
Proving Program Termination
via Term Rewriting

Carsten Fuhs

Birkbeck, University of London

Advanced Course at the International School on Rewriting 2017

Eindhoven, The Netherlands

July 2017

Proving Program Termination via Term Rewriting

1 Overview

2 Termination Analysis of Term Rewriting with Dependency Pairs

3 Haskell: a Pure Functional Language with Lazy Evaluation

4 Java: an Object-Oriented Imperative Language with Side Effects

2/64

Proving Program Termination via Term Rewriting

1 Overview

2 Termination Analysis of Term Rewriting with Dependency Pairs

3 Haskell: a Pure Functional Language with Lazy Evaluation

4 Java: an Object-Oriented Imperative Language with Side Effects

3/64

Automated Termination Provers for Term Rewrite Systems

AProVE (Aachen, . . .)
CiME3 (Paris)
HOT (Cachan)
Jambox (Amsterdam)
Matchbox (Leipzig)
Mu-Term (Valencia)
MultumNonMulta (Kassel)
NaTT (Innsbruck)
THOR (Barcelona)
TORPA (Eindhoven)
TTT2 (Innsbruck)
VMTL (Vienna)
Wanda (Copenhagen)
. . .

Powerful push-button termination
analysis tools for Term Rewrite
Systems (TRSs)
Development spurred by annual
International Termination Competition
(termCOMP) since 2003
termCOMP initially for term rewriting,
now also C, Java, Haskell, Prolog
Can we use tools for TRSs also for
programming languages?

4/64

Automated Termination Provers for Term Rewrite Systems

AProVE (Aachen, . . .)
CiME3 (Paris)
HOT (Cachan)
Jambox (Amsterdam)
Matchbox (Leipzig)
Mu-Term (Valencia)
MultumNonMulta (Kassel)
NaTT (Innsbruck)
THOR (Barcelona)
TORPA (Eindhoven)
TTT2 (Innsbruck)
VMTL (Vienna)
Wanda (Copenhagen)
. . .

Powerful push-button termination
analysis tools for Term Rewrite
Systems (TRSs)
Development spurred by annual
International Termination Competition
(termCOMP) since 2003
termCOMP initially for term rewriting,
now also C, Java, Haskell, Prolog
Can we use tools for TRSs also for
programming languages?

4/64

Automated Termination Provers for Term Rewrite Systems

AProVE (Aachen, . . .)
CiME3 (Paris)
HOT (Cachan)
Jambox (Amsterdam)
Matchbox (Leipzig)
Mu-Term (Valencia)
MultumNonMulta (Kassel)
NaTT (Innsbruck)
THOR (Barcelona)
TORPA (Eindhoven)
TTT2 (Innsbruck)
VMTL (Vienna)
Wanda (Copenhagen)
. . .

Powerful push-button termination
analysis tools for Term Rewrite
Systems (TRSs)
Development spurred by annual
International Termination Competition
(termCOMP) since 2003
termCOMP initially for term rewriting,
now also C, Java, Haskell, Prolog
Can we use tools for TRSs also for
programming languages?

4/64

Termination Analysis for Programs – Why?

push-button analysis
does not need separate specification (hard to get right)
termination is in most cases a desirable property
non-termination can be security issue (Denial of Service)
in 2011: PHP and Java issues with floating-point number parser

http://www.exploringbinary.com/
php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/
java-hangs-when-converting-2-2250738585072012e-308/

value of termination analysis recognized by industry
→ Microsoft’s Terminator project

5/64

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Termination Analysis for Programs – Why?

push-button analysis
does not need separate specification (hard to get right)
termination is in most cases a desirable property
non-termination can be security issue (Denial of Service)
in 2011: PHP and Java issues with floating-point number parser

http://www.exploringbinary.com/
php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/
java-hangs-when-converting-2-2250738585072012e-308/

value of termination analysis recognized by industry
→ Microsoft’s Terminator project

5/64

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

How can Term Rewriting Contribute?

term rewriting is Turing-complete
can represent inductive data structures (trees) in a natural way

Idea 1: port techniques from TRSs to each programming language
→ but: lots of repeated work

Idea 2: two-stage approach
front-end for language-specific aspects, extracts TRS such that
termination of TRS implies termination of the program
back-end: reuse optimized off-the-shelf termination prover for TRSs

This course: How can we construct such a front-end?
look at general principle
look at two concrete programming languages as examples

Haskell (functional, lazy)
Java (imperative, object-oriented)

6/64

How can Term Rewriting Contribute?

term rewriting is Turing-complete
can represent inductive data structures (trees) in a natural way

Idea 1: port techniques from TRSs to each programming language
→ but: lots of repeated work

Idea 2: two-stage approach
front-end for language-specific aspects, extracts TRS such that
termination of TRS implies termination of the program
back-end: reuse optimized off-the-shelf termination prover for TRSs

This course: How can we construct such a front-end?
look at general principle
look at two concrete programming languages as examples

Haskell (functional, lazy)
Java (imperative, object-oriented)

6/64

How can Term Rewriting Contribute?

term rewriting is Turing-complete
can represent inductive data structures (trees) in a natural way

Idea 1: port techniques from TRSs to each programming language
→ but: lots of repeated work

Idea 2: two-stage approach
front-end for language-specific aspects, extracts TRS such that
termination of TRS implies termination of the program
back-end: reuse optimized off-the-shelf termination prover for TRSs

This course: How can we construct such a front-end?
look at general principle
look at two concrete programming languages as examples

Haskell (functional, lazy)
Java (imperative, object-oriented)

6/64

How can Term Rewriting Contribute?

term rewriting is Turing-complete
can represent inductive data structures (trees) in a natural way

Idea 1: port techniques from TRSs to each programming language
→ but: lots of repeated work

Idea 2: two-stage approach
front-end for language-specific aspects, extracts TRS such that
termination of TRS implies termination of the program
back-end: reuse optimized off-the-shelf termination prover for TRSs

This course: How can we construct such a front-end?
look at general principle
look at two concrete programming languages as examples

Haskell (functional, lazy)
Java (imperative, object-oriented)

6/64

Proving Program Termination via Term Rewriting

1 Overview

2 Termination Analysis of Term Rewriting with Dependency Pairs

3 Haskell: a Pure Functional Language with Lazy Evaluation

4 Java: an Object-Oriented Imperative Language with Side Effects

7/64

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

P =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) →R minus(s(0), 0) →R s(0)

Termination: No infinite evaluation sequences t1 →R t2 →R t3 →R . . .
Show termination using Dependency Pairs

8/64

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

P =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) →R minus(s(0), 0) →R s(0)

Termination: No infinite evaluation sequences t1 →R t2 →R t3 →R . . .

Show termination using Dependency Pairs

8/64

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

P =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) →R minus(s(0), 0) →R s(0)

Termination: No infinite evaluation sequences t1 →R t2 →R t3 →R . . .
Show termination using Dependency Pairs

8/64

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

P =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Dependency Pairs (DPs) [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs P (∼ function calls)
Show: No ∞ call sequence with P (eval of P’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):

while (P 6= ∅) do

find reduction pair (%,�) with P ∪R ⊆ %
delete s→ t with s � t from P (� well founded, not monotonic)

Find (%,�) automatically via SAT and SMT solving

8/64

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

P =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Dependency Pairs (DPs) [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs P (∼ function calls)
Show: No ∞ call sequence with P (eval of P’s args via R)

Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):

while (P 6= ∅) do

find reduction pair (%,�) with P ∪R ⊆ %
delete s→ t with s � t from P (� well founded, not monotonic)

Find (%,�) automatically via SAT and SMT solving

8/64

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

P =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Dependency Pairs (DPs) [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs P (∼ function calls)
Show: No ∞ call sequence with P (eval of P’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):

while (P 6= ∅) do

find reduction pair (%,�) with P ∪R ⊆ %
delete s→ t with s � t from P (� well founded, not monotonic)

Find (%,�) automatically via SAT and SMT solving

8/64

Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

P =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Dependency Pairs (DPs) [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs P (∼ function calls)
Show: No ∞ call sequence with P (eval of P’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while (P 6= ∅) do

find reduction pair (%,�) with P ∪R ⊆ %
delete s→ t with s � t from P (� well founded, not monotonic)

Find (%,�) automatically via SAT and SMT solving

8/64

Example (Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

P =


minus](s(x), s(y)) % minus](x, y)

quot](s(x), s(y)) % minus](x, y)
quot](s(x), s(y)) % quot](minus(x, y), s(y))

Dependency Pairs (DPs) [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs P (∼ function calls)
Show: No ∞ call sequence with P (eval of P’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while (P 6= ∅) do

find reduction pair (%,�) with P ∪R ⊆ %

delete s→ t with s � t from P (� well founded, not monotonic)

Find (%,�) automatically via SAT and SMT solving

8/64

Example (Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

P =


minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Dependency Pairs (DPs) [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs P (∼ function calls)
Show: No ∞ call sequence with P (eval of P’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while (P 6= ∅) do

find reduction pair (%,�) with P ∪R ⊆ %
delete s→ t with s � t from P (� well founded, not monotonic)

Find (%,�) automatically via SAT and SMT solving

8/64

Example (Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

P =


minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Dependency Pairs (DPs) [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs P (∼ function calls)
Show: No ∞ call sequence with P (eval of P’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while (P 6= ∅) do

find reduction pair (%,�) with P ∪R ⊆ %
delete s→ t with s � t from P (� well founded, not monotonic)

