WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: BIN(z0,0()) -> c() BIN(0(),s(z0)) -> c1() BIN(s(z0),s(z1)) -> c2(BIN(z0,s(z1))) BIN(s(z0),s(z1)) -> c3(BIN(z0,z1)) - Weak TRS: bin(z0,0()) -> s(0()) bin(0(),s(z0)) -> 0() bin(s(z0),s(z1)) -> +(bin(z0,s(z1)),bin(z0,z1)) - Signature: {BIN/2,bin/2} / {+/2,0/0,c/0,c1/0,c2/1,c3/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {BIN,bin} and constructors {+,0,c,c1,c2,c3,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: BIN(z0,0()) -> c() BIN(0(),s(z0)) -> c1() BIN(s(z0),s(z1)) -> c2(BIN(z0,s(z1))) BIN(s(z0),s(z1)) -> c3(BIN(z0,z1)) - Weak TRS: bin(z0,0()) -> s(0()) bin(0(),s(z0)) -> 0() bin(s(z0),s(z1)) -> +(bin(z0,s(z1)),bin(z0,z1)) - Signature: {BIN/2,bin/2} / {+/2,0/0,c/0,c1/0,c2/1,c3/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {BIN,bin} and constructors {+,0,c,c1,c2,c3,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: BIN(z0,0()) -> c() BIN(0(),s(z0)) -> c1() BIN(s(z0),s(z1)) -> c2(BIN(z0,s(z1))) BIN(s(z0),s(z1)) -> c3(BIN(z0,z1)) - Weak TRS: bin(z0,0()) -> s(0()) bin(0(),s(z0)) -> 0() bin(s(z0),s(z1)) -> +(bin(z0,s(z1)),bin(z0,z1)) - Signature: {BIN/2,bin/2} / {+/2,0/0,c/0,c1/0,c2/1,c3/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {BIN,bin} and constructors {+,0,c,c1,c2,c3,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: BIN(x,s(y)){x -> s(x)} = BIN(s(x),s(y)) ->^+ c2(BIN(x,s(y))) = C[BIN(x,s(y)) = BIN(x,s(y)){}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: BIN(z0,0()) -> c() BIN(0(),s(z0)) -> c1() BIN(s(z0),s(z1)) -> c2(BIN(z0,s(z1))) BIN(s(z0),s(z1)) -> c3(BIN(z0,z1)) - Weak TRS: bin(z0,0()) -> s(0()) bin(0(),s(z0)) -> 0() bin(s(z0),s(z1)) -> +(bin(z0,s(z1)),bin(z0,z1)) - Signature: {BIN/2,bin/2} / {+/2,0/0,c/0,c1/0,c2/1,c3/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {BIN,bin} and constructors {+,0,c,c1,c2,c3,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs BIN#(z0,0()) -> c_1() BIN#(0(),s(z0)) -> c_2() BIN#(s(z0),s(z1)) -> c_3(BIN#(z0,s(z1))) BIN#(s(z0),s(z1)) -> c_4(BIN#(z0,z1)) Weak DPs bin#(z0,0()) -> c_5() bin#(0(),s(z0)) -> c_6() bin#(s(z0),s(z1)) -> c_7(bin#(z0,s(z1)),bin#(z0,z1)) and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: BIN#(z0,0()) -> c_1() BIN#(0(),s(z0)) -> c_2() BIN#(s(z0),s(z1)) -> c_3(BIN#(z0,s(z1))) BIN#(s(z0),s(z1)) -> c_4(BIN#(z0,z1)) - Weak DPs: bin#(z0,0()) -> c_5() bin#(0(),s(z0)) -> c_6() bin#(s(z0),s(z1)) -> c_7(bin#(z0,s(z1)),bin#(z0,z1)) - Weak TRS: BIN(z0,0()) -> c() BIN(0(),s(z0)) -> c1() BIN(s(z0),s(z1)) -> c2(BIN(z0,s(z1))) BIN(s(z0),s(z1)) -> c3(BIN(z0,z1)) bin(z0,0()) -> s(0()) bin(0(),s(z0)) -> 0() bin(s(z0),s(z1)) -> +(bin(z0,s(z1)),bin(z0,z1)) - Signature: {BIN/2,bin/2,BIN#/2,bin#/2} / {+/2,0/0,c/0,c1/0,c2/1,c3/1,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {BIN#,bin#} and constructors {+,0,c,c1,c2,c3,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2} by application of Pre({1,2}) = {3,4}. Here rules are labelled as follows: 1: BIN#(z0,0()) -> c_1() 2: BIN#(0(),s(z0)) -> c_2() 3: BIN#(s(z0),s(z1)) -> c_3(BIN#(z0,s(z1))) 4: BIN#(s(z0),s(z1)) -> c_4(BIN#(z0,z1)) 5: bin#(z0,0()) -> c_5() 6: bin#(0(),s(z0)) -> c_6() 7: bin#(s(z0),s(z1)) -> c_7(bin#(z0,s(z1)),bin#(z0,z1)) ** Step 1.b:3: RemoveWeakSuffixes. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: BIN#(s(z0),s(z1)) -> c_3(BIN#(z0,s(z1))) BIN#(s(z0),s(z1)) -> c_4(BIN#(z0,z1)) - Weak DPs: BIN#(z0,0()) -> c_1() BIN#(0(),s(z0)) -> c_2() bin#(z0,0()) -> c_5() bin#(0(),s(z0)) -> c_6() bin#(s(z0),s(z1)) -> c_7(bin#(z0,s(z1)),bin#(z0,z1)) - Weak TRS: BIN(z0,0()) -> c() BIN(0(),s(z0)) -> c1() BIN(s(z0),s(z1)) -> c2(BIN(z0,s(z1))) BIN(s(z0),s(z1)) -> c3(BIN(z0,z1)) bin(z0,0()) -> s(0()) bin(0(),s(z0)) -> 0() bin(s(z0),s(z1)) -> +(bin(z0,s(z1)),bin(z0,z1)) - Signature: {BIN/2,bin/2,BIN#/2,bin#/2} / {+/2,0/0,c/0,c1/0,c2/1,c3/1,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {BIN#,bin#} and constructors {+,0,c,c1,c2,c3,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:BIN#(s(z0),s(z1)) -> c_3(BIN#(z0,s(z1))) -->_1 BIN#(s(z0),s(z1)) -> c_4(BIN#(z0,z1)):2 -->_1 BIN#(0(),s(z0)) -> c_2():4 -->_1 BIN#(s(z0),s(z1)) -> c_3(BIN#(z0,s(z1))):1 2:S:BIN#(s(z0),s(z1)) -> c_4(BIN#(z0,z1)) -->_1 BIN#(0(),s(z0)) -> c_2():4 -->_1 BIN#(z0,0()) -> c_1():3 -->_1 BIN#(s(z0),s(z1)) -> c_4(BIN#(z0,z1)):2 -->_1 BIN#(s(z0),s(z1)) -> c_3(BIN#(z0,s(z1))):1 3:W:BIN#(z0,0()) -> c_1() 4:W:BIN#(0(),s(z0)) -> c_2() 5:W:bin#(z0,0()) -> c_5() 6:W:bin#(0(),s(z0)) -> c_6() 7:W:bin#(s(z0),s(z1)) -> c_7(bin#(z0,s(z1)),bin#(z0,z1)) -->_2 bin#(s(z0),s(z1)) -> c_7(bin#(z0,s(z1)),bin#(z0,z1)):7 -->_1 bin#(s(z0),s(z1)) -> c_7(bin#(z0,s(z1)),bin#(z0,z1)):7 -->_2 bin#(0(),s(z0)) -> c_6():6 -->_1 bin#(0(),s(z0)) -> c_6():6 -->_2 bin#(z0,0()) -> c_5():5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: bin#(s(z0),s(z1)) -> c_7(bin#(z0,s(z1)),bin#(z0,z1)) 6: bin#(0(),s(z0)) -> c_6() 5: bin#(z0,0()) -> c_5() 3: BIN#(z0,0()) -> c_1() 4: BIN#(0(),s(z0)) -> c_2() ** Step 1.b:4: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: BIN#(s(z0),s(z1)) -> c_3(BIN#(z0,s(z1))) BIN#(s(z0),s(z1)) -> c_4(BIN#(z0,z1)) - Weak TRS: BIN(z0,0()) -> c() BIN(0(),s(z0)) -> c1() BIN(s(z0),s(z1)) -> c2(BIN(z0,s(z1))) BIN(s(z0),s(z1)) -> c3(BIN(z0,z1)) bin(z0,0()) -> s(0()) bin(0(),s(z0)) -> 0() bin(s(z0),s(z1)) -> +(bin(z0,s(z1)),bin(z0,z1)) - Signature: {BIN/2,bin/2,BIN#/2,bin#/2} / {+/2,0/0,c/0,c1/0,c2/1,c3/1,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {BIN#,bin#} and constructors {+,0,c,c1,c2,c3,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: BIN#(s(z0),s(z1)) -> c_3(BIN#(z0,s(z1))) BIN#(s(z0),s(z1)) -> c_4(BIN#(z0,z1)) ** Step 1.b:5: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: BIN#(s(z0),s(z1)) -> c_3(BIN#(z0,s(z1))) BIN#(s(z0),s(z1)) -> c_4(BIN#(z0,z1)) - Signature: {BIN/2,bin/2,BIN#/2,bin#/2} / {+/2,0/0,c/0,c1/0,c2/1,c3/1,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {BIN#,bin#} and constructors {+,0,c,c1,c2,c3,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {1} Following symbols are considered usable: {BIN#,bin#} TcT has computed the following interpretation: p(+) = [2] p(0) = [1] p(BIN) = [2] x2 + [0] p(bin) = [2] x1 + [2] p(c) = [0] p(c1) = [1] p(c2) = [2] p(c3) = [1] x1 + [2] p(s) = [1] x1 + [1] p(BIN#) = [2] x2 + [0] p(bin#) = [2] p(c_1) = [1] p(c_2) = [1] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] p(c_6) = [0] p(c_7) = [1] x1 + [1] Following rules are strictly oriented: BIN#(s(z0),s(z1)) = [2] z1 + [2] > [2] z1 + [0] = c_4(BIN#(z0,z1)) Following rules are (at-least) weakly oriented: BIN#(s(z0),s(z1)) = [2] z1 + [2] >= [2] z1 + [2] = c_3(BIN#(z0,s(z1))) ** Step 1.b:6: WeightGap. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: BIN#(s(z0),s(z1)) -> c_3(BIN#(z0,s(z1))) - Weak DPs: BIN#(s(z0),s(z1)) -> c_4(BIN#(z0,z1)) - Signature: {BIN/2,bin/2,BIN#/2,bin#/2} / {+/2,0/0,c/0,c1/0,c2/1,c3/1,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {BIN#,bin#} and constructors {+,0,c,c1,c2,c3,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(+) = [1] x1 + [1] x2 + [0] p(0) = [0] p(BIN) = [0] p(bin) = [0] p(c) = [0] p(c1) = [0] p(c2) = [1] x1 + [0] p(c3) = [1] x1 + [1] p(s) = [1] x1 + [1] p(BIN#) = [1] x1 + [0] p(bin#) = [1] x1 + [4] x2 + [1] p(c_1) = [4] p(c_2) = [1] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [1] p(c_5) = [1] p(c_6) = [0] p(c_7) = [1] x1 + [1] x2 + [1] Following rules are strictly oriented: BIN#(s(z0),s(z1)) = [1] z0 + [1] > [1] z0 + [0] = c_3(BIN#(z0,s(z1))) Following rules are (at-least) weakly oriented: BIN#(s(z0),s(z1)) = [1] z0 + [1] >= [1] z0 + [1] = c_4(BIN#(z0,z1)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:7: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: BIN#(s(z0),s(z1)) -> c_3(BIN#(z0,s(z1))) BIN#(s(z0),s(z1)) -> c_4(BIN#(z0,z1)) - Signature: {BIN/2,bin/2,BIN#/2,bin#/2} / {+/2,0/0,c/0,c1/0,c2/1,c3/1,s/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {BIN#,bin#} and constructors {+,0,c,c1,c2,c3,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))