languages with call-by-value semantics (e.g., Scala,
OCaml) to LCSTRSs. This would allow for applying the contributions of this paper to prove
termination of programs written in these languages, a long-term goal of this line of research.

References

1 B. Alarcón, R. Gutiérrez, and S. Lucas. Context-sensitive dependency pairs. IC, 208(8):922–968,
2010. doi:10.1016/J.IC.2010.03.003.

2 T. Aoto and T. Yamada. Argument filterings and usable rules for simply typed dependency
pairs. In S. Ghilardi and R. Sebastiani, editors, Proc. FroCoS, pages 117–132, 2009. doi:
10.1007/978-3-642-04222-5_7.

3 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. TCS, 236(1–
2):133–178, 2000. doi:10.1016/S0304-3975(99)00207-8.

4 D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. Software model
checking via large-block encoding. In A. Biere and C. Pixley, editors, Proc. FMCAD, pages
25–32, 2009. doi:10.1109/FMCAD.2009.5351147.

FSCD 2025

https://doi.org/10.1016/J.IC.2010.03.003
https://doi.org/10.1007/978-3-642-04222-5_7
https://doi.org/10.1007/978-3-642-04222-5_7
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1109/FMCAD.2009.5351147

17:18 An Innermost DP Framework for Constrained Higher-Order Rewriting

5 M. Codish, C. Fuhs, J. Giesl, and P. Schneider-Kamp. Lazy abstraction for size-change
termination. In C. G. Fermüller and A. Voronkov, editors, Proc. LPAR (Yogyakarta), pages
217–232, 2010. doi:10.1007/978-3-642-16242-8_16.

6 Community. Termination competition (TermCOMP). URL: https://termination-portal.
org/wiki/Termination_Competition.

7 Community. The termination problem database (TPDB). URL: https://github.com/
TermCOMP/TPDB.

8 L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C.R. Ramakrishnan and J. Rehof,
editors, Proc. TACAS, pages 337–340, 2008. doi:10.1007/978-3-540-78800-3_24.

9 N. Dershowitz. Hierarchical termination. In N. Dershowitz and N. Lindenstrauss, editors,
Proc. CTRS, pages 89–105, 1995. doi:10.1007/3-540-60381-6_6.

10 S. Falke and D. Kapur. A term rewriting approach to the automated termination analysis
of imperative programs. In R. A. Schmidt, editor, Proc. CADE, pages 277–293, 2009. doi:
10.1007/978-3-642-02959-2_22.

11 S. Falke, D. Kapur, and C. Sinz. Termination analysis of C programs using compiler
intermediate languages. In M. Schmidt-Schauß, editor, Proc. RTA, pages 41–50, 2011.
doi:10.4230/LIPIcs.RTA.2011.41.

12 C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termination of
integer term rewriting. In R. Treinen, editor, Proc. RTA, pages 32–47, 2009. doi:10.1007/
978-3-642-02348-4_3.

13 C. Fuhs and C. Kop. A static higher-order dependency pair framework. In L. Caires, editor,
Proc. ESOP, pages 752–782, 2019. doi:10.1007/978-3-030-17184-1_27.

14 C. Fuhs, C. Kop, and N. Nishida. Verifying procedural programs via constrained rewriting
induction. ACM TOCL, 18(2):14:1–14:50, 2017. doi:10.1145/3060143.

15 J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel, C. Otto,
M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Analyzing
program termination and complexity automatically with AProVE. JAR, 58(1):3–31, 2017.
doi:10.1007/s10817-016-9388-y.

16 J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thiemann. Automated
termination proofs for Haskell by term rewriting. ACM TOPLAS, 33(2):7:1–7:39, 2011.
doi:10.1145/1890028.1890030.

17 J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Symbolic evaluation graphs
and term rewriting: a general methodology for analyzing logic programs. In A. King, editor,
Proc. PPDP, pages 1–12, 2012. doi:10.1145/2370776.2370778.

18 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: combining
techniques for automated termination proofs. In F. Baader and A. Voronkov, editors, Proc.
LPAR, pages 301–331, 2005. doi:10.1007/978-3-540-32275-7_21.

19 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. JAR, 37(3):155–203, 2006. doi:10.1007/s10817-006-9057-7.

20 L. Guo, K. Hagens, C. Kop, and D. Vale. Higher-order constrained dependency pairs for
(universal) computability. pre-publication Arxiv copy of [21] with additional appendix. doi:
https://doi.org/10.48550/arXiv.2406.19379.

21 L. Guo, K. Hagens, C. Kop, and D. Vale. Higher-order constrained dependency pairs for
(universal) computability. In R. Královič and A. Kučera, editors, Proc. MFCS, pages 57:1–57:15,
2024. doi:10.4230/LIPIcs.MFCS.2024.57.