Find (%,�) automatically via SAT and SMT solving
8/64

Example (Constraints for Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

P =


minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Use polynomial interpretation [·] over N [Lankford ’75] with

[quot]](x1, x2) = x1 + x2 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 + x2 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y (%,�) induced by [·] solves all term constraints
y P = ∅
y termination of division algorithm proved �

9/64

Example (Constraints for Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

P =


minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use polynomial interpretation [·] over N [Lankford ’75] with

[quot]](x1, x2) = x1 + x2 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 + x2 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y (%,�) induced by [·] solves all term constraints
y P = ∅
y termination of division algorithm proved �

9/64

Example (Constraints for Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

P =



minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use polynomial interpretation [·] over N [Lankford ’75] with

[quot]](x1, x2) = x1 + x2 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 + x2 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y (%,�) induced by [·] solves all term constraints
y P = ∅
y termination of division algorithm proved �

9/64

From Program to Term Rewriting, high-level

execute program symbolically from initial states of the program,
handle language peculiarities here

use generalization of program states, get over-approximation of all
possible program runs (≈ control-flow graph with extra info)
related: Abstract Interpretation [Cousot and Cousot, POPL ’77]
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

g(~t)...
10/64

From Program to Term Rewriting, high-level

execute program symbolically from initial states of the program,
handle language peculiarities here

use generalization of program states, get over-approximation of all
possible program runs (≈ control-flow graph with extra info)
related: Abstract Interpretation [Cousot and Cousot, POPL ’77]
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

g(~t)...
10/64

From Program to Term Rewriting, high-level

execute program symbolically from initial states of the program,
handle language peculiarities here

use generalization of program states, get over-approximation of all
possible program runs (≈ control-flow graph with extra info)
related: Abstract Interpretation [Cousot and Cousot, POPL ’77]
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

g(~t)...
10/64

From Program to Term Rewriting, high-level

execute program symbolically from initial states of the program,
handle language peculiarities here

use generalization of program states, get over-approximation of all
possible program runs (≈ control-flow graph with extra info)
related: Abstract Interpretation [Cousot and Cousot, POPL ’77]
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

g(~t)...
10/64

From Program to Term Rewriting, high-level

execute program symbolically from initial states of the program,
handle language peculiarities here

use generalization of program states, get over-approximation of all
possible program runs (≈ control-flow graph with extra info)
related: Abstract Interpretation [Cousot and Cousot, POPL ’77]
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

g(~t)...
10/64

From Program to Term Rewriting, high-level

execute program symbolically from initial states of the program,
handle language peculiarities here
use generalization of program states, get over-approximation of all
possible program runs (≈ control-flow graph with extra info)
related: Abstract Interpretation [Cousot and Cousot, POPL ’77]

extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

g(~t)...

g(~t) instance of g(~s)

10/64

From Program to Term Rewriting, high-level

execute program symbolically from initial states of the program,
handle language peculiarities here
use generalization of program states, get over-approximation of all
possible program runs (≈ control-flow graph with extra info)
related: Abstract Interpretation [Cousot and Cousot, POPL ’77]
extract TRS from cycles in the representation

if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

g(~t)...

g(~t) instance of g(~s)

10/64

From Program to Term Rewriting, high-level

execute program symbolically from initial states of the program,
handle language peculiarities here
use generalization of program states, get over-approximation of all
possible program runs (≈ control-flow graph with extra info)
related: Abstract Interpretation [Cousot and Cousot, POPL ’77]
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

g(~t)...

g(~t) instance of g(~s)

10/64

Proving Program Termination via Term Rewriting

1 Overview

2 Termination Analysis of Term Rewriting with Dependency Pairs

3 Haskell: a Pure Functional Language with Lazy Evaluation

4 Java: an Object-Oriented Imperative Language with Side Effects

11/64

Here: Haskell

Haskell 98
Widely used functional programming language
Goal: analyze termination, reuse techniques for term rewrite systems

Approach
[Giesl, Raffelsieper, Schneider-Kamp, Swiderski, Thiemann, TOPLAS ’11]

Translate from Haskell 98 to TRS
Prove termination of the TRS using standard techniques for TRSs

⇒ Implies termination of the Haskell program!

12/64

Here: Haskell

Haskell 98
Widely used functional programming language
Goal: analyze termination, reuse techniques for term rewrite systems

Approach
[Giesl, Raffelsieper, Schneider-Kamp, Swiderski, Thiemann, TOPLAS ’11]

Translate from Haskell 98 to TRS
Prove termination of the TRS using standard techniques for TRSs

⇒ Implies termination of the Haskell program!

12/64

From Haskell to TRSs

Challenges
higher-order: functional variables, λ-abstractions, . . .
But: Standard framework for TRSs works on first-order terms
lazy evaluation
But: Standard TRS techniques consider all evaluation strategies
polymorphic types
But: TRSs are untyped
usually not all Haskell functions terminate → ∞ data (streams)
But: TRS techniques analyze termination of all terms

13/64

Syntax of Haskell

Data Structures
data Nat = Z | S Nat

type constructor: Nat

of arity 0

data constructors: Z :: Nat, S :: Nat → Nat
data List a = Nil | Cons a (List a)

type constructor: List of arity 1
data constructors: Nil :: List a, Cons :: a → (List a) → (List a)

14/64

Syntax of Haskell

Data Structures
data Nat = Z | S Nat

type constructor: Nat of arity 0
data constructors: Z :: Nat, S :: Nat → Nat

data List a = Nil | Cons a (List a)
type constructor: List of arity 1
data constructors: Nil :: List a, Cons :: a → (List a) → (List a)

14/64

Syntax of Haskell

Data Structures
data Nat = Z | S Nat

type constructor: Nat of arity 0
data constructors: Z :: Nat, S :: Nat → Nat

data List a = Nil | Cons a (List a)
type constructor: List of arity 1
data constructors: Nil :: List a, Cons :: a → (List a) → (List a)

Terms (well-typed)
Variables: x, y, . . .
Function Symbols: constructors (Z, S, Nil, Cons) & defined (from, take)
Applications (t1 t2)

S Z represents number 1
Cons x Nil ≡ (Cons x) Nil represents [x]

14/64

Syntax of Haskell

Data Structures
data Nat = Z | S Nat

type constructor: Nat of arity 0
data constructors: Z :: Nat, S :: Nat → Nat

data List a = Nil | Cons a (List a)
type constructor: List of arity 1
data constructors: Nil :: List a, Cons :: a → (List a) → (List a)

Types
Type Variables: a, b, . . .
Applications of type constructors to types: List Nat, a→ (List a), . . .

S Z has type Nat

Cons x Nil has type List a

14/64

Syntax of Haskell

Data Structures
data Nat = Z | S Nat

type constructor: Nat of arity 0
data constructors: Z :: Nat, S :: Nat → Nat

data List a = Nil | Cons a (List a)
type constructor: List of arity 1
data constructors: Nil :: List a, Cons :: a → (List a) → (List a)

Function Declarations (example)

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

from :: Nat→ List Nat take :: Nat→ (List a)→ (List a)

from x ≡ [x, x+ 1, x+ 2, . . .] take n [x1, . . . , xn, . . .] ≡ [x1, . . . , xn]

14/64

Syntax of Haskell

Function Declarations (general)

f `1 . . . `n = r

f is defined function symbol
n is arity of f
r is arbitrary term
`1 . . . `n are linear patterns (terms from constructors and variables)

Function Declarations (example)

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

from :: Nat→ List Nat take :: Nat→ (List a)→ (List a)

from x ≡ [x, x+ 1, x+ 2, . . .] take n [x1, . . . , xn, . . .] ≡ [x1, . . . , xn]

15/64

Syntax of Haskell

Approach also works with
built-in data structures
type classes

All other Haskell constructs are eliminated by automatic
transformations!

lambda abstractions

replace \ t1 . . . tn → t with free variables x1, . . . , xm
by f x1 . . . xm
where f x1 . . . xm t1 . . . tn = t

Conditions
Local Declarations
. . .

16/64

Syntax of Haskell

Approach also works with
built-in data structures
type classes

All other Haskell constructs are eliminated by automatic
transformations!

lambda abstractions
replace \u m→ takeu (fromm)
by f
where f u m = takeu (fromm)

Conditions
Local Declarations
. . .

16/64

Syntax of Haskell

Approach also works with
built-in data structures
type classes

All other Haskell constructs are eliminated by automatic
transformations!

lambda abstractions
replace \u m→ takeu (fromm)
by f u
where f u m = takeu (fromm)

Conditions
Local Declarations
. . .

16/64

Syntax of Haskell

Approach also works with
built-in data structures
type classes

All other Haskell constructs are eliminated by automatic
transformations!

lambda abstractions
replace \ t1 . . . tn → t with free variables x1, . . . , xm
by f x1 . . . xm
where f x1 . . . xm t1 . . . tn = t

Conditions
Local Declarations
. . .

16/64

Syntax of Haskell

Approach also works with
built-in data structures
type classes

All other Haskell constructs are eliminated by automatic
transformations!

lambda abstractions
replace \ t1 . . . tn → t with free variables x1, . . . , xm
by f x1 . . . xm
where f x1 . . . xm t1 . . . tn = t

Conditions
Local Declarations
. . .

