WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: D'(*(z0,z1)) -> c4(D'(z0)) D'(*(z0,z1)) -> c5(D'(z1)) D'(+(z0,z1)) -> c2(D'(z0)) D'(+(z0,z1)) -> c3(D'(z1)) D'(-(z0,z1)) -> c6(D'(z0)) D'(-(z0,z1)) -> c7(D'(z1)) D'(constant()) -> c1() D'(t()) -> c() - Weak TRS: D(*(z0,z1)) -> +(*(z1,D(z0)),*(z0,D(z1))) D(+(z0,z1)) -> +(D(z0),D(z1)) D(-(z0,z1)) -> -(D(z0),D(z1)) D(constant()) -> 0() D(t()) -> 1() - Signature: {D/1,D'/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0} - Obligation: innermost runtime complexity wrt. defined symbols {D,D'} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6,c7 ,constant,t} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: D'(*(z0,z1)) -> c4(D'(z0)) D'(*(z0,z1)) -> c5(D'(z1)) D'(+(z0,z1)) -> c2(D'(z0)) D'(+(z0,z1)) -> c3(D'(z1)) D'(-(z0,z1)) -> c6(D'(z0)) D'(-(z0,z1)) -> c7(D'(z1)) D'(constant()) -> c1() D'(t()) -> c() - Weak TRS: D(*(z0,z1)) -> +(*(z1,D(z0)),*(z0,D(z1))) D(+(z0,z1)) -> +(D(z0),D(z1)) D(-(z0,z1)) -> -(D(z0),D(z1)) D(constant()) -> 0() D(t()) -> 1() - Signature: {D/1,D'/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0} - Obligation: innermost runtime complexity wrt. defined symbols {D,D'} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6,c7 ,constant,t} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: D'(*(z0,z1)) -> c4(D'(z0)) D'(*(z0,z1)) -> c5(D'(z1)) D'(+(z0,z1)) -> c2(D'(z0)) D'(+(z0,z1)) -> c3(D'(z1)) D'(-(z0,z1)) -> c6(D'(z0)) D'(-(z0,z1)) -> c7(D'(z1)) D'(constant()) -> c1() D'(t()) -> c() - Weak TRS: D(*(z0,z1)) -> +(*(z1,D(z0)),*(z0,D(z1))) D(+(z0,z1)) -> +(D(z0),D(z1)) D(-(z0,z1)) -> -(D(z0),D(z1)) D(constant()) -> 0() D(t()) -> 1() - Signature: {D/1,D'/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0} - Obligation: innermost runtime complexity wrt. defined symbols {D,D'} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6,c7 ,constant,t} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: D'(x){x -> *(x,y)} = D'(*(x,y)) ->^+ c4(D'(x)) = C[D'(x) = D'(x){}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: D'(*(z0,z1)) -> c4(D'(z0)) D'(*(z0,z1)) -> c5(D'(z1)) D'(+(z0,z1)) -> c2(D'(z0)) D'(+(z0,z1)) -> c3(D'(z1)) D'(-(z0,z1)) -> c6(D'(z0)) D'(-(z0,z1)) -> c7(D'(z1)) D'(constant()) -> c1() D'(t()) -> c() - Weak TRS: D(*(z0,z1)) -> +(*(z1,D(z0)),*(z0,D(z1))) D(+(z0,z1)) -> +(D(z0),D(z1)) D(-(z0,z1)) -> -(D(z0),D(z1)) D(constant()) -> 0() D(t()) -> 1() - Signature: {D/1,D'/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0} - Obligation: innermost runtime