22 L. Guo and C. Kop. Higher-order LCTRSs and their termination. In S. Weirich, editor, Proc.
ESOP, pages 331–357, 2024. doi:10.1007/978-3-031-57267-8_13.

23 N. Hirokawa and A. Middeldorp. Automating the dependency pair method. IC, 199(1-2):172–
199, 2005. doi:10.1016/J.IC.2004.10.004.

24 N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: techniques and features. IC,
205(4):474–511, 2007. doi:10.1016/j.ic.2006.08.010.

https://doi.org/10.1007/978-3-642-16242-8_16
https://termination-portal.org/wiki/Termination_Competition
https://termination-portal.org/wiki/Termination_Competition
https://github.com/TermCOMP/TPDB
https://github.com/TermCOMP/TPDB
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-60381-6_6
https://doi.org/10.1007/978-3-642-02959-2_22
https://doi.org/10.1007/978-3-642-02959-2_22
https://doi.org/10.4230/LIPIcs.RTA.2011.41
https://doi.org/10.1007/978-3-642-02348-4_3
https://doi.org/10.1007/978-3-642-02348-4_3
https://doi.org/10.1007/978-3-030-17184-1_27
https://doi.org/10.1145/3060143
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1145/1890028.1890030
https://doi.org/10.1145/2370776.2370778
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/https://doi.org/10.48550/arXiv.2406.19379
https://doi.org/https://doi.org/10.48550/arXiv.2406.19379
https://doi.org/10.4230/LIPIcs.MFCS.2024.57
https://doi.org/10.1007/978-3-031-57267-8_13
https://doi.org/10.1016/J.IC.2004.10.004
https://doi.org/10.1016/j.ic.2006.08.010

C. Fuhs, L. Guo, and C. Kop 17:19

25 C. Kop. WANDA – a higher order termination tool (system description). In Z. M. Ariola,
editor, Proc. FSCD, pages 36:1–36:19, 2020. doi:10.4230/LIPICS.FSCD.2020.36.

26 C. Kop. Cutting a proof into bite-sized chunks: incrementally proving termination in higher-
order term rewriting. In A. P. Felty, editor, Proc. FSCD, pages 1:1–1:17, 2022. doi:10.4230/
LIPIcs.FSCD.2022.1.

27 C. Kop et al. The Cora analyzer. URL: https://github.com/hezzel/cora.
28 C. Kop et al. hezzel/cora: FSCD 2025. doi:10.5281/zenodo.15318964.
29 C. Kop and N. Nishida. Term rewriting with logical constraints. In P. Fontaine, C. Ringeis-

sen, and R. A. Schmidt, editors, Proc. FroCoS, pages 343–358, 2013. doi:10.1007/
978-3-642-40885-4_24.

30 C. Kop and F. van Raamsdonk. Dynamic dependency pairs for algebraic functional systems.
LMCS, 8(2), 2012. doi:10.2168/LMCS-8(2:10)2012.

31 M. R. K. Krishna Rao. Completeness of hierarchical combinations of term rewriting
systems. In R. K. Shyamasundar, editor, Proc. FSTTCS, pages 125–138, 1993. doi:
10.1007/3-540-57529-4_48.

32 M. R. K. Krishna Rao. Simple termination of hierarchical combinations of term rewriting
systems. In M. Hagiya and J. C. Mitchell, editors, Proc. TACS, pages 203–223, 1994. doi:
10.1007/3-540-57887-0_97.

33 M. R. K. Krishna Rao. Semi-completeness of hierarchical and super-hierarchical combinations
of term rewriting systems. In P. D. Mosses, M. Nielsen, and M. I. Schwartzbach, editors, Proc.
CAAP, pages 379–393, 1995. doi:10.1007/3-540-59293-8_208.

34 K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method based on
strong computability for higher-order rewrite systems. IEICE Trans. Inf. Syst., E92.D(10):2007–
2015, 2009. doi:10.1587/transinf.E92.D.2007.

35 K. Kusakari and M. Sakai. Enhancing dependency pair method using strong com-
putability in simply-typed term rewriting. AAECC, 18(5):407–431, 2007. doi:10.1007/
s00200-007-0046-9.

36 K. Kusakari and M. Sakai. Static dependency pair method for simply-typed term rewriting
and related techniques. IEICE Trans. Inf. Syst., E92.D(2):235–247, 2009. doi:10.1587/
transinf.E92.D.235.

37 C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program
termination. In C. Hankin and D. Schmidt, editors, Proc. POPL, pages 81–92, 2001. doi:
10.1145/360204.360210.

