WORST_CASE(Omega(n^1),?) proof of /export/starexec/sandbox/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 850 ms] (2) CpxRelTRS (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 1 ms] (4) TRS for Loop Detection (5) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (6) BEST (7) proven lower bound (8) LowerBoundPropagationProof [FINISHED, 0 ms] (9) BOUNDS(n^1, INF) (10) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: G(z0, 0) -> c G(d, s(z0)) -> c1(G(d, z0)) G(h, s(0)) -> c2 G(h, s(s(z0))) -> c3(G(h, z0)) DOUBLE(z0) -> c4(G(d, z0)) HALF(z0) -> c5(G(h, z0)) F(s(z0), z1) -> c6(F(half(s(z0)), double(z1)), HALF(s(z0))) F(s(z0), z1) -> c7(F(half(s(z0)), double(z1)), DOUBLE(z1)) F(s(0), z0) -> c8 ID(z0) -> c9(F(z0, s(0))) The (relative) TRS S consists of the following rules: g(z0, 0) -> 0 g(d, s(z0)) -> s(s(g(d, z0))) g(h, s(0)) -> 0 g(h, s(s(z0))) -> s(g(h, z0)) double(z0) -> g(d, z0) half(z0) -> g(h, z0) f(s(z0), z1) -> f(half(s(z0)), double(z1)) f(s(0), z0) -> z0 id(z0) -> f(z0, s(0)) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: G(z0, 0) -> c G(d, s(z0)) -> c1(G(d, z0)) G(h, s(0)) -> c2 G(h, s(s(z0))) -> c3(G(h, z0)) DOUBLE(z0) -> c4(G(d, z0)) HALF(z0) -> c5(G(h, z0)) F(s(z0), z1) -> c6(F(half(s(z0)), double(z1)), HALF(s(z0))) F(s(z0), z1) -> c7(F(half(s(z0)), double(z1)), DOUBLE(z1)) F(s(0), z0) -> c8 ID(z0) -> c9(F(z0, s(0))) The (relative) TRS S consists of the following rules: g(z0, 0) -> 0 g(d, s(z0)) -> s(s(g(d, z0))) g(h, s(0)) -> 0 g(h, s(s(z0))) -> s(g(h, z0)) double(z0) -> g(d, z0) half(z0) -> g(h, z0) f(s(z0), z1) -> f(half(s(z0)), double(z1)) f(s(0), z0) -> z0 id(z0) -> f(z0, s(0)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (4) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: G(z0, 0) -> c G(d, s(z0)) -> c1(G(d, z0)) G(h, s(0)) -> c2 G(h, s(s(z0))) -> c3(G(h, z0)) DOUBLE(z0) -> c4(G(d, z0)) HALF(z0) -> c5(G(h, z0)) F(s(z0), z1) -> c6(F(half(s(z0)), double(z1)), HALF(s(z0))) F(s(z0), z1) -> c7(F(half(s(z0)), double(z1)), DOUBLE(z1)) F(s(0), z0) -> c8 ID(z0) -> c9(F(z0, s(0))) The (relative) TRS S consists of the following rules: g(z0, 0) -> 0 g(d, s(z0)) -> s(s(g(d, z0))) g(h, s(0)) -> 0 g(h, s(s(z0))) -> s(g(h, z0)) double(z0) -> g(d, z0) half(z0) -> g(h, z0) f(s(z0), z1) -> f(half(s(z0)), double(z1)) f(s(0), z0) -> z0 id(z0) -> f(z0, s(0)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence G(d, s(z0)) ->^+ c1(G(d, z0)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z0 / s(z0)]. The result substitution is [ ]. ---------------------------------------- (6) Complex Obligation (BEST) ---------------------------------------- (7) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: G(z0, 0) -> c G(d, s(z0)) -> c1(G(d, z0)) G(h, s(0)) -> c2 G(h, s(s(z0))) -> c3(G(h, z0)) DOUBLE(z0) -> c4(G(d, z0)) HALF(z0) -> c5(G(h, z0)) F(s(z0), z1) -> c6(F(half(s(z0)), double(z1)), HALF(s(z0))) F(s(z0), z1) -> c7(F(half(s(z0)), double(z1)), DOUBLE(z1)) F(s(0), z0) -> c8 ID(z0) -> c9(F(z0, s(0))) The (relative) TRS S consists of the following rules: g(z0, 0) -> 0 g(d, s(z0)) -> s(s(g(d, z0))) g(h, s(0)) -> 0 g(h, s(s(z0))) -> s(g(h, z0)) double(z0) -> g(d, z0) half(z0) -> g(h, z0) f(s(z0), z1) -> f(half(s(z0)), double(z1)) f(s(0), z0) -> z0 id(z0) -> f(z0, s(0)) Rewrite Strategy: INNERMOST ---------------------------------------- (8) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (9) BOUNDS(n^1, INF) ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: G(z0, 0) -> c G(d, s(z0)) -> c1(G(d, z0)) G(h, s(0)) -> c2 G(h, s(s(z0))) -> c3(G(h, z0)) DOUBLE(z0) -> c4(G(d, z0)) HALF(z0) -> c5(G(h, z0)) F(s(z0), z1) -> c6(F(half(s(z0)), double(z1)), HALF(s(z0))) F(s(z0), z1) -> c7(F(half(s(z0)), double(z1)), DOUBLE(z1)) F(s(0), z0) -> c8 ID(z0) -> c9(F(z0, s(0))) The (relative) TRS S consists of the following rules: g(z0, 0) -> 0 g(d, s(z0)) -> s(s(g(d, z0))) g(h, s(0)) -> 0 g(h, s(s(z0))) -> s(g(h, z0)) double(z0) -> g(d, z0) half(z0) -> g(h, z0) f(s(z0), z1) -> f(half(s(z0)), double(z1)) f(s(0), z0) -> z0 id(z0) -> f(z0, s(0)) Rewrite Strategy: INNERMOST