complexity wrt. defined symbols {D,D'} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6,c7 ,constant,t} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs D'#(*(z0,z1)) -> c_1(D'#(z0)) D'#(*(z0,z1)) -> c_2(D'#(z1)) D'#(+(z0,z1)) -> c_3(D'#(z0)) D'#(+(z0,z1)) -> c_4(D'#(z1)) D'#(-(z0,z1)) -> c_5(D'#(z0)) D'#(-(z0,z1)) -> c_6(D'#(z1)) D'#(constant()) -> c_7() D'#(t()) -> c_8() Weak DPs D#(*(z0,z1)) -> c_9(D#(z0),D#(z1)) D#(+(z0,z1)) -> c_10(D#(z0),D#(z1)) D#(-(z0,z1)) -> c_11(D#(z0),D#(z1)) D#(constant()) -> c_12() D#(t()) -> c_13() and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D'#(*(z0,z1)) -> c_1(D'#(z0)) D'#(*(z0,z1)) -> c_2(D'#(z1)) D'#(+(z0,z1)) -> c_3(D'#(z0)) D'#(+(z0,z1)) -> c_4(D'#(z1)) D'#(-(z0,z1)) -> c_5(D'#(z0)) D'#(-(z0,z1)) -> c_6(D'#(z1)) D'#(constant()) -> c_7() D'#(t()) -> c_8() - Weak DPs: D#(*(z0,z1)) -> c_9(D#(z0),D#(z1)) D#(+(z0,z1)) -> c_10(D#(z0),D#(z1)) D#(-(z0,z1)) -> c_11(D#(z0),D#(z1)) D#(constant()) -> c_12() D#(t()) -> c_13() - Weak TRS: D(*(z0,z1)) -> +(*(z1,D(z0)),*(z0,D(z1))) D(+(z0,z1)) -> +(D(z0),D(z1)) D(-(z0,z1)) -> -(D(z0),D(z1)) D(constant()) -> 0() D(t()) -> 1() D'(*(z0,z1)) -> c4(D'(z0)) D'(*(z0,z1)) -> c5(D'(z1)) D'(+(z0,z1)) -> c2(D'(z0)) D'(+(z0,z1)) -> c3(D'(z1)) D'(-(z0,z1)) -> c6(D'(z0)) D'(-(z0,z1)) -> c7(D'(z1)) D'(constant()) -> c1() D'(t()) -> c() - Signature: {D/1,D'/1,D#/1,D'#/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0,c_1/1 ,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/2,c_10/2,c_11/2,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#,D'#} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6 ,c7,constant,t} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {7,8} by application of Pre({7,8}) = {1,2,3,4,5,6}. Here rules are labelled as follows: 1: D'#(*(z0,z1)) -> c_1(D'#(z0)) 2: D'#(*(z0,z1)) -> c_2(D'#(z1)) 3: D'#(+(z0,z1)) -> c_3(D'#(z0)) 4: D'#(+(z0,z1)) -> c_4(D'#(z1)) 5: D'#(-(z0,z1)) -> c_5(D'#(z0)) 6: D'#(-(z0,z1)) -> c_6(D'#(z1)) 7: D'#(constant()) -> c_7() 8: D'#(t()) -> c_8() 9: D#(*(z0,z1)) -> c_9(D#(z0),D#(z1)) 10: D#(+(z0,z1)) -> c_10(D#(z0),D#(z1)) 11: D#(-(z0,z1)) -> c_11(D#(z0),D#(z1)) 12: D#(constant()) -> c_12() 13: D#(t()) -> c_13() ** Step 1.b:3: RemoveWeakSuffixes. