WORST_CASE(Omega(n^1),O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 250 ms] (2) CpxRelTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 55 ms] (12) CdtProblem (13) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 15 ms] (14) CdtProblem (15) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (16) BOUNDS(1, 1) (17) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (18) TRS for Loop Detection (19) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^1, INF) (24) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 The (relative) TRS S consists of the following rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 The (relative) TRS S consists of the following rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 Tuples: AND'(False, False) -> c14 AND'(True, False) -> c15 AND'(False, True) -> c16 AND'(True, True) -> c17 AND''(False, False) -> c18 AND''(True, False) -> c19 AND''(False, True) -> c20 AND''(True, True) -> c21 A'(C(z0, z1), z2) -> c22(A'(z0, z2), A'(z1, C(z0, z1))) A'(Z, z0) -> c23 EQZLIST'(C(z0, z1), C(z2, z3)) -> c24(AND''(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3)) EQZLIST'(C(z0, z1), Z) -> c25 EQZLIST'(Z, C(z0, z1)) -> c26 EQZLIST'(Z, Z) -> c27 SECOND'(C(z0, z1)) -> c28 FIRST'(C(z0, z1)) -> c29 A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) A''(Z, z0) -> c32 EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) EQZLIST''(C(z0, z1), Z) -> c35 EQZLIST''(Z, C(z0, z1)) -> c36 EQZLIST''(Z, Z) -> c37 SECOND''(C(z0, z1)) -> c38 FIRST''(C(z0, z1)) -> c39 S tuples: A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) A''(Z, z0) -> c32 EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) EQZLIST''(C(z0, z1), Z) -> c35 EQZLIST''(Z, C(z0, z1)) -> c36 EQZLIST''(Z, Z) -> c37 SECOND''(C(z0, z1)) -> c38 FIRST''(C(z0, z1)) -> c39 K tuples:none Defined Rule Symbols: A_2, EQZLIST_2, SECOND_1, FIRST_1, AND_2, and_2, a_2, eqZList_2, second_1, first_1 Defined Pair Symbols: AND'_2, AND''_2, A'_2, EQZLIST'_2, SECOND'_1, FIRST'_1, A''_2, EQZLIST''_2, SECOND''_1, FIRST''_1 Compound Symbols: c14, c15, c16, c17, c18, c19, c20, c21, c22_2, c23, c24_3, c25, c26, c27, c28, c29, c30_1, c31_1, c32, c33_4, c34_4, c35, c36, c37, c38, c39 ---------------------------------------- (5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 20 trailing nodes: AND'(True, False) -> c15 AND''(False, False) -> c18 SECOND''(C(z0, z1)) -> c38 EQZLIST'(Z, C(z0, z1)) -> c26 AND''(False, True) -> c20 EQZLIST''(Z, C(z0, z1)) -> c36 AND''(True, True) -> c21 A''(Z, z0) -> c32 FIRST''(C(z0, z1)) -> c39 AND''(True, False) -> c19 FIRST'(C(z0, z1)) -> c29 EQZLIST'(C(z0, z1), Z) -> c25 EQZLIST'(Z, Z) -> c27 AND'(False, True) -> c16 EQZLIST''(Z, Z) -> c37 AND'(True, True) -> c17 SECOND'(C(z0, z1)) -> c28 EQZLIST''(C(z0, z1), Z) -> c35 A'(Z, z0) -> c23 AND'(False, False) -> c14 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 Tuples: A'(C(z0, z1), z2) -> c22(A'(z0, z2), A'(z1, C(z0, z1))) EQZLIST'(C(z0, z1), C(z2, z3)) -> c24(AND''(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3)) A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) S tuples: A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(AND'(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) K tuples:none Defined Rule Symbols: A_2, EQZLIST_2, SECOND_1, FIRST_1, AND_2, and_2, a_2, eqZList_2, second_1, first_1 Defined Pair Symbols: A'_2, EQZLIST'_2, A''_2, EQZLIST''_2 Compound Symbols: c22_2, c24_3, c30_1, c31_1, c33_4, c34_4 ---------------------------------------- (7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing tuple parts ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 Tuples: A'(C(z0, z1), z2) -> c22(A'(z0, z2), A'(z1, C(z0, z1))) A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) EQZLIST'(C(z0, z1), C(z2, z3)) -> c24(EQZLIST'(z0, z2), EQZLIST'(z1, z3)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) S tuples: A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) K tuples:none Defined Rule Symbols: A_2, EQZLIST_2, SECOND_1, FIRST_1, AND_2, and_2, a_2, eqZList_2, second_1, first_1 Defined Pair Symbols: A'_2, A''_2, EQZLIST'_2, EQZLIST''_2 Compound Symbols: c22_2, c30_1, c31_1, c24_2, c33_3, c34_3 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: A'(C(z0, z1), z2) -> c22(A'(z0, z2), A'(z1, C(z0, z1))) A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) EQZLIST'(C(z0, z1), C(z2, z3)) -> c24(EQZLIST'(z0, z2), EQZLIST'(z1, z3)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) S tuples: A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: A'_2, A''_2, EQZLIST'_2, EQZLIST''_2 Compound Symbols: c22_2, c30_1, c31_1, c24_2, c33_3, c34_3 