38 S. Lucas. Context-sensitive computations in functional and functional logic programs. JFLP,
1998(1), 1998.

39 C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated termination analysis
of Java bytecode by term rewriting. In C. Lynch, editor, Proc. RTA, pages 259–276, 2010.
doi:10.4230/LIPIcs.RTA.2010.259.

40 S. Suzuki, K. Kusakari, and F. Blanqui. Argument filterings and usable rules in higher-order
rewrite systems. IPSJ Online Trans., 4:114–125, 2011. doi:10.2197/ipsjtrans.4.114.

41 R. Thiemann. The DP framework for proving termination of term rewriting. PhD thesis,
RWTH Aachen University, Germany, 2007. URL: http://darwin.bth.rwth-aachen.de/
opus3/volltexte/2007/2066/.

42 R. Thiemann and J. Giesl. The size-change principle and dependency pairs for termination of
term rewriting. AAECC, 16(4):229–270, 2005. doi:10.1007/S00200-005-0179-7.

43 J. van de Pol. Termination proofs for higher-order rewrite systems. In J. Heering,
K. Meinke, B. Möller, and T. Nipkow, editors, Proc. HOA, pages 305–325, 1993. doi:
10.1007/3-540-58233-9_14.

44 F. van Raamsdonk. Translating logic programs into conditional rewriting systems. In L. Naish,
editor, Proc. ICLP, pages 168–182, 1997. doi:10.7551/mitpress/4299.003.0018.

45 H. Zantema. Termination of term rewriting by semantic labelling. FI, 24(1/2):89–105, 1995.
doi:10.3233/FI-1995-24124.

FSCD 2025

https://doi.org/10.4230/LIPICS.FSCD.2020.36
https://doi.org/10.4230/LIPIcs.FSCD.2022.1
https://doi.org/10.4230/LIPIcs.FSCD.2022.1
https://github.com/hezzel/cora
https://doi.org/10.5281/zenodo.15318964
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.2168/LMCS-8(2:10)2012
https://doi.org/10.1007/3-540-57529-4_48
https://doi.org/10.1007/3-540-57529-4_48
https://doi.org/10.1007/3-540-57887-0_97
https://doi.org/10.1007/3-540-57887-0_97
https://doi.org/10.1007/3-540-59293-8_208
https://doi.org/10.1587/transinf.E92.D.2007
https://doi.org/10.1007/s00200-007-0046-9
https://doi.org/10.1007/s00200-007-0046-9
https://doi.org/10.1587/transinf.E92.D.235
https://doi.org/10.1587/transinf.E92.D.235
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://doi.org/10.4230/LIPIcs.RTA.2010.259
https://doi.org/10.2197/ipsjtrans.4.114
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2007/2066/
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2007/2066/
https://doi.org/10.1007/S00200-005-0179-7
https://doi.org/10.1007/3-540-58233-9_14
https://doi.org/10.1007/3-540-58233-9_14
https://doi.org/10.7551/mitpress/4299.003.0018
https://doi.org/10.3233/FI-1995-24124

17:20 An Innermost DP Framework for Constrained Higher-Order Rewriting

A Full Proofs

A.1 Soundness for Section 5
For soundness of the graph, subterm criterion and integer mapping processors, we refer to
Appendix A.2 in [20]; only minimal changes are needed. Below we address the rest.

I Theorem 38. Chaining processors are sound.

Proof of Theorem 38. Given a DP problem (P,R), a defined symbol f with the said prop-
erties and an infinite innermost (P,R)-chain (s]0 ⇒ t]0 [ϕ0], σ0), (s]1 ⇒ t]1 [ϕ1], σ1), . . . where
variables are renamed to avoid name collisions between any two of the SDPs and dom(σi) ⊆
Var(s]i) ∪ Var(t]i) ∪ Var(ϕi) for all i, we consider k > 0 such that t]k−1 = f] t′1 · · · t′n and
s]k = f] s′1 · · · s′n. By definition, t′iσk−1

Q−→
∗
R s′iσk for all i. Because s]k−1 ⇒ t]k−1 [ϕk−1] and

s]k ⇒ t]k [ϕk] are chainable, there exists a substitution σ′ such that dom(σ′) =
⋃n
i=1 Var(s′i),

s′iσ
′ = t′i for all i and σ′(x) ∈ T (Fϑ,Var(ϕk−1)) for all x ∈ dom(σ′) ∩ Var(ϕk). Hence,

s′iσ
′σk−1

Q−→
∗
R s′iσk for all i. Since s′i is a value for all i, σk−1(σ′(x)) Q−→

∗
R σk(x) for all x ∈⋃n

i=1 Var(s′i). Now we show that replacing (s]k−1 ⇒ t]k−1 [ϕk−1], σk−1) and (s]k ⇒ t]k [ϕk], σk)
by (s]k−1 ⇒ t]kσ

