WORST_CASE(Omega(n^1),?) proof of /export/starexec/sandbox/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 518 ms] (2) CpxRelTRS (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (4) TRS for Loop Detection (5) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (6) BEST (7) proven lower bound (8) LowerBoundPropagationProof [FINISHED, 0 ms] (9) BOUNDS(n^1, INF) (10) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: REV1(0, nil) -> c REV1(s(z0), nil) -> c1 REV1(z0, cons(z1, z2)) -> c2(REV1(z1, z2)) REV(nil) -> c3 REV(cons(z0, z1)) -> c4(REV1(z0, z1)) REV(cons(z0, z1)) -> c5(REV2(z0, z1)) REV2(z0, nil) -> c6 REV2(z0, cons(z1, z2)) -> c7(REV(cons(z0, rev(rev2(z1, z2)))), REV(rev2(z1, z2)), REV2(z1, z2)) The (relative) TRS S consists of the following rules: rev1(0, nil) -> 0 rev1(s(z0), nil) -> s(z0) rev1(z0, cons(z1, z2)) -> rev1(z1, z2) rev(nil) -> nil rev(cons(z0, z1)) -> cons(rev1(z0, z1), rev2(z0, z1)) rev2(z0, nil) -> nil rev2(z0, cons(z1, z2)) -> rev(cons(z0, rev(rev2(z1, z2)))) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: REV1(0, nil) -> c REV1(s(z0), nil) -> c1 REV1(z0, cons(z1, z2)) -> c2(REV1(z1, z2)) REV(nil) -> c3 REV(cons(z0, z1)) -> c4(REV1(z0, z1)) REV(cons(z0, z1)) -> c5(REV2(z0, z1)) REV2(z0, nil) -> c6 REV2(z0, cons(z1, z2)) -> c7(REV(cons(z0, rev(rev2(z1, z2)))), REV(rev2(z1, z2)), REV2(z1, z2)) The (relative) TRS S consists of the following rules: rev1(0, nil) -> 0 rev1(s(z0), nil) -> s(z0) rev1(z0, cons(z1, z2)) -> rev1(z1, z2) rev(nil) -> nil rev(cons(z0, z1)) -> cons(rev1(z0, z1), rev2(z0, z1)) rev2(z0, nil) -> nil rev2(z0, cons(z1, z2)) -> rev(cons(z0, rev(rev2(z1, z2)))) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (4) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: REV1(0, nil) -> c REV1(s(z0), nil) -> c1 REV1(z0, cons(z1, z2)) -> c2(REV1(z1, z2)) REV(nil) -> c3 REV(cons(z0, z1)) -> c4(REV1(z0, z1)) REV(cons(z0, z1)) -> c5(REV2(z0, z1)) REV2(z0, nil) -> c6 REV2(z0, cons(z1, z2)) -> c7(REV(cons(z0, rev(rev2(z1, z2)))), REV(rev2(z1, z2)), REV2(z1, z2)) The (relative) TRS S consists of the following rules: rev1(0, nil) -> 0 rev1(s(z0), nil) -> s(z0) rev1(z0, cons(z1, z2)) -> rev1(z1, z2) rev(nil) -> nil rev(cons(z0, z1)) -> cons(rev1(z0, z1), rev2(z0, z1)) rev2(z0, nil) -> nil rev2(z0, cons(z1, z2)) -> rev(cons(z0, rev(rev2(z1, z2)))) Rewrite Strategy: INNERMOST ---------------------------------------- (5) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence REV1(z0, cons(z1, z2)) ->^+ c2(REV1(z1, z2)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z2 / cons(z1, z2)]. The result substitution is [z0 / z1]. ---------------------------------------- (6) Complex Obligation (BEST) ---------------------------------------- (7) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: REV1(0, nil) -> c REV1(s(z0), nil) -> c1 REV1(z0, cons(z1, z2)) -> c2(REV1(z1, z2)) REV(nil) -> c3 REV(cons(z0, z1)) -> c4(REV1(z0, z1)) REV(cons(z0, z1)) -> c5(REV2(z0, z1)) REV2(z0, nil) -> c6 REV2(z0, cons(z1, z2)) -> c7(REV(cons(z0, rev(rev2(z1, z2)))), REV(rev2(z1, z2)), REV2(z1, z2)) The (relative) TRS S consists of the following rules: rev1(0, nil) -> 0 rev1(s(z0), nil) -> s(z0) rev1(z0, cons(z1, z2)) -> rev1(z1, z2) rev(nil) -> nil rev(cons(z0, z1)) -> cons(rev1(z0, z1), rev2(z0, z1)) rev2(z0, nil) -> nil rev2(z0, cons(z1, z2)) -> rev(cons(z0, rev(rev2(z1, z2)))) Rewrite Strategy: INNERMOST ---------------------------------------- (8) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (9) BOUNDS(n^1, INF) ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: REV1(0, nil) -> c REV1(s(z0), nil) -> c1 REV1(z0, cons(z1, z2)) -> c2(REV1(z1, z2)) REV(nil) -> c3 REV(cons(z0, z1)) -> c4(REV1(z0, z1)) REV(cons(z0, z1)) -> c5(REV2(z0, z1)) REV2(z0, nil) -> c6 REV2(z0, cons(z1, z2)) -> c7(REV(cons(z0, rev(rev2(z1, z2)))), REV(rev2(z1, z2)), REV2(z1, z2)) The (relative) TRS S consists of the following rules: rev1(0, nil) -> 0 rev1(s(z0), nil) -> s(z0) rev1(z0, cons(z1, z2)) -> rev1(z1, z2) rev(nil) -> nil rev(cons(z0, z1)) -> cons(rev1(z0, z1), rev2(z0, z1)) rev2(z0, nil) -> nil rev2(z0, cons(z1, z2)) -> rev(cons(z0, rev(rev2(z1, z2)))) Rewrite Strategy: INNERMOST