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) We considered the (Usable) Rules:none And the Tuples: A'(C(z0, z1), z2) -> c22(A'(z0, z2), A'(z1, C(z0, z1))) A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) EQZLIST'(C(z0, z1), C(z2, z3)) -> c24(EQZLIST'(z0, z2), EQZLIST'(z1, z3)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) The order we found is given by the following interpretation: Polynomial interpretation : POL(A'(x_1, x_2)) = 0 POL(A''(x_1, x_2)) = [2]x_1 POL(C(x_1, x_2)) = [1] + x_1 + x_2 POL(EQZLIST'(x_1, x_2)) = 0 POL(EQZLIST''(x_1, x_2)) = 0 POL(c22(x_1, x_2)) = x_1 + x_2 POL(c24(x_1, x_2)) = x_1 + x_2 POL(c30(x_1)) = x_1 POL(c31(x_1)) = x_1 POL(c33(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c34(x_1, x_2, x_3)) = x_1 + x_2 + x_3 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: A'(C(z0, z1), z2) -> c22(A'(z0, z2), A'(z1, C(z0, z1))) A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) EQZLIST'(C(z0, z1), C(z2, z3)) -> c24(EQZLIST'(z0, z2), EQZLIST'(z1, z3)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) S tuples: EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) K tuples: A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) Defined Rule Symbols:none Defined Pair Symbols: A'_2, A''_2, EQZLIST'_2, EQZLIST''_2 Compound Symbols: c22_2, c30_1, c31_1, c24_2, c33_3, c34_3 ---------------------------------------- (13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) We considered the (Usable) Rules:none And the Tuples: A'(C(z0, z1), z2) -> c22(A'(z0, z2), A'(z1, C(z0, z1))) A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) EQZLIST'(C(z0, z1), C(z2, z3)) -> c24(EQZLIST'(z0, z2), EQZLIST'(z1, z3)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) The order we found is given by the following interpretation: Polynomial interpretation : POL(A'(x_1, x_2)) = [1] + x_1 POL(A''(x_1, x_2)) = x_1 POL(C(x_1, x_2)) = [1] + x_1 + x_2 POL(EQZLIST'(x_1, x_2)) = 0 POL(EQZLIST''(x_1, x_2)) = x_1 POL(c22(x_1, x_2)) = x_1 + x_2 POL(c24(x_1, x_2)) = x_1 + x_2 POL(c30(x_1)) = x_1 POL(c31(x_1)) = x_1 POL(c33(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c34(x_1, x_2, x_3)) = x_1 + x_2 + x_3 ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: A'(C(z0, z1), z2) -> c22(A'(z0, z2), A'(z1, C(z0, z1))) A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) EQZLIST'(C(z0, z1), C(z2, z3)) -> c24(EQZLIST'(z0, z2), EQZLIST'(z1, z3)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) S tuples:none K tuples: A''(C(z0, z1), z2) -> c30(A''(z0, z2)) A''(C(z0, z1), z2) -> c31(A''(z1, C(z0, z1))) EQZLIST''(C(z0, z1), C(z2, z3)) -> c33(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z0, z2)) EQZLIST''(C(z0, z1), C(z2, z3)) -> c34(EQZLIST'(z0, z2), EQZLIST'(z1, z3), EQZLIST''(z1, z3)) Defined Rule Symbols:none Defined Pair Symbols: A'_2, A''_2, EQZLIST'_2, EQZLIST''_2 Compound Symbols: c22_2, c30_1, c31_1, c24_2, c33_3, c34_3 ---------------------------------------- (15) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (16) BOUNDS(1, 1) ---------------------------------------- (17) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 The (relative) TRS S consists of the following rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (19) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence A(C(z0, z1), z2) ->^+ c5(A(z1, C(z0, z1))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z1 / C(z0, z1)]. The result substitution is [z2 / C(z0, z1)]. ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 The (relative) TRS S consists of the following rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^1, INF) ---------------------------------------- (24) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: A(C(z0, z1), z2) -> c4(A(z0, z2)) A(C(z0, z1), z2) -> c5(A(z1, C(z0, z1))) A(Z, z0) -> c6 EQZLIST(C(z0, z1), C(z2, z3)) -> c7(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z0, z2)) EQZLIST(C(z0, z1), C(z2, z3)) -> c8(AND(eqZList(z0, z2), eqZList(z1, z3)), EQZLIST(z1, z3)) EQZLIST(C(z0, z1), Z) -> c9 EQZLIST(Z, C(z0, z1)) -> c10 EQZLIST(Z, Z) -> c11 SECOND(C(z0, z1)) -> c12 FIRST(C(z0, z1)) -> c13 The (relative) TRS S consists of the following rules: AND(False, False) -> c AND(True, False) -> c1 AND(False, True) -> c2 AND(True, True) -> c3 and(False, False) -> False and(True, False) -> False and(False, True) -> False and(True, True) -> True a(C(z0, z1), z2) -> C(a(z0, z2), a(z1, C(z0, z1))) a(Z, z0) -> Z eqZList(C(z0, z1), C(z2, z3)) -> and(eqZList(z0, z2), eqZList(z1, z3)) eqZList(C(z0, z1), Z) -> False eqZList(Z, C(z0, z1)) -> False eqZList(Z, Z) -> True second(C(z0, z1)) -> z1 first(C(z0, z1)) -> z0 Rewrite Strategy: INNERMOST