′ [ϕk−1 ∧ (ϕkσ′)], σk−1 ∪ σk) yields an infinite innermost chain. First, it is
routine to verify that σk−1 ∪ σk respects ϕk−1 ∧ (ϕkσ′). Next, s]k−1(σk−1 ∪ σk) = s]k−1σk−1

so it is in normal form. Last, t]kσ′(σk−1 ∪ σk) Q−→
∗
R t]kσk

Q−→
∗
R s]k+1σk+1. J

We present some auxiliary results for the two classes of DP processors based on usable
rules in a unified way, regardless of whether an argument filtering is applied. When no
filtering is applied, let regard(f) = { 1, . . . , n } for each f : A1 → · · · → An → B with B ∈ S.

I Definition 39. The set Ua
F (t) of actually usable symbols in a term t is (1) { (f, n) } ∪⋃

i∈regard(f)∩{ 1,...,n } Ua
F (ti) if t = f t1 · · · tn for f ∈ F], t is not a ground theory term, and is

not in normal form (with respect to Q), or (2) ∅ otherwise.

I Lemma 40. Given a constraint ϕ and a substitution σ such that σ(x) is in normal form
for all x and is a theory value if x ∈ Var(ϕ): Ua

F (tσ) ⊆ UF (t)[ϕ] for all t with ⊥ /∈ UF (t)[ϕ].

Proof of Lemma 40. By induction on t. If t = x t1 · · · tn with x ∈ V, then n = 0 because
⊥ /∈ UF (t)[ϕ]. Hence, tσ = σ(x) is in normal form, and therefore Ua

F (tσ) = ∅. Otherwise,
t = f t1 · · · tn for f ∈ F]. If tσ = f (t1σ) · · · (tnσ) is not a ground theory term, t /∈
T (Fϑ,Var(ϕ)) because σ(x) is a theory value for all x ∈ Var(ϕ). So if Ua

F (tσ) 6= ∅, UF (t)[ϕ] =
{ (f, n) } ∪

⋃
i∈regard(f)∩{ 1,...,n } UF (ti)[ϕ], and therefore ⊥ /∈ UF (ti)[ϕ] for each such i. By

induction, Ua
F (tiσ) ⊆ UF (ti)[ϕ]. Hence, Ua

F (tσ) ⊆ UF (t)[ϕ]. J

I Lemma 41. Given a set P of SDPs and a set R of rules such that NF(Q) ⊆ NF(R) and
U(P,R) is defined: for all terms t, t′, if Ua

F (t) ⊆ UF (P,R) and t Q−→R t′, Ua
F (t′) ⊆ UF (P,R).

Proof of Lemma 41. By induction on t.
(1) t = f t1 · · · tn for f ∈ F , and there exist a rewrite rule `→ r [ϕ] ∈ R, substitution σ

and number p ≤ n such that f t1 · · · tp = `σ, t′ = (rσ) tp+1 · · · tn, σ(x) is in normal form for all
x and σ respects ϕ. Since NF(Q) ⊆ NF(R), t is not in Q-normal form, so (f, n) ∈ Ua

F (t) ⊆
UF (P,R), and therefore UF (r xp+1 · · ·xn)[ϕ] ⊆ UF (P,R) where xp+1, . . . , xn are fresh
variables. Since U(P,R) is defined, ⊥ /∈ UF (P,R), and therefore ⊥ /∈ UF (r xp+1 · · ·xn)[ϕ]. If
p = n, due to Lemma 40, Ua

F (t′) = Ua
F (rσ) ⊆ UF (r)[ϕ] ⊆ UF (P,R). Otherwise, r = g r1 · · · rq

for g ∈ F . Then Ua
F (t′) = Ua

F ((rσ) tp+1 · · · tn) ⊆ { (g, q+n−p) }∪
⋃
{Ua
F (riσ) | 1 ≤ i ≤ q, i ∈

regard(g)}∪
⋃
{Ua
F (tp+j) | 1 ≤ j ≤ n−p, q+j ∈ regard(g)} and UF (r xp+1 · · ·xn)[ϕ] = { (g, q+