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D'#(*(z0,z1)) -> c_1(D'#(z0)) D'#(*(z0,z1)) -> c_2(D'#(z1)) D'#(+(z0,z1)) -> c_3(D'#(z0)) D'#(+(z0,z1)) -> c_4(D'#(z1)) D'#(-(z0,z1)) -> c_5(D'#(z0)) D'#(-(z0,z1)) -> c_6(D'#(z1)) - Weak DPs: D#(*(z0,z1)) -> c_9(D#(z0),D#(z1)) D#(+(z0,z1)) -> c_10(D#(z0),D#(z1)) D#(-(z0,z1)) -> c_11(D#(z0),D#(z1)) D#(constant()) -> c_12() D#(t()) -> c_13() D'#(constant()) -> c_7() D'#(t()) -> c_8() - Weak TRS: D(*(z0,z1)) -> +(*(z1,D(z0)),*(z0,D(z1))) D(+(z0,z1)) -> +(D(z0),D(z1)) D(-(z0,z1)) -> -(D(z0),D(z1)) D(constant()) -> 0() D(t()) -> 1() D'(*(z0,z1)) -> c4(D'(z0)) D'(*(z0,z1)) -> c5(D'(z1)) D'(+(z0,z1)) -> c2(D'(z0)) D'(+(z0,z1)) -> c3(D'(z1)) D'(-(z0,z1)) -> c6(D'(z0)) D'(-(z0,z1)) -> c7(D'(z1)) D'(constant()) -> c1() D'(t()) -> c() - Signature: {D/1,D'/1,D#/1,D'#/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0,c_1/1 ,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/2,c_10/2,c_11/2,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#,D'#} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6 ,c7,constant,t} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:D'#(*(z0,z1)) -> c_1(D'#(z0)) -->_1 D'#(-(z0,z1)) -> c_6(D'#(z1)):6 -->_1 D'#(-(z0,z1)) -> c_5(D'#(z0)):5 -->_1 D'#(+(z0,z1)) -> c_4(D'#(z1)):4 -->_1 D'#(+(z0,z1)) -> c_3(D'#(z0)):3 -->_1 D'#(*(z0,z1)) -> c_2(D'#(z1)):2 -->_1 D'#(t()) -> c_8():13 -->_1 D'#(constant()) -> c_7():12 -->_1 D'#(*(z0,z1)) -> c_1(D'#(z0)):1 2:S:D'#(*(z0,z1)) -> c_2(D'#(z1)) -->_1 D'#(-(z0,z1)) -> c_6(D'#(z1)):6 -->_1 D'#(-(z0,z1)) -> c_5(D'#(z0)):5 -->_1 D'#(+(z0,z1)) -> c_4(D'#(z1)):4 -->_1 D'#(+(z0,z1)) -> c_3(D'#(z0)):3 -->_1 D'#(t()) -> c_8():13 -->_1 D'#(constant()) -> c_7():12 -->_1 D'#(*(z0,z1)) -> c_2(D'#(z1)):2 -->_1 D'#(*(z0,z1)) -> c_1(D'#(z0)):1 3:S:D'#(+(z0,z1)) -> c_3(D'#(z0)) -->_1 D'#(-(z0,z1)) -> c_6(D'#(z1)):6 -->_1 D'#(-(z0,z1)) -> c_5(D'#(z0)):5 -->_1 D'#(+(z0,z1)) -> c_4(D'#(z1)):4 -->_1 D'#(t()) -> c_8():13 -->_1 D'#(constant()) -> c_7():12 -->_1 D'#(+(z0,z1)) -> c_3(D'#(z0)):3 -->_1 D'#(*(z0,z1)) -> c_2(D'#(z1)):2 -->_1 D'#(*(z0,z1)) -> c_1(D'#(z0)):1 4:S:D'#(+(z0,z1)) -> c_4(D'#(z1)) -->_1 D'#(-(z0,z1)) -> c_6(D'#(z1)):6 -->_1 D'#(-(z0,z1)) -> c_5(D'#(z0)):5 -->_1 D'#(t()) -> c_8():13 -->_1 D'#(constant()) -> c_7():12 -->_1 D'#(+(z0,z1)) -> c_4(D'#(z1)):4 -->_1 D'#(+(z0,z1)) -> c_3(D'#(z0)):3 -->_1 D'#(*(z0,z1)) -> c_2(D'#(z1)):2 -->_1 D'#(*(z0,z1)) -> c_1(D'#(z0)):1 5:S:D'#(-(z0,z1)) -> c_5(D'#(z0)) -->_1 D'#(-(z0,z1)) -> c_6(D'#(z1)):6 -->_1 D'#(t()) -> c_8():13 -->_1 D'#(constant()) -> c_7():12 -->_1 D'#(-(z0,z1)) -> c_5(D'#(z0)):5 -->_1 D'#(+(z0,z1)) -> c_4(D'#(z1)):4 -->_1 D'#(+(z0,z1)) -> c_3(D'#(z0)):3 -->_1 D'#(*(z0,z1)) -> c_2(D'#(z1)):2 -->_1 D'#(*(z0,z1)) -> c_1(D'#(z0)):1 6:S:D'#(-(z0,z1)) -> c_6(D'#(z1)) -->_1 