16/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H fromZ

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H fromZ evaluation position

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H fromZ evaluation position
→H Cons Z (from (SZ))

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H fromZ
→H Cons Z (from (SZ)) evaluation position

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H fromZ
→H Cons Z (from (SZ)) evaluation position
→H Cons Z (Cons (SZ) (from (S (SZ))))

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H fromZ
→H Cons Z (from (SZ))
→H Cons Z (Cons (SZ) (from (S (SZ)))) evaluation position

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H fromZ
→H Cons Z (from (SZ))
→H Cons Z (Cons (SZ) (from (S (SZ)))) evaluation position
→H . . .

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H fromm
→H Consm (from (Sm))
→H Consm (Cons (Sm) (from (S (Sm))))
→H . . .

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H take (SZ) (fromm)

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H take (SZ) (fromm) evaluation position

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H take (SZ) (fromm) evaluation position
→H take (SZ) (Consm (from (Sm)))

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H take (SZ) (fromm)
→H take (SZ) (Consm (from (Sm))) evaluation position

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H take (SZ) (fromm)
→H take (SZ) (Consm (from (Sm))) evaluation position
→H Consm (take Z (from (Sm)))

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H take (SZ) (fromm)
→H take (SZ) (Consm (from (Sm)))
→H Consm (take Z (from (Sm))) evaluation position

17/64

Semantics of Haskell

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Evaluation Relation →H

→H take (SZ) (fromm)
→H take (SZ) (Consm (from (Sm)))
→H Consm (take Z (from (Sm))) evaluation position
→H ConsmNil

17/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x

is H-terminating
from is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating
Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x

is H-terminating
from is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating
Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x

is H-terminating
from is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating
Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x

is H-terminating
from is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating
Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x

is H-terminating
from is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating
Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x

is H-terminating
from is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating
Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x

is H-terminating
from is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating
Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x

is H-terminating
from is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating
Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x is H-terminating

from is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating
Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x is H-terminating
from

is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating
Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x is H-terminating
from is not H-terminating (fromZ has infinite evaluation)

take u (from m) is H-terminating
Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x is H-terminating
from is not H-terminating (fromZ has infinite evaluation)
take u (from m)

is H-terminating
Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x is H-terminating
from is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating

Cons u (from m) is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x is H-terminating
from is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating
Cons u (from m)

is not H-terminating

18/64

H-Termination

Analyze H-termination:

If I only plug terminating arguments into my initial term,
will the Haskell interpreter always give me an answer?

Formally:
H-Termination of ground term t if

t does not start infinite evaluation t→H . . .
if t→∗H (f t1 . . . tn), f defined, n < arity(f),
then (f t1 . . . tn t

′) is also H-terminating if t′ is H-terminating
if t→∗H (c t1 . . . tn), c constructor,
then t1, . . . , tn are also H-terminating.

H-Termination of arbitrary term t if
tσ H-terminates for all substitutions σ with H-terminating terms.

x is H-terminating
from is not H-terminating (fromZ has infinite evaluation)
take u (from m) is H-terminating
Cons u (from m) is not H-terminating

18/64

From Haskell to Termination Graphs
fromx = Consx (from (Sx)) take Z xs = Nil

takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Goal: Prove (H-)termination of initial term take u (from m)

Naive approach
Use defining equations directly
fails, since from is not terminating
disregards Haskell’s evaluation strategy

Our approach [Giesl et al, TOPLAS ’11]

evaluate initial term a few steps
⇒ termination graph (≈ abstract interpretation)
our “abstract domain” for Haskell program states: a single term
do not transform Haskell into TRS directly,
but transform termination graph into TRS

19/64

From Haskell to Termination Graphs
fromx = Consx (from (Sx)) take Z xs = Nil

takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Goal: Prove (H-)termination of initial term take u (from m)

Naive approach
Use defining equations directly
fails, since from is not terminating
disregards Haskell’s evaluation strategy

Our approach [Giesl et al, TOPLAS ’11]

evaluate initial term a few steps
⇒ termination graph (≈ abstract interpretation)
our “abstract domain” for Haskell program states: a single term
do not transform Haskell into TRS directly,
but transform termination graph into TRS

19/64

From Haskell to Termination Graphs
fromx = Consx (from (Sx)) take Z xs = Nil

takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

Goal: Prove (H-)termination of initial term take u (from m)

Naive approach
Use defining equations directly
fails, since from is not terminating
disregards Haskell’s evaluation strategy

Our approach [Giesl et al, TOPLAS ’11]

evaluate initial term a few steps
⇒ termination graph (≈ abstract interpretation)
our “abstract domain” for Haskell program states: a single term
do not transform Haskell into TRS directly,
but transform termination graph into TRS

19/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

begin with node marked with initial term
4 expansion rules to add children to leaves (more in paper)
expansion rules try to evaluate terms

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

Case rule:
evaluation has to continue with variable u
instantiate u by all possible constructor terms of correct type

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm) take (Sn) (fromm)

[u/Z] [u/(Sn)]

Case

Case rule:
evaluation has to continue with variable u
instantiate u by all possible constructor terms of correct type

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm) take (Sn) (fromm)

[u/Z] [u/(Sn)]

Case

Main Property of Termination Graphs:

A node is H-terminating if all its children are H-terminating.

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm) take (Sn) (fromm)

[u/Z] [u/(Sn)]

Case

Eval rule:

performs one evaluation step with →H

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

Eval rule:

performs one evaluation step with →H

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

Case and Eval rule perform narrowing
w.r.t. Haskell’s evaluation strategy and types

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit rule:

if head of term is a constructor like Cons or a variable,
then continue with the parameters

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

ParSplit rule:

if head of term is a constructor like Cons or a variable,
then continue with the parameters

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

one could continue with Case, Eval , ParSplit
⇒ infinite tree
Instead: Ins rule to obtain finite graphs

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins rule:
if leaf t is instance of t′, then add instantiation edge from t to t′

one may re-use an existing node for t′, if possible

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

Ins rule:
if leaf t is instance of t′, then add instantiation edge from t to t′

one may re-use an existing node for t′, if possible

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

Ins rule:
if leaf t is instance of t′, then add instantiation edge from t to t′

since instantiation is [u/n, m/(S m)], add child nodes n and (S m)

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

Ins rule:
if leaf t is instance of t′, then add instantiation edge from t to t′

since instantiation is [u/n, m/(S m)], add child nodes n and (S m)

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit rule:

if head of term is a constructor like S,
then continue with the parameter

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

ParSplit rule:

if head of term is a constructor like S,
then continue with the parameter

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

Termination Graph
no expansion rule applicable to leaves anymore

20/64

From Haskell to Termination Graphs

fromx = Consx (from (Sx)) take Z xs = Nil
takenNil = Nil
take (Sn) (Consx xs) = Consx (taken xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

Termination Graph
no expansion rule applicable to leaves anymore
Goal: Prove H-termination of all terms in termination graph

20/64

From Termination Graphs to DP Problems

Prove H-termination of all terms in termination graph

⇒ generate a dependency pair for every DP path

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

a node is H-terminating if all its children are H-terminating

21/64

From Termination Graphs to DP Problems

Prove H-termination of all terms in termination graph

⇒ generate a dependency pair for every DP path

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

if node is not H-terminating, then a child is not H-terminating

21/64

From Termination Graphs to DP Problems

Prove H-termination of all terms in termination graph

⇒ generate a dependency pair for every DP path

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

not H-terminating node corresponds to
infinite path in graph

21/64

From Termination Graphs to DP Problems

Prove H-termination of all terms in termination graph

⇒ generate a dependency pair for every DP path

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

not H-terminating node corresponds to
Strongly Connected Component (SCC)

21/64

From Termination Graphs to DP Problems

Prove H-termination of all terms for each SCC

⇒ generate a dependency pair for every DP path

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

not H-terminating node corresponds to
Strongly Connected Component (SCC)

21/64

From Termination Graphs to DP Problems

Prove H-termination of all terms for each SCC

⇒ generate a dependency pair for every DP path

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

not H-terminating node corresponds to
Strongly Connected Component (SCC)

21/64

From Termination Graphs to DP Problems

Every infinite path traverses an instantiation edge infinitely often

⇒ generate a dependency pair for every DP path

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

21/64

From Termination Graphs to DP Problems

Every infinite path traverses an instantiation edge infinitely often

⇒ generate a dependency pair for every DP path

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

DP path:

path in SCC from node with incoming instantiation edge
to node with outgoing instantiation edge

21/64

From Termination Graphs to DP Problems

Every infinite path traverses a DP path infinitely often

⇒ generate a dependency pair for every DP path

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

DP path:

path in SCC from node with incoming instantiation edge
to node with outgoing instantiation edge

21/64

From Termination Graphs to DP Problems

Every infinite path traverses a DP path infinitely often

⇒ generate a dependency pair for every DP path

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

Dependency Pairs:

if there is a DP path from s to t marked with µ,
then generate the dependency pair s µ→ t

21/64

From Termination Graphs to DP Problems

Every infinite path traverses a DP path infinitely often
⇒ generate a dependency pair for every DP path

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

Dependency Pairs:

if there is a DP path from s to t marked with µ,
then generate the dependency pair s µ→ t

21/64

From Termination Graphs to DP Problems

Dependency Pair P: take(S(n), from(m))→ take(n, from(S(m)))
Rules R: ∅

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

Dependency Pairs:

if there is a DP path from s to t marked with µ,
then generate the dependency pair s µ→ t

21/64

From Termination Graphs to DP Problems

Dependency Pair P: take(S(n), from(m))→ take(n, from(S(m)))

Rules R: ∅ (rules for terms in instance-edge matcher)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval

Eval

ParSplit

Ins

ParSplit

Dependency Pairs:

if there is a DP path from s to t marked with µ,
then generate the dependency pair s µ→ t

21/64

From Termination Graphs to DP Problems

Dependency Pair P: take(S(n), from(m))→ take(n, from(S(m)))
Rules R: ∅

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

Dependency Pairs:

if there is a DP path from s to t marked with µ,
then generate the dependency pair s µ→ t

21/64

From Termination Graphs to DP Problems

Dependency Pair P: take(S(n), from(m))→ take(n, from(S(m)))
Rules R: ∅

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

one DP per SCC
no rules in R if no defined symbols to evaluate in rhs of DP

21/64

From Termination Graphs to DP Problems

Dependency Pair P: take(S(n), from(m))→ take(n, from(S(m)))
Rules R: ∅ termination easy to prove

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

one DP per SCC
no rules in R if no defined symbols to evaluate in rhs of DP

21/64

From Termination Graphs to DP Problems

fromx=Consx (from (Sx)) take Z xs=Nil
takenNil=Nil
take (Sn) (Consx xs)=Consx (take (p (Sn)) xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

22/64

From Termination Graphs to DP Problems

fromx=Consx (from (Sx)) take Z xs=Nil
takenNil=Nil

p (Sx)=x take (Sn) (Consx xs)=Consx (take (p (Sn)) xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (taken (from (Sm)))

m taken (from (Sm))

n Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplit

22/64

From Termination Graphs to DP Problems

fromx=Consx (from (Sx)) take Z xs=Nil
takenNil=Nil

p (Sx)=x take (Sn) (Consx xs)=Consx (take (p (Sn)) xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (take (p (Sn)) (from (Sm)))

m take (p (Sn)) (from (Sm))

p (Sn)

n

Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplitEval

22/64

From Termination Graphs to DP Problems

fromx=Consx (from (Sx)) take Z xs=Nil
takenNil=Nil

p (Sx)=x take (Sn) (Consx xs)=Consx (take (p (Sn)) xs)

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (take (p (Sn)) (from (Sm)))

m take (p (Sn)) (from (Sm))

p (Sn)

n

Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplitEval

22/64

From Termination Graphs to DP Problems

Dependency Pair P:
take(S(n), from(m))→ take(p(S(n)), from(S(m)))

Rule R: p(S(n)) → n

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (take (p (Sn)) (from (Sm)))

m take (p (Sn)) (from (Sm))

p (Sn)

n

Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplitEval

22/64

From Termination Graphs to DP Problems

Dependency Pair P:
take(S(n), from(m))→ take(p(S(n)), from(S(m)))

Rule R: p(S(n)) → n

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (take (p (Sn)) (from (Sm)))

m take (p (Sn)) (from (Sm))

p (Sn)

n

Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplitEval

22/64

From Termination Graphs to DP Problems

Dependency Pair P:
take(S(n), from(m))→ take(p(S(n)), from(S(m)))

Rule R: p(S(n)) → n

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (take (p (Sn)) (from (Sm)))

m take (p (Sn)) (from (Sm))

p (Sn)

n

Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplitEval

R: rules for terms in
instance-edge matcher

22/64

From Termination Graphs to DP Problems

Dependency Pair P:
take(S(n), from(m))→ take(p(S(n)), from(S(m)))

Rule R: p(S(n)) → n

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (take (p (Sn)) (from (Sm)))

m take (p (Sn)) (from (Sm))

p (Sn)

n

Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplitEval

Rule path

path from
term in instance-edge matcher
over Eval - and Case nodes
to non-Eval and non-Case node

22/64

From Termination Graphs to DP Problems

Dependency Pair P:
take(S(n), from(m))→ take(p(S(n)), from(S(m)))

Rule R: p(S(n)) → n

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (take (p (Sn)) (from (Sm)))

m take (p (Sn)) (from (Sm))

p (Sn)

n

Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplitEval

Rules

if there is a rule path from
s to t marked with µ ,
then generate the rule s µ → t

22/64

From Termination Graphs to DP Problems

Dependency Pair P:
take(S(n), from(m))→ take(p(S(n)), from(S(m)))

Rule R: p(S(n)) → n

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (take (p (Sn)) (from (Sm)))

m take (p (Sn)) (from (Sm))

p (Sn)

n

Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplitEval

Rules

if there is a rule path from
s to t marked with µ ,
then generate the rule s µ → t

22/64

From Termination Graphs to DP Problems

Dependency Pair P:
take(S(n), from(m))→ take(p(S(n)), from(S(m)))

Rule R: p(S(n)) → n termination easy to prove

takeu (fromm)

takeZ (fromm)

Nil

take (Sn) (fromm)

take (Sn) (Consm (from (Sm)))

Consm (take (p (Sn)) (from (Sm)))

m take (p (Sn)) (from (Sm))

p (Sn)

n

Sm

m

[u/Z] [u/(Sn)]

Case

Eval Eval

Eval

ParSplit

Ins

ParSplitEval

Rules

if there is a rule path from
s to t marked with µ ,
then generate the rule s µ → t

22/64

Experiments

Implementation in termination prover AProVE
(uses improved step termination graph → DP problem)

http://aprove.informatik.rwth-aachen.de/

Experiments on Haskell libraries
FiniteMap, List, Monad, Prelude, Queue

300 seconds timeout
AProVE shows H-Termination for 999 out of 1272 functions

23/64

The Tool Chain for Haskell

Termination analysis of Haskell 98 via transformation to TRSs

Start
Term

%%KK
KKK

KKK

Haskell-
Program

// Termination
Graph

// DP Problems // Termination Tool
for TRSs

Language specifics are handled in transformation front-end
⇒ Apply TRS analysis back-end for several programming languages!

Successful evaluation on Haskell 98 standard libraries

Details: [Giesl et al., TOPLAS ’11]

http://aprove.informatik.rwth-aachen.de/eval/Haskell

24/64

Conclusion of Part I

Analyze program termination in 2 steps:
Program → term rewrite system
Term rewrite system → termination proof

Termination analysis for languages other than Haskell:

Logic programming: Prolog
[van Raamsdonk, ICLP ’97; Schneider-Kamp et al, TOCL ’09;
Giesl et al, PPDP ’12]

Object-oriented programming: Java
[Otto et al, RTA ’10] → tomorrow

AProVE web interface and Eclipse plug-in download at:

http://aprove.informatik.rwth-aachen.de/

25/64

Conclusion of Part I

Analyze program termination in 2 steps:
Program → term rewrite system
Term rewrite system → termination proof

Termination analysis for languages other than Haskell:

Logic programming: Prolog
[van Raamsdonk, ICLP ’97; Schneider-Kamp et al, TOCL ’09;
Giesl et al, PPDP ’12]

Object-oriented programming: Java
[Otto et al, RTA ’10] → tomorrow

AProVE web interface and Eclipse plug-in download at:

http://aprove.informatik.rwth-aachen.de/

25/64

Conclusion of Part I

Analyze program termination in 2 steps:
Program → term rewrite system
Term rewrite system → termination proof

Termination analysis for languages other than Haskell:

Logic programming: Prolog
[van Raamsdonk, ICLP ’97; Schneider-Kamp et al, TOCL ’09;
Giesl et al, PPDP ’12]

Object-oriented programming: Java
[Otto et al, RTA ’10] → tomorrow

AProVE web interface and Eclipse plug-in download at:

http://aprove.informatik.rwth-aachen.de/

25/64

Haskell Exercises I

Consider the following Haskell program.

data Nat = Z | S Nat
data List a = Nil | Cons a (List a)

mylength Nil = Z
mylength (Cons x xs) = S (mylength xs)

mysum Nil = Z
mysum (Cons x xs) = plus x (mysum xs)

plus Z y = y
plus (S x) y = S (plus x y)

26/64

Haskell Exercises II

Question 1

Consider the start term mylength x.

(a) Is this start term H-terminating?
(b) Construct a termination graph for this start term.
(c) Extract a DP problem from the termination graph from part (b).
(d) Prove that this DP problem is “terminating”, i.e., that no infinite call

sequences are possible.
(e) Check your solutions with the web interface (or a local installation)

of the termination prover AProVE:
http://aprove.informatik.rwth-aachen.de/
(note that AProVE preprocesses the termination graph before the step
to DP problems so that the output will look slightly differently).

27/64

http://aprove.informatik.rwth-aachen.de/

Haskell Exercises III

Question 2 (slightly harder/more interesting)

Consider the start term mysum x. Proceed with it as in Question 1.
Hint: One can draw instantiation edges also to nodes that are not yet
present in the termination graph.

Question 3

What strengths and limitations do you expect this approach to termination
proving of Haskell programs to have?