C. Fuhs, L. Guo, and C. Kop 17:21

n− p) } ∪
⋃
{UF (ri)[ϕ] | 1 ≤ i ≤ q, i ∈ regard(g)}. Since ⊥ /∈ UF (r xp+1 · · ·xn)[ϕ], for each

such i, Ua
F (riσ) ⊆ UF (ri)[ϕ] due to Lemma 40. Since U(P,R) is defined, each p+j ∈ regard(f),

and therefore Ua
F (tp+j) ⊆ Ua

F (t). Hence, Ua
F (t′) ⊆ UF (r xp+1 · · ·xn)[ϕ] ∪ Ua

F (t) ⊆ UF (P,R).
(2) t = f v1 · · · vn where f is a calculation symbol and v1, . . . , vn are theory values, and t

has a base type. Then t→κ t
′ and t′ is a theory value. Hence, Ua

F (t′) = ∅.
(3) t = f t1 · · · tn for f ∈ F], and t′ = f t1 · · · tk−1 t

′
k tk+1 · · · tn for some k with tk

Q−→R t′k.
If t is a ground theory term, so is t′, hence Ua

F (t′) = ∅; so assume otherwise. If k /∈ regard(f),
Ua
F (t′) ⊆ Ua

F (t) ⊆ UF (P,R). If k ∈ regard(f), Ua
F (tk) ⊆ Ua

F (t) ⊆ UF (P,R). By induction,
Ua
F (t′k) ⊆ UF (P,R). Then Ua

F (t′) ⊆ Ua
F (t) ∪ Ua

F (t′k) ⊆ UF (P,R).
(4) t = x t1 · · · tn for x ∈ V, and t′ = x t1 · · · tk−1 t

′
k tk+1 · · · tn; then Ua

F (t′) = ∅. J

I Theorem 42. Usable-rules processors are sound.

Proof of Theorem 42. Given a DP problem (P,R) such thatNF(Q) ⊆ NF(R) and U(P,R)
is defined, and an infinite innermost (P,R)-chain (s]0 ⇒ t]0 [ϕ0], σ0), (s]1 ⇒ t]1 [ϕ1], σ1), . . .:
for all i, since UF (t]i)[ϕi] ⊆ UF (P,R), ⊥ /∈ UF (t]i)[ϕi], and due to Lemma 40, Ua

F (t]iσi) ⊆
UF (t]i)[ϕi] ⊆ UF (P,R). Now due to Lemma 41, for all t′ such that t]iσi

Q−→
∗
R t′, Ua

F (t′) ⊆
UF (P,R), so any Q−→R-step from t′ is a Q−→U(P,R)-step, given the definition of Ua

F (). J

Below we let π denote πt—the argument filtering with respect to the Boolean t—and
define σπ for each substitution σ by letting σπ(x) be π(σ(x)).

I Lemma 43. Given a logical constraint ϕ and a substitution σ such that σ(x) is a theory
value for all x ∈ Var(ϕ), πϕ(t)σπ = π(tσ) for each pattern t such that all the variables in
Var(t) whose type is a theory sort are also in Var(ϕ).

Proof of Lemma 43. By induction on t. If t = x t1 · · · tn with x ∈ V , then n = 0 because t is
a pattern. Hence, πϕ(t)σπ = σπ(x) = π(σ(x)) = π(tσ). Otherwise, t = f t1 · · · tn for f ∈ F].
If t is in T (Fϑ,Var(ϕ)) and has a base type, πϕ(t)σπ = tσπ = tσ = π(tσ) because σ(x) is a
theory value for all x ∈ Var(t) and π(v) = v for each theory value v. Otherwise, if regard(f)∩
{ 1, . . . , n } = { i1, . . . , ik } (with i1 < · · · < ik), πϕ(t)σπ = fn (πϕ(ti1)σπ) · · · (πϕ(tik)σπ) and
π(tσ) = fn π(ti1σ) · · ·π(tikσ). By induction, πϕ(tij)σπ = π(tijσ) for all j ∈ { 1, . . . , k }. J

I Lemma 44. Given a set P of SDPs, a set R of rewrite rules and a constrained relation �
such that U(P,R) is defined, ` �ϕ r for all `→ r [ϕ] ∈ U(P,R) and � is covered by some
reflexive, transitive and monotonic relation w: if UF (t)[ϕ] ⊆ UF (P,R) and σ(x) is a theory
value for all x ∈ Var(ϕ), πϕ(t)σπ ↓κ w π(tσ) ↓κ.