D'#(t()) -> c_8():13 -->_1 D'#(constant()) -> c_7():12 -->_1 D'#(-(z0,z1)) -> c_6(D'#(z1)):6 -->_1 D'#(-(z0,z1)) -> c_5(D'#(z0)):5 -->_1 D'#(+(z0,z1)) -> c_4(D'#(z1)):4 -->_1 D'#(+(z0,z1)) -> c_3(D'#(z0)):3 -->_1 D'#(*(z0,z1)) -> c_2(D'#(z1)):2 -->_1 D'#(*(z0,z1)) -> c_1(D'#(z0)):1 7:W:D#(*(z0,z1)) -> c_9(D#(z0),D#(z1)) -->_2 D#(-(z0,z1)) -> c_11(D#(z0),D#(z1)):9 -->_1 D#(-(z0,z1)) -> c_11(D#(z0),D#(z1)):9 -->_2 D#(+(z0,z1)) -> c_10(D#(z0),D#(z1)):8 -->_1 D#(+(z0,z1)) -> c_10(D#(z0),D#(z1)):8 -->_2 D#(t()) -> c_13():11 -->_1 D#(t()) -> c_13():11 -->_2 D#(constant()) -> c_12():10 -->_1 D#(constant()) -> c_12():10 -->_2 D#(*(z0,z1)) -> c_9(D#(z0),D#(z1)):7 -->_1 D#(*(z0,z1)) -> c_9(D#(z0),D#(z1)):7 8:W:D#(+(z0,z1)) -> c_10(D#(z0),D#(z1)) -->_2 D#(-(z0,z1)) -> c_11(D#(z0),D#(z1)):9 -->_1 D#(-(z0,z1)) -> c_11(D#(z0),D#(z1)):9 -->_2 D#(t()) -> c_13():11 -->_1 D#(t()) -> c_13():11 -->_2 D#(constant()) -> c_12():10 -->_1 D#(constant()) -> c_12():10 -->_2 D#(+(z0,z1)) -> c_10(D#(z0),D#(z1)):8 -->_1 D#(+(z0,z1)) -> c_10(D#(z0),D#(z1)):8 -->_2 D#(*(z0,z1)) -> c_9(D#(z0),D#(z1)):7 -->_1 D#(*(z0,z1)) -> c_9(D#(z0),D#(z1)):7 9:W:D#(-(z0,z1)) -> c_11(D#(z0),D#(z1)) -->_2 D#(t()) -> c_13():11 -->_1 D#(t()) -> c_13():11 -->_2 D#(constant()) -> c_12():10 -->_1 D#(constant()) -> c_12():10 -->_2 D#(-(z0,z1)) -> c_11(D#(z0),D#(z1)):9 -->_1 D#(-(z0,z1)) -> c_11(D#(z0),D#(z1)):9 -->_2 D#(+(z0,z1)) -> c_10(D#(z0),D#(z1)):8 -->_1 D#(+(z0,z1)) -> c_10(D#(z0),D#(z1)):8 -->_2 D#(*(z0,z1)) -> c_9(D#(z0),D#(z1)):7 -->_1 D#(*(z0,z1)) -> c_9(D#(z0),D#(z1)):7 10:W:D#(constant()) -> c_12() 11:W:D#(t()) -> c_13() 12:W:D'#(constant()) -> c_7() 13:W:D'#(t()) -> c_8() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: D#(*(z0,z1)) -> c_9(D#(z0),D#(z1)) 9: D#(-(z0,z1)) -> c_11(D#(z0),D#(z1)) 8: D#(+(z0,z1)) -> c_10(D#(z0),D#(z1)) 10: D#(constant()) -> c_12() 11: D#(t()) -> c_13() 12: D'#(constant()) -> c_7() 13: D'#(t()) -> c_8() ** Step 1.b:4: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D'#(*(z0,z1)) -> c_1(D'#(z0)) D'#(*(z0,z1)) -> c_2(D'#(z1)) D'#(+(z0,z1)) -> c_3(D'#(z0)) D'#(+(z0,z1)) -> c_4(D'#(z1)) D'#(-(z0,z1)) -> c_5(D'#(z0)) D'#(-(z0,z1)) -> c_6(D'#(z1)) - Weak TRS: D(*(z0,z1)) -> +(*(z1,D(z0)),*(z0,D(z1))) D(+(z0,z1)) -> +(D(z0),D(z1)) D(-(z0,z1)) -> -(D(z0),D(z1)) D(constant()) -> 0() D(t()) -> 1() D'(*(z0,z1)) -> c4(D'(z0)) D'(*(z0,z1)) -> c5(D'(z1)) D'(+(z0,z1)) -> c2(D'(z0)) D'(+(z0,z1)) -> c3(D'(z1)) D'(-(z0,z1)) -> c6(D'(z0)) D'(-(z0,z1)) -> c7(D'(z1)) D'(constant()) -> c1() D'(t()) -> c() - Signature: {D/1,D'/1,D#/1,D'#/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0,c_1/1 ,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/2,c_10/2,c_11/2,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#,D'#} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6 ,c7,constant,t} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: D'#(*(z0,z1)) -> c_1(D'#(z0)) D'#(*(z0,z1)) -> c_2(D'#(z1)) D'#(+(z0,z1)) -> c_3(D'#(z0)) D'#(+(z0,z1)) -> c_4(D'#(z1)) D'#(-(z0,z1)) -> c_5(D'#(z0)) D'#(-(z0,z1)) -> c_6(D'#(z1)) ** Step 1.b:5: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D'#(*(z0,z1)) -> c_1(D'#(z0)) D'#(*(z0,z1)) -> c_2(D'#(z1)) D'#(+(z0,z1)) -> c_3(D'#(z0)) D'#(+(z0,z1)) -> c_4(D'#(z1)) D'#(-(z0,z1)) -> c_5(D'#(z0)) D'#(-(z0,z1)) -> c_6(D'#(z1)) - Signature: {D/1,D'/1,D#/1,D'#/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0,c_1/1 ,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/2,c_10/2,c_11/2,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#,D'#} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6 ,c7,constant,t} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1} Following symbols are considered usable: {D#,D'#} TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [0] p(+) = [1] x1 + [1] x2 + [1] p(-) = [1] x1 + [1] x2 + [0] p(0) = [2] p(1) = [2] p(D) = [4] p(D') = [4] p(c) = [0] p(c1) = [2] p(c2) = [1] p(c3) = [4] p(c4) = [1] p(c5) = [2] p(c6) = [0] p(c7) = [1] x1 + [1] p(constant) = [0] p(t) = [2] p(D#) = [2] p(D'#) = [4] x1 + [0] p(c_1) = [1] x1 + [0] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [1] p(c_4) = [1] x1 + [4] p(c_5) = [1] x1 + [0] p(c_6) = [1] x1 + [0] p(c_7) = [1] p(c_8) = [0] p(c_9) = [2] x1 + [1] p(c_10) = [1] p(c_11) = [2] x1 + [1] x2 + [2] p(c_12) = [0] p(c_13) = [1] Following rules are strictly oriented: D'#(+(z0,z1)) = [4] z0 + [4] z1 + [4] > [4] z0 + [1] = c_3(D'#(z0)) Following rules are (at-least) weakly oriented: D'#(*(z0,z1)) = [4] z0 + [4] z1 + [0] >= [4] z0 + [0] = c_1(D'#(z0)) D'#(*(z0,z1)) = [4] z0 + [4] z1 + [0] >= [4] z1 + [0] = c_2(D'#(z1)) D'#(+(z0,z1)) = [4] z0 + [4] z1 + [4] >= [4] z1 + [4] = c_4(D'#(z1)) D'#(-(z0,z1)) = [4] z0 + [4] z1 + [0] >= [4] z0 + [0] = c_5(D'#(z0)) D'#(-(z0,z1)) = [4] z0 + [4] z1 + [0] >= [4] z1 + [0] = c_6(D'#(z1)) ** Step 1.b:6: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D'#(*(z0,z1)) -> c_1(D'#(z0)) D'#(*(z0,z1)) -> c_2(D'#(z1)) D'#(+(z0,z1)) -> c_4(D'#(z1)) D'#(-(z0,z1)) -> c_5(D'#(z0)) D'#(-(z0,z1)) -> c_6(D'#(z1)) - Weak