28/64

Proving Program Termination via Term Rewriting

1 Overview

2 Termination Analysis of Term Rewriting with Dependency Pairs

3 Haskell: a Pure Functional Language with Lazy Evaluation

4 Java: an Object-Oriented Imperative Language with Side Effects

29/64

Recap: from Haskell to Term Rewriting for Termination

Recipe for proving program termination by reusing TRS termination provers
Decide on suitable symbolic representation of abstract program states
(abstract domain)
→ what data objects can we represent as terms?
Execute program symbolically from its initial states
Use generalization of program states to get closed finite
representation (termination graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program runs in
strongly-connected components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states

Yesterday: Haskell, today: Java

30/64

Recap: from Haskell to Term Rewriting for Termination

Recipe for proving program termination by reusing TRS termination provers
Decide on suitable symbolic representation of abstract program states
(abstract domain)
→ what data objects can we represent as terms?
Execute program symbolically from its initial states
Use generalization of program states to get closed finite
representation (termination graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program runs in
strongly-connected components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states

Yesterday: Haskell, today: Java

30/64

Recap: from Haskell to Term Rewriting for Termination

Recipe for proving program termination by reusing TRS termination provers
Decide on suitable symbolic representation of abstract program states
(abstract domain)
→ what data objects can we represent as terms?
Execute program symbolically from its initial states
Use generalization of program states to get closed finite
representation (termination graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program runs in
strongly-connected components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states

Yesterday: Haskell, today: Java

30/64

Recap: from Haskell to Term Rewriting for Termination

Recipe for proving program termination by reusing TRS termination provers
Decide on suitable symbolic representation of abstract program states
(abstract domain)
→ what data objects can we represent as terms?
Execute program symbolically from its initial states
Use generalization of program states to get closed finite
representation (termination graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program runs in
strongly-connected components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states

Yesterday: Haskell, today: Java

30/64

Recap: from Haskell to Term Rewriting for Termination

Recipe for proving program termination by reusing TRS termination provers
Decide on suitable symbolic representation of abstract program states
(abstract domain)
→ what data objects can we represent as terms?
Execute program symbolically from its initial states
Use generalization of program states to get closed finite
representation (termination graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program runs in
strongly-connected components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states

Yesterday: Haskell, today: Java

30/64

Recap: from Haskell to Term Rewriting for Termination

Recipe for proving program termination by reusing TRS termination provers
Decide on suitable symbolic representation of abstract program states
(abstract domain)
→ what data objects can we represent as terms?
Execute program symbolically from its initial states
Use generalization of program states to get closed finite
representation (termination graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program runs in
strongly-connected components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states

Yesterday: Haskell, today: Java

30/64

Recap: from Haskell to Term Rewriting for Termination

Recipe for proving program termination by reusing TRS termination provers
Decide on suitable symbolic representation of abstract program states
(abstract domain)
→ what data objects can we represent as terms?
Execute program symbolically from its initial states
Use generalization of program states to get closed finite
representation (termination graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program runs in
strongly-connected components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states

Yesterday: Haskell, today: Java

30/64

Beyond Classic TRSs for Programs

Rewrite rules for Haskell programs in standard term rewriting
→ no predefined rules for addition, multiplication, etc.

Drawbacks:
throws away domain knowledge about built-in data types like integers
need to analyze recursive rules for plus, times, . . . over and over
does not benefit from dedicated constraint solvers
(SMT: SAT Modulo Theories) for arithmetic operations

Solution: use constrained term rewriting

31/64

Beyond Classic TRSs for Programs

Rewrite rules for Haskell programs in standard term rewriting
→ no predefined rules for addition, multiplication, etc.

Drawbacks:
throws away domain knowledge about built-in data types like integers
need to analyze recursive rules for plus, times, . . . over and over
does not benefit from dedicated constraint solvers
(SMT: SAT Modulo Theories) for arithmetic operations

Solution: use constrained term rewriting

31/64

Beyond Classic TRSs for Programs

Rewrite rules for Haskell programs in standard term rewriting
→ no predefined rules for addition, multiplication, etc.

Drawbacks:
throws away domain knowledge about built-in data types like integers
need to analyze recursive rules for plus, times, . . . over and over
does not benefit from dedicated constraint solvers
(SMT: SAT Modulo Theories) for arithmetic operations

Solution: use constrained term rewriting

31/64

Beyond Classic TRSs for Programs

Rewrite rules for Haskell programs in standard term rewriting
→ no predefined rules for addition, multiplication, etc.

Drawbacks:
throws away domain knowledge about built-in data types like integers
need to analyze recursive rules for plus, times, . . . over and over
does not benefit from dedicated constraint solvers
(SMT: SAT Modulo Theories) for arithmetic operations

Solution: use constrained term rewriting

31/64

Beyond Classic TRSs for Programs

Rewrite rules for Haskell programs in standard term rewriting
→ no predefined rules for addition, multiplication, etc.

Drawbacks:
throws away domain knowledge about built-in data types like integers
need to analyze recursive rules for plus, times, . . . over and over
does not benefit from dedicated constraint solvers
(SMT: SAT Modulo Theories) for arithmetic operations

Solution: use constrained term rewriting

31/64

Beyond Classic TRSs for Programs

Rewrite rules for Haskell programs in standard term rewriting
→ no predefined rules for addition, multiplication, etc.

Drawbacks:
throws away domain knowledge about built-in data types like integers
need to analyze recursive rules for plus, times, . . . over and over
does not benefit from dedicated constraint solvers
(SMT: SAT Modulo Theories) for arithmetic operations

Solution: use constrained term rewriting

31/64

Constrained Term Rewriting, what’s that?

Term rewriting “with batteries included”

first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

General forms available, e.g., Logically Constrained TRSs
[Kop, Nishida, FroCoS ’13]

For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

32/64

Constrained Term Rewriting, what’s that?

Term rewriting “with batteries included”

first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

General forms available, e.g., Logically Constrained TRSs
[Kop, Nishida, FroCoS ’13]

For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

32/64

Constrained Term Rewriting, what’s that?

Term rewriting “with batteries included”

first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

General forms available, e.g., Logically Constrained TRSs
[Kop, Nishida, FroCoS ’13]

For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

32/64

Constrained Term Rewriting, what’s that?

Term rewriting “with batteries included”

first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

General forms available, e.g., Logically Constrained TRSs
[Kop, Nishida, FroCoS ’13]

For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

32/64

Constrained Term Rewriting, what’s that?

Term rewriting “with batteries included”

first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

General forms available, e.g., Logically Constrained TRSs
[Kop, Nishida, FroCoS ’13]

For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

32/64

Constrained Term Rewriting, what’s that?

Term rewriting “with batteries included”

first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

General forms available, e.g., Logically Constrained TRSs
[Kop, Nishida, FroCoS ’13]

For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

32/64

Constrained Term Rewriting, what’s that?

Term rewriting “with batteries included”

first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

General forms available, e.g., Logically Constrained TRSs
[Kop, Nishida, FroCoS ’13]

For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

32/64

Constrained Rewriting by Example

Consider a variation of the take-from program . . .

Example (Constrained Rewrite System)

`0(n, r) → `1(n, r,Nil)
`1(n, r, xs) → `1(n− 1, r + 1,Cons(r, xs)) [n > 0]
`1(n, r, xs) → `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

→ `1(2, 7,Nil)

→ `1(1, 8,Cons(7,Nil))

→ `1(0, 9,Cons(8,Cons(7,Nil)))

→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

33/64

Constrained Rewriting by Example

Consider a variation of the take-from program . . .

Example (Constrained Rewrite System)

`0(n, r) → `1(n, r,Nil)
`1(n, r, xs) → `1(n− 1, r + 1,Cons(r, xs)) [n > 0]
`1(n, r, xs) → `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

→ `1(2, 7,Nil)

→ `1(1, 8,Cons(7,Nil))

→ `1(0, 9,Cons(8,Cons(7,Nil)))

→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

33/64

Constrained Rewriting by Example

Consider a variation of the take-from program . . .

Example (Constrained Rewrite System)

`0(n, r) → `1(n, r,Nil)
`1(n, r, xs) → `1(n− 1, r + 1,Cons(r, xs)) [n > 0]
`1(n, r, xs) → `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

→ `1(2, 7,Nil)

→ `1(1, 8,Cons(7,Nil))

→ `1(0, 9,Cons(8,Cons(7,Nil)))

→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

33/64

Constrained Rewriting by Example

Consider a variation of the take-from program . . .

Example (Constrained Rewrite System)

`0(n, r) → `1(n, r,Nil)
`1(n, r, xs) → `1(n− 1, r + 1,Cons(r, xs)) [n > 0]
`1(n, r, xs) → `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

→ `1(2, 7,Nil)

→ `1(1, 8,Cons(7,Nil))

→ `1(0, 9,Cons(8,Cons(7,Nil)))

→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

33/64

Constrained Rewriting by Example

Consider a variation of the take-from program . . .

Example (Constrained Rewrite System)

`0(n, r) → `1(n, r,Nil)
`1(n, r, xs) → `1(n− 1, r + 1,Cons(r, xs)) [n > 0]
`1(n, r, xs) → `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

→ `1(2, 7,Nil)

→ `1(1, 8,Cons(7,Nil))

→ `1(0, 9,Cons(8,Cons(7,Nil)))

→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

33/64

Constrained Rewriting by Example

Consider a variation of the take-from program . . .

Example (Constrained Rewrite System)

`0(n, r) → `1(n, r,Nil)
`1(n, r, xs) → `1(n− 1, r + 1,Cons(r, xs)) [n > 0]
`1(n, r, xs) → `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

→ `1(2, 7,Nil)

→ `1(1, 8,Cons(7,Nil))

→ `1(0, 9,Cons(8,Cons(7,Nil)))

→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

33/64

Constrained Rewriting by Example

Consider a variation of the take-from program . . .

Example (Constrained Rewrite System)

`0(n, r) → `1(n, r,Nil)
`1(n, r, xs) → `1(n− 1, r + 1,Cons(r, xs)) [n > 0]
`1(n, r, xs) → `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

→ `1(2, 7,Nil)

→ `1(1, 8,Cons(7,Nil))

→ `1(0, 9,Cons(8,Cons(7,Nil)))

→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.
33/64

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0:

if (x ≥ 0)

`1:

while (x 6= 0)

`2:

x = x − 1;

Does this program terminate?