Proof of Lemma 44. By induction on t. If t = x t1 · · · tn with x ∈ V then n = 0 because ⊥ /∈
UF (t)[ϕ]. Hence, πϕ(t)σπ = σπ(x) = π(σ(x)) = π(tσ). Otherwise, t = f t1 · · · tn for f ∈ F]. If
t is in T (Fϑ,Var(ϕ)) and has a base type, πϕ(t)σπ = tσπ = tσ = π(tσ) because each σ(x) is a
theory value so π(σ(x)) = σ(x). Otherwise, we have πϕ(t)σπ = fn (πϕ(ti1)σπ) · · · (πϕ(tik)σπ)
where regard(f)∩ { 1, . . . , n } = { i1, . . . , ik } and i1 < · · · < ik. By induction, πϕ(tij)σπ ↓κ w
π(tijσ) ↓κ for all j ∈ { 1, . . . , k }, and therefore πϕ(t)σπ ↓κ w fn π(ti1σ) ↓κ · · ·π(tikσ) ↓κ. If tσ
is a ground theory term with a base type, fn xi1 · · ·xik → y [y = f x1 · · ·xn] ∈ U(P,R); be-
cause w covers �, fn π(ti1σ) ↓κ · · ·π(tikσ) ↓κ = fn (ti1σ) ↓κ · · · (tikσ) ↓κ w (tσ) ↓κ = π(tσ) ↓κ.
Otherwise, we have π(tσ) = fn π(ti1σ) · · ·π(tikσ). J

I Lemma 45. Given a set P of SDPs, a set R of rules and a constrained relation � where
(1) NF(Q) ⊆ NF(R), (2) U(P,R) is defined, (3) for all `→ r [ϕ] ∈ R, all x ∈ Var(`) whose
type is a theory sort, x ∈ Var(ϕ), (4) ` �ϕ r for all `→ r [ϕ] ∈ U(P,R) and (5) � is covered
by a reflexive, transitive, monotonic w: if Ua

F (t) ⊆ UF (P,R) and t Q−→R t′, π(t) ↓κ w π(t′) ↓κ.

FSCD 2025

17:22 An Innermost DP Framework for Constrained Higher-Order Rewriting

Proof of Lemma 45. By induction on t.
(1) t is a base-type ground theory term; then so is t′, and t→κ t

′. Hence, π(t) ↓κ = π(t′) ↓κ.
(2) t = f t1 · · · tn for f ∈ F , and there exist a number p ≤ n, substitution σ and

rule ` → r [ϕ] ∈ R such that ` = f `1 · · · `p, ti = `iσ for all i ∈ { 1, . . . , p }, t′ =
(rσ) tp+1 · · · tn, σ(x) is in normal form for all x and σ respects ϕ. Since NF(Q) ⊆
NF(R), (f, n) ∈ Ua

F (t) ⊆ UF (P,R), and therefore UF (r xp+1 · · ·xn)[ϕ] ⊆ UF (P,R) and
πϕ(` xp+1 · · ·xn) → πϕ(r xp+1 · · ·xn) [ϕ] ∈ U(P,R) for xp+1, . . . , xn fresh variables. We
have π(t) = fn π(ti1) · · ·π(tik) where regard(f)∩{ 1, . . . , n } = { i1, . . . , ik } and i1 < · · · < il ≤
p < il+1 < · · · < ik. By Lemma 43, πϕ(`j)σπ = π(`jσ) = π(tj) for all j ∈ { 1, . . . , l }. Since
πϕ(xj)([xi :− ti]ni=p+1)π = π(tj) for all j ∈ { l+ 1, . . . , k }, π(t) = πϕ(` xp+1 · · ·xn)(σ∪ [xi :−
ti]ni=p+1)π. Due to Lemma 44, πϕ(r xp+1 · · ·xn)(σ ∪ [xi :− ti]ni=p+1)π ↓κ w π(t′) ↓κ. Because
w covers � and (σ ∪ [xi :− ti]ni=p+1)π respects ϕ, π(t) ↓κ w π(t′) ↓κ.

(3) t = f t1 · · · tn (f ∈ F]) is not a base-type ground theory term, and there is m such
that t′ = f t1 · · · tm−1 t

′
m tm+1 · · · tn and tm

Q−→R t′m. Then π(t) = fn π(ti1) · · ·π(tik) where
regard(f) ∩ { 1, . . . , n } = { i1, . . . , ik } and i1 < · · · < ik. Let t′i be ti for all i ∈ { 1, . . . , n } \
{m }. By induction, π(tm) ↓κ w π(t′m) ↓κ, and therefore π(t) ↓κ w fn π(t′i1) ↓κ · · ·π(t′ik) ↓κ.
If t′ is a ground theory term that has a base type, since (f, n) ∈ Ua

F (t) ⊆ UF (P,R), we have
fn xi1 · · ·xik → y [y = f x1 · · ·xn] ∈ U(P,R); because w covers �, fn π(t′i1) ↓κ · · ·π(t′ik) ↓κ =
fn t′i1 ↓κ · · · t

′
ik
↓κ w t′ ↓κ = π(t′) ↓κ. Otherwise, π(t′) ↓κ = fn π(t′i1) ↓κ · · ·π(t′ik) ↓κ.

