WORST_CASE(Omega(n^1),O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 210 ms] (2) CpxRelTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 24 ms] (12) CdtProblem (13) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (14) BOUNDS(1, 1) (15) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (16) TRS for Loop Detection (17) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: F(C(z0, z1)) -> c4(F(z0)) F(C(z0, z1)) -> c5(F(z1)) F(Z) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 G(z0) -> c14 The (relative) TRS S consists of the following rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True f(C(z0, z1)) -> C(f(z0), f(z1)) f(Z) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 g(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: F(C(z0, z1)) -> c4(F(z0)) F(C(z0, z1)) -> c5(F(z1)) F(Z) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 G(z0) -> c14 The (relative) TRS S consists of the following rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True f(C(z0, z1)) -> C(f(z0), f(z1)) f(Z) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 g(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True f(C(z0, z1)) -> C(f(z0), f(z1)) f(Z) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 g(z0) -> z0 F(C(z0, z1)) -> c4(F(z0)) F(C(z0, z1)) -> c5(F(z1)) F(Z) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 G(z0) -> c14 Tuples: AND'(False, False) -> c15 AND'(True, False) -> c16 AND'(False, True) -> c17 AND'(True, True) -> c18 AND''(False, False) -> c19 AND''(True, False) -> c20 AND''(False, True) -> c21 AND''(True, True) -> c22 F'(C(z0, z1)) -> c23(F'(z0), F'(z1)) F'(Z) -> c24 EQZLIST'(C(z0, z1), C(z2, z3)) -> c25(AND''(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3)) EQZLIST'(C(z0, z1), Z) -> c26 EQZLIST'(Z, C(z0, z1)) -> c27 EQZLIST'(Z, Z) -> c28 SECOND'(C(z0, z1)) -> c29 FIRST'(C(z0, z1)) -> c30 G'(z0) -> c31 F''(C(z0, z1)) -> c32(F''(z0)) F''(C(z0, z1)) -> c33(F''(z1)) F''(Z) -> c34 EQZLIST''(C(z0, z1), C(z2, z3)) -> c35(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c36(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) EQZLIST''(C(z0, z1), Z) -> c37 EQZLIST''(Z, C(z0, z1)) -> c38 EQZLIST''(Z, Z) -> c39 SECOND''(C(z0, z1)) -> c40 FIRST''(C(z0, z1)) -> c41 G''(z0) -> c42 S tuples: F''(C(z0, z1)) -> c32(F''(z0)) F''(C(z0, z1)) -> c33(F''(z1)) F''(Z) -> c34 EQZLIST''(C(z0, z1), C(z2, z3)) -> c35(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c36(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) EQZLIST''(C(z0, z1), Z) -> c37 EQZLIST''(Z, C(z0, z1)) -> c38 EQZLIST''(Z, Z) -> c39 SECOND''(C(z0, z1)) -> c40 FIRST''(C(z0, z1)) -> c41 G''(z0) -> c42 K tuples:none Defined Rule Symbols: F_1, EQZLIST_2, SECOND_1, FIRST_1, G_1, AND_2, and_2, f_1, eqZList_2, second_1, first_1, g_1 Defined Pair Symbols: AND'_2, AND''_2, F'_1, EQZLIST'_2, SECOND'_1, FIRST'_1, G'_1, F''_1, EQZLIST''_2, SECOND''_1, FIRST''_1, G''_1 Compound Symbols: c15, c16, c17, c18, c19, c20, c21, c22, c23_2, c24, c25_3, c26, c27, c28, c29, c30, c31, c32_1, c33_1, c34, c35_4, c36_4, c37, c38, c39, c40, c41, c42 ---------------------------------------- (5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 22 trailing nodes: G'(z0) -> c31 FIRST'(C(z0, z1)) -> c30 AND'(False, True) -> c17 AND''(True, False) -> c20 EQZLIST''(Z, Z) -> c39 AND'(True, False) -> c16 FIRST''(C(z0, z1)) -> c41 EQZLIST''(C(z0, z1), Z) -> c37 F''(Z) -> c34 EQZLIST'(C(z0, z1), Z) -> c26 G''(z0) -> c42 F'(Z) -> c24 EQZLIST'(Z, Z) -> c28 SECOND'(C(z0, z1)) -> c29 AND''(True, True) -> c22 AND''(False, True) -> c21 EQZLIST'(Z, C(z0, z1)) -> c27 AND'(False, False) -> c15 EQZLIST''(Z, C(z0, z1)) -> c38 SECOND''(C(z0, z1)) -> c40 AND''(False, False) -> c19 AND'(True, True) -> c18 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True f(C(z0, z1)) -> C(f(z0), f(z1)) f(Z) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 g(z0) -> z0 F(C(z0, z1)) -> c4(F(z0)) F(C(z0, z1)) -> c5(F(z1)) F(Z) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 G(z0) -> c14 Tuples: F'(C(z0, z1)) -> c23(F'(z0), F'(z1)) EQZLIST'(C(z0, z1), C(z2, z3)) -> c25(AND''(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3)) F''(C(z0, z1)) -> c32(F''(z0)) F''(C(z0, z1)) -> c33(F''(z1)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c35(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c36(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) S tuples: F''(C(z0, z1)) -> c32(F''(z0)) F''(C(z0, z1)) -> c33(F''(z1)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c35(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c36(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) K tuples:none Defined Rule Symbols: F_1, EQZLIST_2, SECOND_1, FIRST_1, G_1, AND_2, and_2, f_1, eqZList_2, second_1, first_1, g_1 Defined Pair Symbols: F'_1, EQZLIST'_2, F''_1, EQZLIST''_2 Compound Symbols: c23_2, c25_3, c32_1, c33_1, c35_4, c36_4 ---------------------------------------- (7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing tuple parts ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True f(C(z0, z1)) -> C(f(z0), f(z1)) f(Z) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 g(z0) -> z0 F(C(z0, z1)) -> c4(F(z0)) F(C(z0, z1)) -> c5(F(z1)) F(Z) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 G(z0) -> c14 Tuples: F'(C(z0, z1)) -> c23(F'(z0), F'(z1)) F''(C(z0, z1)) -> c32(F''(z0)) F''(C(z0, z1)) -> c33(F''(z1)) EQZLIST'(C(z0, z1), C(z2, z3)) -> c25(EQZLIST'(z0, z2), EQZLIST'(z1, z3)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c35(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c36(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) S tuples: F''(C(z0, z1)) -> c32(F''(z0)) F''(C(z0, z1)) -> c33(F''(z1)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c35(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c36(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) K tuples:none Defined Rule Symbols: F_1, EQZLIST_2, SECOND_1, FIRST_1, G_1, AND_2, and_2, f_1, eqZList_2, second_1, first_1, g_1 Defined Pair Symbols: F'_1, F''_1, EQZLIST'_2, EQZLIST''_2 Compound Symbols: c23_2, c32_1, c33_1, c25_2, c35_3, c36_3 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True f(C(z0, z1)) -> C(f(z0), f(z1)) f(Z) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 g(z0) -> z0 F(C(z0, z1)) -> c4(F(z0)) F(C(z0, z1)) -> c5(F(z1)) F(Z) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 G(z0) -> c14 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F'(C(z0, z1)) -> c23(F'(z0), F'(z1)) F''(C(z0, z1)) -> c32(F''(z0)) F''(C(z0, z1)) -> c33(F''(z1)) EQZLIST'(C(z0, z1), C(z2, z3)) -> c25(EQZLIST'(z0, z2), EQZLIST'(z1, z3)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c35(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c36(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) S tuples: F''(C(z0, z1)) -> c32(F''(z0)) F''(C(z0, z1)) -> c33(F''(z1)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c35(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c36(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F'_1, F''_1, EQZLIST'_2, EQZLIST''_2 Compound Symbols: c23_2, c32_1, c33_1, c25_2, c35_3, c36_3 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F''(C(z0, z1)) -> c32(F''(z0)) F''(C(z0, z1)) -> c33(F''(z1)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c35(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c36(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) We considered the (Usable) Rules:none And the Tuples: F'(C(z0, z1)) -> c23(F'(z0), F'(z1)) F''(C(z0, z1)) -> c32(F''(z0)) F''(C(z0, z1)) -> c33(F''(z1)) EQZLIST'(C(z0, z1), C(z2, z3)) -> c25(EQZLIST'(z0, z2), EQZLIST'(z1, z3)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c35(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c36(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) The order we found is given by the following interpretation: Polynomial interpretation : POL(C(x_1, x_2)) = [3] + x_1 + x_2 POL(EQZLIST'(x_1, x_2)) = 0 POL(EQZLIST''(x_1, x_2)) = x_1 + x_2 POL(F'(x_1)) = [1] + [3]x_1 POL(F''(x_1)) = [3]x_1 POL(c23(x_1, x_2)) = x_1 + x_2 POL(c25(x_1, x_2)) = x_1 + x_2 POL(c32(x_1)) = x_1 POL(c33(x_1)) = x_1 POL(c35(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c36(x_1, x_2, x_3)) = x_1 + x_2 + x_3 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F'(C(z0, z1)) -> c23(F'(z0), F'(z1)) F''(C(z0, z1)) -> c32(F''(z0)) F''(C(z0, z1)) -> c33(F''(z1)) EQZLIST'(C(z0, z1), C(z2, z3)) -> c25(EQZLIST'(z0, z2), EQZLIST'(z1, z3)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c35(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c36(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) S tuples:none K tuples: F''(C(z0, z1)) -> c32(F''(z0)) F''(C(z0, z1)) -> c33(F''(z1)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c35(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c36(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) Defined Rule Symbols:none Defined Pair Symbols: F'_1, F''_1, EQZLIST'_2, EQZLIST''_2 Compound Symbols: c23_2, c32_1, c33_1, c25_2, c35_3, c36_3 ---------------------------------------- (13) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (14) BOUNDS(1, 1) ---------------------------------------- (15) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: F(C(z0, z1)) -> c4(F(z0)) F(C(z0, z1)) -> c5(F(z1)) F(Z) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 G(z0) -> c14 The (relative) TRS S consists of the following rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True f(C(z0, z1)) -> C(f(z0), f(z1)) f(Z) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 g(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (17) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence F(C(z0, z1)) ->^+ c4(F(z0)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z0 / C(z0, z1)]. The result substitution is [ ]. ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: F(C(z0, z1)) -> c4(F(z0)) F(C(z0, z1)) -> c5(F(z1)) F(Z) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 G(z0) -> c14 The (relative) TRS S consists of the following rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True f(C(z0, z1)) -> C(f(z0), f(z1)) f(Z) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 g(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: F(C(z0, z1)) -> c4(F(z0)) F(C(z0, z1)) -> c5(F(z1)) F(Z) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 G(z0) -> c14 The (relative) TRS S consists of the following rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True f(C(z0, z1)) -> C(f(z0), f(z1)) f(Z) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 g(z0) -> z0 Rewrite Strategy: INNERMOST