Example (Equivalent Translation to Constrained Rewriting,
cf. [McCarthy, CACM ’60])

`0(x) → `1(x) [x ≥ 0]
`0(x) → `3(x) [x < 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x = 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

34/64

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0:

if (x ≥ 0)

`1:

while (x 6= 0)

`2:

x = x − 1;

Does this program terminate?

Example (Equivalent Translation to Constrained Rewriting,
cf. [McCarthy, CACM ’60])

`0(x) → `1(x) [x ≥ 0]
`0(x) → `3(x) [x < 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x = 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

34/64

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?

Example (Equivalent Translation to Constrained Rewriting,
cf. [McCarthy, CACM ’60])

`0(x) → `1(x) [x ≥ 0]
`0(x) → `3(x) [x < 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x = 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

34/64

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?

Example (Equivalent Translation to Constrained Rewriting,
cf. [McCarthy, CACM ’60])

`0(x) → `1(x) [x ≥ 0]
`0(x) → `3(x) [x < 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x = 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

34/64

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?

Example (Equivalent Translation to Constrained Rewriting,
cf. [McCarthy, CACM ’60])

`0(x) → `1(x) [x ≥ 0]
`0(x) → `3(x) [x < 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x = 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z

⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

34/64

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?

Example (Equivalent Translation to Constrained Rewriting,
cf. [McCarthy, CACM ’60])

`0(x) → `1(x) [x ≥ 0]
`0(x) → `3(x) [x < 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x = 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

34/64

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?

Example (Equivalent Translation to Constrained Rewriting,
cf. [McCarthy, CACM ’60])

`0(x) → `1(x) [x ≥ 0]
`0(x) → `3(x) [x < 0]
`1(x) → `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) → `1(x− 1) [x ≥ 0]
`1(x) → `3(x) [x = 0 ∧ x ≥ 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

34/64

Java Challenges

Java: object-oriented imperative language

sharing and aliasing (several references to the same object)
side effects
cyclic data objects (e.g., list.next == list)
object-orientation with inheritance
. . .

35/64

Java Example

Does count terminate for all inputs? Why (not)?
(You may assume that num and limit are not references to the same
object.)

36/64

public class MyInt {

// only wrap a primitive int
private int val;

// count "num" up to the value in "limit"
public static void count(MyInt num, MyInt limit) {

if (num == null || limit == null) {
return;

}
// introduce sharing
MyInt copy = num;
while (num.val < limit.val) {

copy.val++;
}

}
}

Approach to Termination Analysis of Java

Tailor two-stage approach from Haskell analysis to Java [Otto et al, RTA ’10]

Back-end: From rewrite system to termination proof
Constrained term rewriting with integers [Giesl et al, JAR ’17]

Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system
Build termination graph that over-approximates all runs of Java
program (abstract interpretation)
Termination graph has invariants for integers and heap object shape
(trees?)
Extract rewrite system from termination graph

Implemented in the tool AProVE (→ web interface)

http://aprove.informatik.rwth-aachen.de/

37/64

http://aprove.informatik.rwth-aachen.de/

Approach to Termination Analysis of Java

Tailor two-stage approach from Haskell analysis to Java [Otto et al, RTA ’10]

Back-end: From rewrite system to termination proof
Constrained term rewriting with integers [Giesl et al, JAR ’17]

Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system
Build termination graph that over-approximates all runs of Java
program (abstract interpretation)
Termination graph has invariants for integers and heap object shape
(trees?)
Extract rewrite system from termination graph

Implemented in the tool AProVE (→ web interface)

http://aprove.informatik.rwth-aachen.de/

37/64

http://aprove.informatik.rwth-aachen.de/

Approach to Termination Analysis of Java

Tailor two-stage approach from Haskell analysis to Java [Otto et al, RTA ’10]

Back-end: From rewrite system to termination proof
Constrained term rewriting with integers [Giesl et al, JAR ’17]

Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system
Build termination graph that over-approximates all runs of Java
program (abstract interpretation)
Termination graph has invariants for integers and heap object shape
(trees?)
Extract rewrite system from termination graph

Implemented in the tool AProVE (→ web interface)

http://aprove.informatik.rwth-aachen.de/

37/64

http://aprove.informatik.rwth-aachen.de/

Approach to Termination Analysis of Java

Tailor two-stage approach from Haskell analysis to Java [Otto et al, RTA ’10]

Back-end: From rewrite system to termination proof
Constrained term rewriting with integers [Giesl et al, JAR ’17]

Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system
Build termination graph that over-approximates all runs of Java
program (abstract interpretation)
Termination graph has invariants for integers and heap object shape
(trees?)
Extract rewrite system from termination graph

Implemented in the tool AProVE (→ web interface)

http://aprove.informatik.rwth-aachen.de/

37/64

http://aprove.informatik.rwth-aachen.de/

Java: Source Code vs Bytecode

[Otto et al, RTA ’10] describe their technique for compiled Java programs:
Java Bytecode

desugared machine code for a (virtual) stack machine,
still has all the (relevant) information from source code
input for Java interpreter and for many program analysis tools
somewhat inconvenient for presentation, though . . .

Here: Java source code

38/64

Java: Source Code vs Bytecode

[Otto et al, RTA ’10] describe their technique for compiled Java programs:
Java Bytecode

desugared machine code for a (virtual) stack machine,
still has all the (relevant) information from source code
input for Java interpreter and for many program analysis tools
somewhat inconvenient for presentation, though . . .

Here: Java source code

38/64

Java: Source Code vs Bytecode

[Otto et al, RTA ’10] describe their technique for compiled Java programs:
Java Bytecode

desugared machine code for a (virtual) stack machine,
still has all the (relevant) information from source code
input for Java interpreter and for many program analysis tools
somewhat inconvenient for presentation, though . . .

Here: Java source code

38/64

00: aload_0
01: ifnull 8
04: aload_1
05: ifnonnull 9
08: return
09: aload_0
10: astore_2
11: aload_0
12: getfield val
15: aload_1
16: getfield val
19: if_icmpge 35
22: aload_2
23: aload_2
24: getfield val
27: iconst_1
28: iadd
29: putfield val
32: goto 11
35: return

Java: Source Code vs Bytecode

[Otto et al, RTA ’10] describe their technique for compiled Java programs:
Java Bytecode

desugared machine code for a (virtual) stack machine,
still has all the (relevant) information from source code
input for Java interpreter and for many program analysis tools
somewhat inconvenient for presentation, though . . .

Here: Java source code

38/64

Ingredients for the Abstract Domain

1 program counter value (line number)
2 values of variables (treating int as Z)
3 over-approximating info on possible variable values

integers: use intervals, e.g. x ∈ [4, 7] or y ∈ [0, ∞)
heap memory with objects, no sharing unless stated otherwise
MyInt(?): maybe null, maybe a MyInt object

Heap predicates:
Two references may be equal: o1=

? o2
Two references may share: o1%$o2
Reference may have cycles: o1 !

03 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(val = i1)
i1 : [4, 80]

39/64

Ingredients for the Abstract Domain

1 program counter value (line number)
2 values of variables (treating int as Z)
3 over-approximating info on possible variable values

integers: use intervals, e.g. x ∈ [4, 7] or y ∈ [0, ∞)
heap memory with objects, no sharing unless stated otherwise
MyInt(?): maybe null, maybe a MyInt object

Heap predicates:
Two references may be equal: o1=

? o2
Two references may share: o1%$o2
Reference may have cycles: o1 !

03 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(val = i1)
i1 : [4, 80]

39/64

Ingredients for the Abstract Domain

1 program counter value (line number)
2 values of variables (treating int as Z)
3 over-approximating info on possible variable values

integers: use intervals, e.g. x ∈ [4, 7] or y ∈ [0, ∞)
heap memory with objects, no sharing unless stated otherwise
MyInt(?): maybe null, maybe a MyInt object

Heap predicates:
Two references may be equal: o1=

? o2
Two references may share: o1%$o2
Reference may have cycles: o1 !

03 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(val = i1)
i1 : [4, 80]

39/64

Building the Termination Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

40/64

public class MyInt {
private int val;
static void count(MyInt num,

MyInt limit) {
1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

Building the Termination Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

3 | num : o1, limit : o2
o1 : null
o2 : MyInt(?)

B

2 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(?)
i1 : (−∞,∞)

C

o1 = null

o1 6= null

X Y
cond

means: refine X with cond , then evaluate to Y; here combined for brevity
(narrowing; Haskell: Case + Eval)

40/64

public class MyInt {
private int val;
static void count(MyInt num,

MyInt limit) {
1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

Building the Termination Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

3 | num : o1, limit : o2
o1 : null
o2 : MyInt(?)

B

2 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(?)
i1 : (−∞,∞)

C

3 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : null
i1 : (−∞,∞)

D

4 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

E

o1 = null

o1 6= null
o2 = null

o2 6= null

X Y
cond

means: refine X with cond , then evaluate to Y; here combined for brevity
(narrowing; Haskell: Case + Eval)

40/64

public class MyInt {
private int val;
static void count(MyInt num,

MyInt limit) {
1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

Building the Termination Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

3 | num : o1, limit : o2
o1 : null
o2 : MyInt(?)