(4) t = x t1 · · · tk · · · tn for x ∈ V , and t′ = x t1 · · · t′k · · · tn; then π(t) = •µ(A) = π(t′). J

I Theorem 46. If the rewrite rules are preprocessed by Lemma 7, and all theory sorts are
inextensible, then reduction pair processors with an argument filtering are sound.

Proof of Theorem 46. Following Theorem 42, for all i and t′ such that t]iσi
Q−→
∗
R t′, Ua

F (t′) ⊆
UF (P,R). Due to Lemma 45, π(t]iσi) ↓κ w π(s]i+1σi+1) ↓κ for all i. For all i, if s]i ⇒ t]i [ϕi] ∈
P ′, due to Lemmas 43 and 44, π(s]iσi) ↓κ = πϕi

(s]i)σπi ↓κ A πϕi
(t]i)σπi ↓κ w π(t]iσi) ↓κ; if

s]i ⇒ t]i [ϕi] ∈ P \ P ′, similarly π(s]iσi) ↓κ w π(t]iσi) ↓κ. Since A is well-founded, an infinite
innermost (P,R)-chain leads to an infinite innermost (P \ P ′,R)-chain. J

A.2 The Proofs of Theorems 14 and 36
For the properties of C-computability, see Appendix A in the extended version of [13]. The
following proofs are largely based on Appendix A.3 in [20]; here the novelty lies on the
innermostness of chains. Note that undefined function symbols are C-computable (see [20]).

I Lemma 47. Assume given an AFP system R0 with sort ordering %, an extension R1 of
R0 and a sort ordering %′ which extends % over sorts in R0 ∪R1. For each defined symbol
f : A1 → · · · → Am → B in R0 where B is a sort, if f s1 · · · sm is not C-computable in R0∪R1
with %′ but si is for all i, then there exist an SDP f] s′1 · · · s′m ⇒ g] t1 · · · tn [ϕ] ∈ SDP(R0),
a substitution σ and a natural number p such that (1) si

i−→
∗
R0∪R1

s′iσ and s′iσ is in normal
form for all i ≤ p, (2) s′i is a fresh variable (s′i does not occur in s′j for any j 6= i) and
σ(s′i) = si for all i > p, (3) σ respects ϕ, and (4) (g t1 · · · tn)σ = g (t1σ) · · · (tnσ) is not
C-computable in R0 ∪R1 with %′ but uσ is for each proper subterm u of g t1 · · · tn.

Proof. If the only reducts of f s1 · · · sm were values or f s′1 · · · s′m with si
i−→
∗
R0∪R1

s′i for
all i then f s1 · · · sm would be computable. Hence, there exist f s′1 · · · s′p → r [ϕ] ∈ R0 (f
cannot be defined in R1) and σ′ such that si

i−→
∗
R0∪R1

s′iσ
′ and s′iσ′ is in normal form for all

i ≤ p, and σ′ respects ϕ; (rσ′) sp+1 · · · sm is thus a reduct of f s1 · · · sm. At least one such
reduct is uncomputable. Let (rσ′) sp+1 · · · sm be uncomputable, and therefore so is rσ′. Also
all σ′(x) are computable, since these are accessible subterms of some s′i, since R0 is AFP.

C. Fuhs, L. Guo, and C. Kop 17:23

Take a minimal subterm a t1 · · · tq of r such that tσ′ is uncomputable. By minimality,
each tiσ′ is computable. Hence, a cannot be a variable, value or constructor, as then σ′(x)
would be computable, implying computability of tσ′. Hence, a is a defined symbol g.

We have f] s′1 · · · s′p xp+1 · · ·xm ⇒ g] t1 · · · tq yq+1 · · · yn [ϕ] ∈ SDP(R0). Because tσ′
is uncomputable, there exist computable terms t′q+1, . . . , t

′
n such that (tσ′) t′q+1 · · · t′n =

g (t1σ′) · · · (tqσ′) t′q+1 · · · t′n is uncomputable. Let σ be such that σ(xi) = si for all i > p,
σ(yi) = t′i for all i > q, and σ(z) = σ′(z) for any other z. Let s′i denote xi for i > p and ti
denote yi for i > q; then f] s′1 · · · s′m ⇒ g] t1 · · · tn [ϕ], σ and p satisfy all requirements. J

I Corollary 48. Given an AFP system R0 with sort ordering %, an extension R1 of R0 and a
sort ordering %′ which extends % over sorts in R0∪R1, for each defined symbol f : A1 → · · · →
Am → B in R0 (B a sort), if f s1 · · · sm is not C-computable in R0 ∪R1 with %′ but each si
is, there exists an infinite innermost (SDP(R0),R0∪R1)-chain (f] s′1 · · · s′m ⇒ t] [ϕ], σ), . . .

