WORST_CASE(Omega(n^1),O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 209 ms] (2) CpxRelTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 7 ms] (10) CpxRNTS (11) CompleteCoflocoProof [FINISHED, 97 ms] (12) BOUNDS(1, n^1) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) The (relative) TRS S consists of the following rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) The (relative) TRS S consists of the following rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: FIB(0) -> c [1] FIB(s(0)) -> c1 [1] FIB(s(s(z0))) -> c2(FIB(s(z0))) [1] FIB(s(s(z0))) -> c3(FIB(z0)) [1] fib(0) -> 0 [0] fib(s(0)) -> s(0) [0] fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: FIB(0) -> c [1] FIB(s(0)) -> c1 [1] FIB(s(s(z0))) -> c2(FIB(s(z0))) [1] FIB(s(s(z0))) -> c3(FIB(z0)) [1] fib(0) -> 0 [0] fib(s(0)) -> s(0) [0] fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) [0] The TRS has the following type information: FIB :: 0:s:+ -> c:c1:c2:c3 0 :: 0:s:+ c :: c:c1:c2:c3 s :: 0:s:+ -> 0:s:+ c1 :: c:c1:c2:c3 c2 :: c:c1:c2:c3 -> c:c1:c2:c3 c3 :: c:c1:c2:c3 -> c:c1:c2:c3 fib :: 0:s:+ -> 0:s:+ + :: 0:s:+ -> 0:s:+ -> 0:s:+ Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: fib(v0) -> null_fib [0] FIB(v0) -> null_FIB [0] And the following fresh constants: null_fib, null_FIB ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: FIB(0) -> c [1] FIB(s(0)) -> c1 [1] FIB(s(s(z0))) -> c2(FIB(s(z0))) [1] FIB(s(s(z0))) -> c3(FIB(z0)) [1] fib(0) -> 0 [0] fib(s(0)) -> s(0) [0] fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) [0] fib(v0) -> null_fib [0] FIB(v0) -> null_FIB [0] The TRS has the following type information: FIB :: 0:s:+:null_fib -> c:c1:c2:c3:null_FIB 0 :: 0:s:+:null_fib c :: c:c1:c2:c3:null_FIB s :: 0:s:+:null_fib -> 0:s:+:null_fib c1 :: c:c1:c2:c3:null_FIB c2 :: c:c1:c2:c3:null_FIB -> c:c1:c2:c3:null_FIB c3 :: c:c1:c2:c3:null_FIB -> c:c1:c2:c3:null_FIB fib :: 0:s:+:null_fib -> 0:s:+:null_fib + :: 0:s:+:null_fib -> 0:s:+:null_fib -> 0:s:+:null_fib null_fib :: 0:s:+:null_fib null_FIB :: c:c1:c2:c3:null_FIB Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 c => 0 c1 => 1 null_fib => 0 null_FIB => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: FIB(z) -{ 1 }-> 1 :|: z = 1 + 0 FIB(z) -{ 1 }-> 0 :|: z = 0 FIB(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 FIB(z) -{ 1 }-> 1 + FIB(z0) :|: z0 >= 0, z = 1 + (1 + z0) FIB(z) -{ 1 }-> 1 + FIB(1 + z0) :|: z0 >= 0, z = 1 + (1 + z0) fib(z) -{ 0 }-> 0 :|: z = 0 fib(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 fib(z) -{ 0 }-> 1 + 0 :|: z = 1 + 0 fib(z) -{ 0 }-> 1 + fib(1 + z0) + fib(z0) :|: z0 >= 0, z = 1 + (1 + z0) Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (11) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V),0,[fun(V, Out)],[V >= 0]). eq(start(V),0,[fib(V, Out)],[V >= 0]). eq(fun(V, Out),1,[],[Out = 0,V = 0]). eq(fun(V, Out),1,[],[Out = 1,V = 1]). eq(fun(V, Out),1,[fun(1 + V1, Ret1)],[Out = 1 + Ret1,V1 >= 0,V = 2 + V1]). eq(fun(V, Out),1,[fun(V2, Ret11)],[Out = 1 + Ret11,V2 >= 0,V = 2 + V2]). eq(fib(V, Out),0,[],[Out = 0,V = 0]). eq(fib(V, Out),0,[],[Out = 1,V = 1]). eq(fib(V, Out),0,[fib(1 + V3, Ret01),fib(V3, Ret12)],[Out = 1 + Ret01 + Ret12,V3 >= 0,V = 2 + V3]). eq(fib(V, Out),0,[],[Out = 0,V4 >= 0,V = V4]). eq(fun(V, Out),0,[],[Out = 0,V5 >= 0,V = V5]). input_output_vars(fun(V,Out),[V],[Out]). input_output_vars(fib(V,Out),[V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive [multiple] : [fib/2] 1. recursive : [fun/2] 2. non_recursive : [start/1] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into fib/2 1. SCC is partially evaluated into fun/2 2. SCC is partially evaluated into start/1 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations fib/2 * CE 8 is refined into CE [11] * CE 9 is refined into CE [12] * CE 10 is refined into CE [13] ### Cost equations --> "Loop" of fib/2 * CEs [13] --> Loop 9 * CEs [11] --> Loop 10 * CEs [12] --> Loop 11 ### Ranking functions of CR fib(V,Out) * RF of phase [9]: [V-1] #### Partial ranking functions of CR fib(V,Out) * Partial RF of phase [9]: - RF of loop [9:1,9:2]: V-1 ### Specialization of cost equations fun/2 * CE 4 is refined into CE [14] * CE 3 is refined into CE [15] * CE 7 is refined into CE [16] * CE 5 is refined into CE [17] * CE 6 is refined into CE [18] ### Cost equations --> "Loop" of fun/2 * CEs [17] --> Loop 12 * CEs [18] --> Loop 13 * CEs [14] --> Loop 14 * CEs [15,16] --> Loop 15 ### Ranking functions of CR fun(V,Out) * RF of phase [12,13]: [V-1] #### Partial ranking functions of CR fun(V,Out) * Partial RF of phase [12,13]: - RF of loop [12:1,13:1]: V-1 ### Specialization of cost equations start/1 * CE 1 is refined into CE [19,20,21,22] * CE 2 is refined into CE [23,24,25] ### Cost equations --> "Loop" of start/1 * CEs [19,20,21,22,23,24,25] --> Loop 16 ### Ranking functions of CR start(V) #### Partial ranking functions of CR start(V) Computing Bounds ===================================== #### Cost of chains of fib(V,Out): * Chain [11]: 0 with precondition: [V=1,Out=1] * Chain [10]: 0 with precondition: [Out=0,V>=0] * Chain [multiple([9],[[11],[10]])]: 0 with precondition: [V>=2,Out>=1] #### Cost of chains of fun(V,Out): * Chain [[12,13],15]: 2*it(12)+1 Such that:aux(8) =< V it(12) =< aux(8) with precondition: [Out>=1,V>=Out+1] * Chain [[12,13],14]: 2*it(12)+1 Such that:aux(9) =< V it(12) =< aux(9) with precondition: [Out>=2,2*Out>=V+1,V>=Out] * Chain [15]: 1 with precondition: [Out=0,V>=0] * Chain [14]: 1 with precondition: [V=1,Out=1] #### Cost of chains of start(V): * Chain [16]: 4*s(2)+1 Such that:aux(10) =< V s(2) =< aux(10) with precondition: [V>=0] Closed-form bounds of start(V): ------------------------------------- * Chain [16] with precondition: [V>=0] - Upper bound: 4*V+1 - Complexity: n ### Maximum cost of start(V): 4*V+1 Asymptotic class: n * Total analysis performed in 107 ms. ---------------------------------------- (12) BOUNDS(1, n^1) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) The (relative) TRS S consists of the following rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (15) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence FIB(s(s(z0))) ->^+ c3(FIB(z0)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z0 / s(s(z0))]. The result substitution is [ ]. ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) The (relative) TRS S consists of the following rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: FIB(0) -> c FIB(s(0)) -> c1 FIB(s(s(z0))) -> c2(FIB(s(z0))) FIB(s(s(z0))) -> c3(FIB(z0)) The (relative) TRS S consists of the following rules: fib(0) -> 0 fib(s(0)) -> s(0) fib(s(s(z0))) -> +(fib(s(z0)), fib(z0)) Rewrite Strategy: INNERMOST