B

2 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(?)
i1 : (−∞,∞)

C

3 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : null
i1 : (−∞,∞)

D

4 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

E

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

o1 = null

o1 6= null
o2 = null

o2 6= null

X Y

means: evaluate X to Y
(Haskell: Eval)

40/64

public class MyInt {
private int val;
static void count(MyInt num,

MyInt limit) {
1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

Building the Termination Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

3 | num : o1, limit : o2
o1 : null
o2 : MyInt(?)

B

2 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(?)
i1 : (−∞,∞)

C

3 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : null
i1 : (−∞,∞)

D

4 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

E

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

7 | num : o1, . . .
. . .

G

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

o1 = null

o1 6= null
o2 = null

o2 6= null

i1 ≥ i2

i1 < i2

40/64

public class MyInt {
private int val;
static void count(MyInt num,

MyInt limit) {
1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

Building the Termination Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

3 | num : o1, limit : o2
o1 : null
o2 : MyInt(?)

B

2 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(?)
i1 : (−∞,∞)

C

3 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : null
i1 : (−∞,∞)

D

4 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

E

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

7 | num : o1, . . .
. . .

G

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

o1 = null

o1 6= null
o2 = null

o2 6= null

i1 ≥ i2

i1 < i2

i3 = i1 + 1

40/64

public class MyInt {
private int val;
static void count(MyInt num,

MyInt limit) {
1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

Building the Termination Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

3 | num : o1, limit : o2
o1 : null
o2 : MyInt(?)

B

2 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(?)
i1 : (−∞,∞)

C

3 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : null
i1 : (−∞,∞)

D

4 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

E

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

7 | num : o1, . . .
. . .

G

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

o1 = null

o1 6= null
o2 = null

o2 6= null

i1 ≥ i2

i1 < i2

i3 = i1 + 1

X Y :

X is instance of Y
(Haskell: Ins)

40/64

public class MyInt {
private int val;
static void count(MyInt num,

MyInt limit) {
1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

From Java to Termination Graphs

Termination Graphs

symbolic over-approximation of all computations
(abstract interpretation)
expand nodes until all leaves correspond to program ends
by suitable generalization steps,
one can always get a finite termination graph
state s1 is instance of state s2
if all concrete states described by s1 are also described by s2

Using Termination Graphs for Termination Proofs

every concrete Java computation corresponds to a computation path
in the termination graph (related: DP paths for Haskell as suffixes of
non-(H-)terminating computations)
termination graph is called terminating
iff it has no infinite computation path

41/64

From Java to Termination Graphs

Termination Graphs

symbolic over-approximation of all computations
(abstract interpretation)
expand nodes until all leaves correspond to program ends
by suitable generalization steps,
one can always get a finite termination graph
state s1 is instance of state s2
if all concrete states described by s1 are also described by s2

Using Termination Graphs for Termination Proofs

every concrete Java computation corresponds to a computation path
in the termination graph (related: DP paths for Haskell as suffixes of
non-(H-)terminating computations)
termination graph is called terminating
iff it has no infinite computation path

41/64

Transformation of Objects to Terms

16 | num : o1, limit : o2, x : o3, y : o4, z : i1
o1 : MyInt(?)
o2 : MyInt(val = i2)
o3 : null
o4 : MyList(?)
o4 !
i1 : [7,∞)
i2 : (−∞,∞)

Q

For every class C with n fields, introduce an n-ary function symbol C
term for o1: o1
term for o2: MyInt(i2)
term for o3: null
term for o4: x (new variable)
term for i1: i1 with side constraint i1 ≥ 7
(invariant i1 ≥ 7 to be added to constrained rewrite rules for state Q)

42/64

Transformation of Objects to Terms

public class A {
int a;

}

public class B extends A {
int b;

}

...
A x = new A();
x.a = 1;

B y = new B();
y.a = 2;
y.b = 3;

for every class C with n fields,
introduce (n+ 1)-ary function symbol C
first argument: part of the object
corresponding to subclasses of C
term for x:

jlO(

A(eoc, 1)

)

→ eoc for end of class
term for y:

jlO(

A(B(eoc, 3), 2)

)

every class extends Object!
(→ jlO ≡ java.lang.Object)

43/64

Transformation of Objects to Terms

public class A {
int a;

}

public class B extends A {
int b;

}

...
A x = new A();
x.a = 1;

B y = new B();
y.a = 2;
y.b = 3;

for every class C with n fields,
introduce (n+ 1)-ary function symbol C
first argument: part of the object
corresponding to subclasses of C
term for x:

jlO(

A(eoc, 1)

)

→ eoc for end of class
term for y:

jlO(

A(B(eoc, 3), 2)

)

every class extends Object!
(→ jlO ≡ java.lang.Object)

43/64

Transformation of Objects to Terms

public class A {
int a;

}

public class B extends A {
int b;

}

...
A x = new A();
x.a = 1;

B y = new B();
y.a = 2;
y.b = 3;

for every class C with n fields,
introduce (n+ 1)-ary function symbol C
first argument: part of the object
corresponding to subclasses of C
term for x: jlO(A(eoc, 1))
→ eoc for end of class
term for y: jlO(A(B(eoc, 3), 2))
every class extends Object!
(→ jlO ≡ java.lang.Object)

43/64

From the Termination Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

→

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

[i1 < i2]

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

→

State I: `F(jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)))

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)
44/64

From the Termination Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

→

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

[i1 < i2]

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

→

State I: `F(jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)))

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)
44/64

From the Termination Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))
→

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2))) [i1 < i2]

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

→

State I: `F(jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)))

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)
44/64

From the Termination Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))
→

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2))) [i1 < i2]

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

→

State I: `F(jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)))

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)
44/64

From the Termination Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))
→

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2))) [i1 < i2]

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))
→

State I: `F(jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)))

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)
44/64

From the Termination Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))
→

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2))) [i1 < i2]

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))
→

State I: `F(jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)))

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)
44/64

Extensions

modular termination proofs and recursion
[Brockschmidt et al, RTA ’11]

proving reachability and non-termination (uses only termination
graph) [Brockschmidt et al, FoVeOOS ’11]

proving termination with cyclic data objects (preprocessing in
termination graph) [Brockschmidt et al, CAV ’12]

proving upper bounds for time complexity (abstracts terms to
numbers) [Frohn and Giesl, iFM ’17]

45/64

Extensions

modular termination proofs and recursion
[Brockschmidt et al, RTA ’11]

proving reachability and non-termination (uses only termination
graph) [Brockschmidt et al, FoVeOOS ’11]

proving termination with cyclic data objects (preprocessing in
termination graph) [Brockschmidt et al, CAV ’12]

proving upper bounds for time complexity (abstracts terms to
numbers) [Frohn and Giesl, iFM ’17]

45/64

Extensions

modular termination proofs and recursion
[Brockschmidt et al, RTA ’11]

proving reachability and non-termination (uses only termination
graph) [Brockschmidt et al, FoVeOOS ’11]

proving termination with cyclic data objects (preprocessing in
termination graph) [Brockschmidt et al, CAV ’12]

proving upper bounds for time complexity (abstracts terms to
numbers) [Frohn and Giesl, iFM ’17]

45/64

Extensions

modular termination proofs and recursion
[Brockschmidt et al, RTA ’11]

proving reachability and non-termination (uses only termination
graph) [Brockschmidt et al, FoVeOOS ’11]

proving termination with cyclic data objects (preprocessing in
termination graph) [Brockschmidt et al, CAV ’12]

proving upper bounds for time complexity (abstracts terms to
numbers) [Frohn and Giesl, iFM ’17]

45/64

Conclusion Part II

Java:
Successful empirical evaluation of Java approach on Termination
Problems Database, including Java classes (e.g., LinkedList)
Approach also successful at Termination Competition (other tools like
COSTA, Julia abstract data structures to numbers instead of terms)

Overall:
Common theme for program analysis by rewriting:

handle language specifics in front-end
transitions between program states become rewrite rules
for TRS termination back-end

Haskell: single term as abstract domain to represent program state
Java: more complex abstract domain, use constrained rewriting

46/64

Conclusion Part II

Java:
Successful empirical evaluation of Java approach on Termination
Problems Database, including Java classes (e.g., LinkedList)
Approach also successful at Termination Competition (other tools like
COSTA, Julia abstract data structures to numbers instead of terms)

Overall:
Common theme for program analysis by rewriting:

handle language specifics in front-end
transitions between program states become rewrite rules
for TRS termination back-end

Haskell: single term as abstract domain to represent program state
Java: more complex abstract domain, use constrained rewriting

46/64

Java Exercises I

Question 4

Recall the imperative program fragment on slide 34 (the while loop
counting down).

In the lecture we added the invariant x ≥ 0 to the constrained rewrite
system. Construct a termination graph for the program that also finds this
invariant and extract a constrained rewrite system with the invariant from
this termination graph.

47/64

Java Exercises II

Question 5

public class List {
private List next;

public static int length(List xs) {
int res = 0; // 1
while (xs != null) { // 2

xs = xs.next; // 3
res++; // 4

}
return res; // 5

}
}

Construct a termination graph for length, then extract the corresponding
constrained rewrite system for the SCCs in the graph.
Can you prove termination of the resulting constrained rewrite system?

48/64

References I

T. Arts and J. Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236(1-2):133–178, 2000.

M. Brockschmidt, C. Otto, and J. Giesl. Modular termination proofs of
recursive Java Bytecode programs by term rewriting. In RTA ’11,
pages 155–170, 2011.

M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated
termination proofs for Java programs with cyclic data. In CAV ’12,
pages 105–122, 2012a.