Proof. Repeatedly applying Lemma 47 (on f s1 · · · sm, then on g (t1σ) · · · (tnσ) and so on) we
get three infinite sequences: one of SDPs in SDP(R0) (f]i si,1 · · · si,mi ⇒ f]i+1 ti,1 · · · ti,ni [ϕi])i
where f0 = f, one of substitutions (σi)i and one of natural numbers (pi)i. Since

i−→R0∪R1 is
exactly R0∪R1−−−−→R0∪R1 , combining the SDPs and the substitutions almost gives us an infinite
innermost (SDP(R0),R0 ∪R1)-chain, except that si,jσi may not be in normal form if j > pi.

We define (σ′i)i so that, together with the SDPs, we obtain an infinite chain. For all i, j
with pi < j ≤ mi, si,j is a fresh variable and σi(si,j) is C-computable. Let σ′i(x) be σi(x) for
x ∈ V \{ si,pi+1, . . . , si,mi

}. To define σ′i(si,j) for j > pi, let k0 be j and for l ≥ 0, if kl exists
and kl > pi+l, let kl+1 be the index (if any) with si+l,kl

= ti+l,kl+1 . There are two options:
(1) If kl > pi+l for all l such that kl is defined, regardless of whether the sequence is finite,

σi+l(si+l,kl
) = σi+l(ti+l,kl+1) = σi+l+1(si+l+1,kl+1) for all l such that kl+1 is defined. Let u

be an arbitrary normal form of σi(si,j), and let σ′i+l(si+l,kl
) be u for all l where kl is defined.

(2) Otherwise, the sequence (kl)l is finite, and kq ≤ pi+q where kq is the last in the
sequence. Then si+q,kq

σi+q is in normal form. Let σ′i+l(si+l,kl
) be si+q,kq

σi+q for all l < q.
Hence, we have built an infinite innermost (SDP(R0),R0 ∪R1)-chain. J

I Theorem 14. An AFP system R is innermost (and therefore call-by-value) terminating if
there exists no infinite innermost (SDP(R),R)-chain.

Proof. Towards a contradiction, assume that R is not innermost terminating. Then there
is an uncomputable (not C-computable) term u. Take a minimal subterm s of u that is
uncomputable; then u = f s1 · · · sk where f is defined and each si is computable. Let f : A1 →
· · · → Am → B for B ∈ S. Since s = f s1 · · · sk is uncomputable, there exist computable
sk+1, . . . , sm with s sk+1 · · · sm = f s1 · · · sm uncomputable. By Corollary 48 (with R1 = ∅),
there is an infinite innermost (SDP(R),R)-chain, giving the required contradiction. J

I Theorem 36. An accessible function passing system R0 with sort ordering % is universally
computable if there exists no infinite innermost (SDP(R0),R0 ∪R1)-chain for any extension
R1 of R0 and extension %′ of % to sorts in R0 ∪R1.

Proof. Towards a contradiction, assume that R0 is not universally computable. There exist
an extension R1 of R0, sort ordering %′ which extends % over sorts in R0∪R1 and term u of
R0 that is not C-computable in R0 ∪R1 with %′. We consider C-computability in R0 ∪R1.
Take a minimal uncomputable subterm s of u; then s must take the form f s1 · · · sk with f a
defined symbol in R0 and each si computable. Let f : A1 → · · · → Am → B. Because s is
uncomputable, there exist computable sk+1, . . . , sm ofR0∪R1 with s sk+1 · · · sm = f s1 · · · sm
uncomputable. Corollary 48 gives the required chain to obtain a contradiction. J

FSCD 2025

	1 Introduction
	2 Preliminaries
	2.1 Logically Constrained STRSs
	2.2 Accessibility and Computability

	3 The Transformation of Call-By-Value Systems
	4 Static Dependency Pairs and Chains
	5 The Innermost DP Framework
	5.1 Graph, Subterm Criterion and Integer Mapping Processors
	5.2 The Chaining of Call-By-Value SDPs
	5.3 Usable Rules
	5.4 Argument Filterings

	6 Universal Computability with Usable Rules
	7 Implementation and Evaluation
	8 Related Work
	9 Conclusion and Future Work
	A Full Proofs
	A.1 Soundness for Section 5
	A.2 The Proofs of Theorems 14 and 36