DPs: D'#(+(z0,z1)) -> c_3(D'#(z0)) - Signature: {D/1,D'/1,D#/1,D'#/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0,c_1/1 ,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/2,c_10/2,c_11/2,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#,D'#} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6 ,c7,constant,t} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1} Following symbols are considered usable: {D#,D'#} TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [0] p(+) = [1] x1 + [1] x2 + [4] p(-) = [1] x1 + [1] x2 + [0] p(0) = [2] p(1) = [0] p(D) = [1] x1 + [1] p(D') = [1] p(c) = [0] p(c1) = [4] p(c2) = [1] x1 + [1] p(c3) = [1] x1 + [0] p(c4) = [1] x1 + [0] p(c5) = [1] x1 + [1] p(c6) = [1] p(c7) = [1] x1 + [4] p(constant) = [4] p(t) = [0] p(D#) = [1] p(D'#) = [2] x1 + [0] p(c_1) = [1] x1 + [0] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [8] p(c_4) = [1] x1 + [4] p(c_5) = [1] x1 + [0] p(c_6) = [1] x1 + [0] p(c_7) = [1] p(c_8) = [1] p(c_9) = [1] x1 + [2] x2 + [0] p(c_10) = [1] x2 + [8] p(c_11) = [1] x1 + [1] p(c_12) = [2] p(c_13) = [0] Following rules are strictly oriented: D'#(+(z0,z1)) = [2] z0 + [2] z1 + [8] > [2] z1 + [4] = c_4(D'#(z1)) Following rules are (at-least) weakly oriented: D'#(*(z0,z1)) = [2] z0 + [2] z1 + [0] >= [2] z0 + [0] = c_1(D'#(z0)) D'#(*(z0,z1)) = [2] z0 + [2] z1 + [0] >= [2] z1 + [0] = c_2(D'#(z1)) D'#(+(z0,z1)) = [2] z0 + [2] z1 + [8] >= [2] z0 + [8] = c_3(D'#(z0)) D'#(-(z0,z1)) = [2] z0 + [2] z1 + [0] >= [2] z0 + [0] = c_5(D'#(z0)) D'#(-(z0,z1)) = [2] z0 + [2] z1 + [0] >= [2] z1 + [0] = c_6(D'#(z1)) ** Step 1.b:7: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D'#(*(z0,z1)) -> c_1(D'#(z0)) D'#(*(z0,z1)) -> c_2(D'#(z1)) D'#(-(z0,z1)) -> c_5(D'#(z0)) D'#(-(z0,z1)) -> c_6(D'#(z1)) - Weak DPs: D'#(+(z0,z1)) -> c_3(D'#(z0)) D'#(+(z0,z1)) -> c_4(D'#(z1)) - Signature: {D/1,D'/1,D#/1,D'#/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0,c_1/1 ,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/2,c_10/2,c_11/2,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#,D'#} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6 ,c7,constant,t} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1} Following symbols are considered usable: {D#,D'#} TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [4] p(+) = [1] x1 + [1] x2 + [12] p(-) = [1] x1 + [1] x2 + [0] p(0) = [2] p(1) = [1] p(D) = [1] p(D') = [1] p(c) = [2] p(c1) = [1] p(c2) = [1] p(c3) = [0] p(c4) = [1] x1 + [1] p(c5) = [1] p(c6) = [0] p(c7) = [1] x1 + [1] p(constant) = [0] p(t) = [1] p(D#) = [1] p(D'#) = [1] x1 + [0] p(c_1) = [1] x1 + [0] p(c_2) = [1] x1 + [4] p(c_3) = [1] x1 + [12] p(c_4) = [1] x1 + [12] p(c_5) = [1] x1 + [0] p(c_6) = [1] x1 + [0] p(c_7) = [8] p(c_8) = [8] p(c_9) = [1] x1 + [8] p(c_10) = [8] x1 + [1] x2 + [4] p(c_11) = [1] p(c_12) = [0] p(c_13) = [1] Following rules are strictly oriented: D'#(*(z0,z1)) = [1] z0 + [1] z1 + [4] > [1] z0 + [0] = c_1(D'#(z0)) Following rules are (at-least) weakly oriented: D'#(*(z0,z1)) = [1] z0 + [1] z1 + [4] >= [1] z1 + [4] = c_2(D'#(z1)) D'#(+(z0,z1)) = [1] z0 + [1] z1 + [12] >= [1] z0 + [12] = c_3(D'#(z0)) D'#(+(z0,z1)) = [1] z0 + [1] z1 + [12] >= [1] z1 + [12] = c_4(D'#(z1)) D'#(-(z0,z1)) = [1] z0 + [1] z1 + [0] >= [1] z0 + [0] = c_5(D'#(z0)) D'#(-(z0,z1)) = [1] z0 + [1] z1 + [0] >= [1] z1 + [0] = c_6(D'#(z1)) ** Step 1.b:8: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D'#(*(z0,z1)) -> c_2(D'#(z1)) D'#(-(z0,z1)) -> c_5(D'#(z0)) D'#(-(z0,z1)) -> c_6(D'#(z1)) - Weak DPs: D'#(*(z0,z1)) -> c_1(D'#(z0)) D'#(+(z0,z1)) -> c_3(D'#(z0)) D'#(+(z0,z1)) -> c_4(D'#(z1)) - Signature: {D/1,D'/1,D#/1,D'#/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0,c_1/1 ,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/2,c_10/2,c_11/2,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#,D'#} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6 ,c7,constant,t} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1} Following symbols are considered usable: {D#,D'#} TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [10] p(+) = [1] x1 + [1] x2 + [0] p(-) = [1] x1 + [1] x2 + [6] p(0) = [1] p(1) = [0] p(D) = [1] p(D') = [1] x1 + [0] p(c) = [0] p(c1) = [8] p(c2) = [1] x1 + [0] p(c3) = [2] p(c4) = [1] x1 + [1] p(c5) = [2] p(c6) = [1] p(c7) = [0] p(constant) = [0] p(t) = [2] p(D#) = [0] p(D'#) = [2] x1 + [0] p(c_1) = [1] x1 + [1] p(c_2) = [1] x1 + [15] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [2] p(c_6) = [1] x1 + [12] p(c_7) = [0] p(c_8) = [1] p(c_9) = [2] p(c_10) = [1] x1 + [2] x2 + [4] p(c_11) = [2] p(c_12) = [0] p(c_13) = [1] Following rules are strictly oriented: D'#(*(z0,z1)) = [2] z0 + [2] z1 + [20] > [2] z1 + [15] = c_2(D'#(z1)) D'#(-(z0,z1)) = [2] z0 + [2] z1 + [12] > [2] z0 + [2] = c_5(D'#(z0)) Following rules are (at-least) weakly oriented: D'#(*(z0,z1)) = [2] z0 + [2] z1 + [20] >= [2] z0 + [1] = c_1(D'#(z0)) D'#(+(z0,z1)) = [2] z0 + [2] z1 + [0] >= [2] z0 + [0] = c_3(D'#(z0)) D'#(+(z0,z1)) = [2] z0 + [2] z1 + [0] >= [2] z1 + [0] = c_4(D'#(z1)) D'#(-(z0,z1)) = [2] z0 + [2] z1 + [12] >= [2] z1 + [12] = c_6(D'#(z1)) ** Step 1.b:9: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: D'#(-(z0,z1)) -> c_6(D'#(z1)) - Weak DPs: D'#(*(z0,z1)) -> c_1(D'#(z0)) D'#(*(z0,z1)) -> c_2(D'#(z1)) D'#(+(z0,z1)) -> c_3(D'#(z0)) D'#(+(z0,z1)) -> c_4(D'#(z1)) D'#(-(z0,z1)) -> c_5(D'#(z0)) - Signature: {D/1,D'/1,D#/1,D'#/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0,c_1/1 ,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/2,c_10/2,c_11/2,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#,D'#} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6 ,c7,constant,t} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1} Following symbols are considered usable: {D#,D'#} TcT has computed the following interpretation: p(*) = [1] x1 + [1] x2 + [1] p(+) = [1] x1 + [1] x2 + [0] p(-) = [1] x1 + [1] x2 + [4] p(0) = [1] p(1) = [0] p(D) = [1] x1 + [1] p(D') = [2] x1 + [1] p(c) = [4] p(c1) = [8] p(c2) = [1] p(c3) = [2] p(c4) = [1] x1 + [1] p(c5) = [1] x1 + [2] p(c6) = [1] x1 + [2] p(c7) = [1] x1 + [1] p(constant) = [0] p(t) = [1] p(D#) = [1] x1 + [1] p(D'#) = [4] x1 + [0] p(c_1) = [1] x1 + [3] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [2] p(c_6) = [1] x1 + [8] p(c_7) = [2] p(c_8) = [1] p(c_9) = [1] x1 + [1] p(c_10) = [1] x2 + [0] p(c_11) = [1] x1 + [1] x2 + [1] p(c_12) = [1] p(c_13) = [1] Following rules are strictly oriented: D'#(-(z0,z1)) = [4] z0 + [4] z1 + [16] > [4] z1 + [8] = c_6(D'#(z1)) Following rules are (at-least) weakly oriented: D'#(*(z0,z1)) = [4] z0 + [4] z1 + [4] >= [4] z0 + [3] = c_1(D'#(z0)) D'#(*(z0,z1)) = [4] z0 + [4] z1 + [4] >= [4] z1 + [0] = c_2(D'#(z1)) D'#(+(z0,z1)) = [4] z0 + [4] z1 + [0] >= [4] z0 + [0] = c_3(D'#(z0)) D'#(+(z0,z1)) = [4] z0 + [4] z1 + [0] >= [4] z1 + [0] = c_4(D'#(z1)) D'#(-(z0,z1)) = [4] z0 + [4] z1 + [16] >= [4] z0 + [2] = c_5(D'#(z0)) ** Step 1.b:10: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: D'#(*(z0,z1)) -> c_1(D'#(z0)) D'#(*(z0,z1)) -> c_2(D'#(z1)) D'#(+(z0,z1)) -> c_3(D'#(z0)) D'#(+(z0,z1)) -> c_4(D'#(z1)) D'#(-(z0,z1)) -> c_5(D'#(z0)) D'#(-(z0,z1)) -> c_6(D'#(z1)) - Signature: {D/1,D'/1,D#/1,D'#/1} / {*/2,+/2,-/2,0/0,1/0,c/0,c1/0,c2/1,c3/1,c4/1,c5/1,c6/1,c7/1,constant/0,t/0,c_1/1 ,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/0,c_8/0,c_9/2,c_10/2,c_11/2,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {D#,D'#} and constructors {*,+,-,0,1,c,c1,c2,c3,c4,c5,c6 ,c7,constant,t} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))