M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated
detection of non-termination and NullPointerExceptions for Java
Bytecode. In FoVeOOS ’11, pages 123–141, 2012b.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In POPL ’77, pages 238–252, 1977.

49/64

References II

S. Falke and D. Kapur. A term rewriting approach to the automated
termination analysis of imperative programs. In CADE ’09, pages
277–293, 2009.

F. Frohn and J. Giesl. Complexity analysis for Java with AProVE. In
iFM ’17, 2017. To appear.

C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke.
Proving termination of integer term rewriting. In RTA ’09, pages
32–47, 2009.

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing
and improving dependency pairs. Journal of Automated Reasoning, 37
(3):155–203, 2006.

50/64

References III

J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and
R. Thiemann. Automated termination proofs for Haskell by term
rewriting. ACM Transactions on Programming Languages and
Systems, 33(2):1–39, 2011. See also
http://aprove.informatik.rwth-aachen.de/eval/Haskell/.

J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs.
Symbolic evaluation graphs and term rewriting: A general methodology
for analyzing logic programs. In PPDP ’12, pages 1–12, 2012.

J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn,
C. Fuhs, J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp,
T. Ströder, S. Swiderski, and R. Thiemann. Analyzing program
termination and complexity automatically with AProVE. Journal of
Automated Reasoning, 58(1):3–31, 2017.

51/64

http://aprove.informatik.rwth-aachen.de/eval/Haskell/

References IV

C. Kop and N. Nishida. Term rewriting with logical constraints. In
FroCoS ’13, pages 343–358, 2013.

D. S. Lankford. Canonical algebraic simplification in computational
logic. Technical Report ATP-25, University of Texas, 1975.

C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change
principle for program termination. In POPL ’01, pages 81–92, 2001.

J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part I. Communications of the ACM, 3(4):
184–195, 1960.

C. Otto, M. Brockschmidt, C. v. Essen, and J. Giesl. Automated
termination analysis of Java Bytecode by term rewriting. In RTA ’10,
pages 259–276, 2010.

52/64

References V

P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann.
Automated termination proofs for logic programs by term rewriting.
ACM Transactions on Computational Logic, 11(1):1–52, 2009.

R. Thiemann and J. Giesl. The size-change principle and dependency
pairs for termination of term rewriting. Applicable Algebra in
Engineering, Communication and Computing, 16(4):229–270, 2005.

F. van Raamsdonk. Translating logic programs into conditional
rewriting systems. In ICLP ’97, pages 168–182, 1997.

53/64

Proving Program Termination via Term Rewriting

5 Solutions for the Exercises

54/64

Solution for Question 1 (page 1)

(a) Yes. Intuition: The recursive call to mylength is on a list that is
shorter than the original (H-terminating!) list. Thus, the end of the
list will eventually be reached, and the recursion ends in its base case.

(b)
mylength xCase

mylength NilEval

ZParSplit

mylength (Cons y ys) Eval

S (mylength ys) ParSplit

mylength ys Ins

ys

[x/Nil] [x/(Cons y ys)]

(c) P : mylength(Cons(y, ys))→ mylength(ys)
R : ∅

55/64

Solution for Question 1 (page 2)

(d) We can prove termination via a linear polynomial interpretation [·]
of the function symbols to N, such as:

[mylength](x1) = x1 . [Cons](x1, x2) = x1 + x2 + 1

Alternatively, we could also use the embedding order or any path order.
(e) AProVE uses an adaption of the size-change termination principle

[Lee, Jones, Ben-Amram, POPL ’01] to term rewriting and dependency
pairs [Thiemann, Giesl, AAECC ’05] for the termination proof:

http://www.dcs.bbk.ac.uk/~carsten/isr2017/Ex1.html

Note that AProVE uses a slightly improved version of the step from
termination graphs to DP problems. This can lead to simpler outputs
than our translation from the lecture, in particular if Haskell terms
with higher-order symbols are involved.

Further details: [Giesl et al, TOPLAS ’11]

56/64

http://www.dcs.bbk.ac.uk/~carsten/isr2017/Ex1.html

Solution for Question 2 (page 1)

(a) Yes. The reason is that both mysum and plus are terminating since
their recursive calls are on arguments that get smaller and smaller.

57/64

Solution for Question 2 (page 2)

(b) mysum xCase

mysum NilEval

ZParSplit

mysum (Cons y ys) Eval

plus y (mysum ys) Ins

plus y vCase
y mysum ys Ins

ysplus Z vEval

ZParSplit

plus (S u) v Eval

S (plus u v) ParSplit

plus u v Ins

u v

[x/Nil] [x/(Cons y ys)]

[y/Z] [y/(S u)]

58/64

Solution for Question 2 (page 3)

(c) P : mysum(Cons(y, ys))→ mysum(ys)
P : plus(S(u), v)→ plus(u, v)
R : ∅

(d) We can prove termination via a linear polynomial interpretation [·]
of the function symbols to N, such as:

[mysum](x1) = x1 . [Cons](x1, x2) = x1 + x2 + 1
[plus](x1, x2) = x1 . [S](x1) = x1 + 1

Alternatively, we could also use the embedding order or any path
order. (In general, more powerful techniques can be required for a
successful termination proof of a Haskell program. However, the
examples that we have considered in the exercises terminate for
relatively straightforward reasons.)

(e) AProVE again uses the size-change termination principle for both DPs
in P to prove termination:

http://www.dcs.bbk.ac.uk/~carsten/isr2017/Ex2.html
59/64

http://www.dcs.bbk.ac.uk/~carsten/isr2017/Ex2.html

Solution for Question 3

Some strengths that one might expect (non-exhaustive list):
support of user-defined data structures by representation as terms
as termination tools for TRSs improve over time thanks to on-going
development, so does this overall approach

Some weaknesses that one might expect (non-exhaustive list):
support of built-in data structures (e.g., Integer) and their
operations (e.g., +, *, . . .) by terms over a finite signature and
recursive rewrite rules on them is cumbersome; does not benefit from
specialized program analysis techniques for built-in data structures,
e.g., invariant synthesis (but: could improve using constrained
rewriting with built-in data structures as translation target)
termination back-end must prove termination of all terms; start term
information is “lost in translation” (but: could include the path from
initial node to SCCs in translated system and prove termination from
only the start terms for the initial node in the resulting problem; would
need TRS termination tools that benefit from this information)

60/64

Solution for Question 4 (page 1)

We get the following termination graph for the program:

0 | x : i1
i1 : (−∞,∞)

A

1 | x : i1
i1 : [0,∞)

B

3 | x : i1
i1 : (−∞,−1]

C

2 | x : i1
i1 : [1,∞)

D

3 | x : i1
i1 : [0, 0]

E

1 | x : i2
i2 : [0,∞)

F

i1 ≥ 0 i1 < 0

i1 6= 0 i1 = 0

i2 = i1 − 1

61/64

Solution for Question 4 (page 2)

If we translate the whole termination graph, we get the following
constrained rewrite rules:

`A(i1) → `B(i1) [i1 ≥ 0]
`A(i1) → `C(i1) [i1 < 0]
`B(i1) → `D(i1) [i1 6= 0 ∧ i1 ≥ 0]
`D(i1) → `B(i1 − 1) [i1 ≥ 1]
`B(i1) → `E(i1) [i1 = 0]

Apart from the different names for function symbols and variables, we get
essentially the same result as on slide 34, with two differences:

Instead of `3, we now have the two different end-of-program symbols
`C and `E.
The second-to-last rule has i1 ≥ 1 as its condition, which is stronger
than i1 ≥ 0 (i.e., i1 ≥ 1 implies i1 ≥ 0).

62/64

Solution for Question 5 (page 1)

We get the following termination graph for the program:

1 | xs : o1
o1 : List(?)

A
2 | xs : o1, res : i1
o1 : List(?)
i1 : (−∞,∞)

B
3 | xs : o1, res : i1
o1 : List(next = o2)
o2 : List(?)
i1 : (−∞,∞)

C

5 | xs : o1, res : i1
o1 : null
i1 : (−∞,∞)

D 4 | xs : o2, res : i1
o2 : List(?)
i1 : (−∞,∞)

E

2 | xs : o2, res : i2
o2 : List(?)
i2 : (−∞,∞)

F

o1 = null

o1 6= null o1 = List(next = o2)

i2 = i1 + 1

63/64

Solution for Question 5 (page 2)

The SCC of the graph gives rise to the following constrained rewrite rules:

`B(jlO(List(eoc, o2)), i1) → `C(jlO(List(eoc, o2)), i1)
`C(jlO(List(eoc, o2)), i1) → `E(o2, i1)

`E(o2, i1) → `B(o2, i1 + 1)

The dependency pairs for these rules are identical to the rules (except that
we may rename the defined function symbols). The following polynomial
interpretation [·] to N lets us conclude the termination proof:

[`B](o, i) = o+ 1 . [`C](o, i) = o
[`E](o, i) = o+ 2 [List](c, o) = o+ 3
[jlO](c) = c [eoc] = 0

In practice, tools like AProVE will first apply techniques to simplify and
combine the obtained rewrite rules. Here we may obtain this single rule:

`(jlO(List(eoc, o2)), i1) → `(o2, i1 + 1)

Details: [Giesl et al, JAR ’17]
64/64

	Overview
	Termination Analysis of Term Rewriting with Dependency Pairs
	Haskell: a Pure Functional Language with Lazy Evaluation
	Java: an Object-Oriented Imperative Language with Side Effects
	Appendix
	Solutions for the Exercises

