WORST_CASE(Omega(n^1),?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 3753 ms] (2) CpxRelTRS (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (4) TRS for Loop Detection (5) DecreasingLoopProof [LOWER BOUND(ID), 9 ms] (6) BEST (7) proven lower bound (8) LowerBoundPropagationProof [FINISHED, 0 ms] (9) BOUNDS(n^1, INF) (10) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: DIV(z0, z1) -> c1(DIV2(z0, z1, 0)) DIV2(z0, z1, z2) -> c2(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), LE(z1, 0)) DIV2(z0, z1, z2) -> c3(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), LE(z1, z0)) DIV2(z0, z1, z2) -> c4(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), PLUS(z2, 0)) DIV2(z0, z1, z2) -> c5(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), INC(z2)) IF1(true, z0, z1, z2, z3, z4) -> c6 IF1(false, z0, z1, z2, z3, z4) -> c7(IF2(z0, z1, z2, z3, z4)) IF2(true, z0, z1, z2, z3) -> c8(DIV2(minus(z0, z1), z1, z3), MINUS(z0, z1)) IF2(false, z0, z1, z2, z3) -> c9 INC(0) -> c10 INC(s(z0)) -> c11(INC(z0)) LE(s(z0), 0) -> c12 LE(0, z0) -> c13 LE(s(z0), s(z1)) -> c14(LE(z0, z1)) MINUS(z0, 0) -> c15 MINUS(0, z0) -> c16 MINUS(s(z0), s(z1)) -> c17(MINUS(z0, z1)) PLUS(z0, z1) -> c18(PLUSITER(z0, z1, 0)) PLUSITER(z0, z1, z2) -> c19(IFPLUS(le(z0, z2), z0, z1, z2), LE(z0, z2)) IFPLUS(true, z0, z1, z2) -> c20 IFPLUS(false, z0, z1, z2) -> c21(PLUSITER(z0, s(z1), s(z2))) A -> c22 A -> c23 The (relative) TRS S consists of the following rules: div(z0, z1) -> div2(z0, z1, 0) div2(z0, z1, z2) -> if1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)) if1(true, z0, z1, z2, z3, z4) -> divZeroError if1(false, z0, z1, z2, z3, z4) -> if2(z0, z1, z2, z3, z4) if2(true, z0, z1, z2, z3) -> div2(minus(z0, z1), z1, z3) if2(false, z0, z1, z2, z3) -> z2 inc(0) -> 0 inc(s(z0)) -> s(inc(z0)) le(s(z0), 0) -> false le(0, z0) -> true le(s(z0), s(z1)) -> le(z0, z1) minus(z0, 0) -> z0 minus(0, z0) -> 0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(z0, z1) -> plusIter(z0, z1, 0) plusIter(z0, z1, z2) -> ifPlus(le(z0, z2), z0, z1, z2) ifPlus(true, z0, z1, z2) -> z1 ifPlus(false, z0, z1, z2) -> plusIter(z0, s(z1), s(z2)) a -> c a -> d Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: DIV(z0, z1) -> c1(DIV2(z0, z1, 0)) DIV2(z0, z1, z2) -> c2(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), LE(z1, 0)) DIV2(z0, z1, z2) -> c3(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), LE(z1, z0)) DIV2(z0, z1, z2) -> c4(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), PLUS(z2, 0)) DIV2(z0, z1, z2) -> c5(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), INC(z2)) IF1(true, z0, z1, z2, z3, z4) -> c6 IF1(false, z0, z1, z2, z3, z4) -> c7(IF2(z0, z1, z2, z3, z4)) IF2(true, z0, z1, z2, z3) -> c8(DIV2(minus(z0, z1), z1, z3), MINUS(z0, z1)) IF2(false, z0, z1, z2, z3) -> c9 INC(0) -> c10 INC(s(z0)) -> c11(INC(z0)) LE(s(z0), 0) -> c12 LE(0, z0) -> c13 LE(s(z0), s(z1)) -> c14(LE(z0, z1)) MINUS(z0, 0) -> c15 MINUS(0, z0) -> c16 MINUS(s(z0), s(z1)) -> c17(MINUS(z0, z1)) PLUS(z0, z1) -> c18(PLUSITER(z0, z1, 0)) PLUSITER(z0, z1, z2) -> c19(IFPLUS(le(z0, z2), z0, z1, z2), LE(z0, z2)) IFPLUS(true, z0, z1, z2) -> c20 IFPLUS(false, z0, z1, z2) -> c21(PLUSITER(z0, s(z1), s(z2))) A -> c22 A -> c23 The (relative) TRS S consists of the following rules: div(z0, z1) -> div2(z0, z1, 0) div2(z0, z1, z2) -> if1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)) if1(true, z0, z1, z2, z3, z4) -> divZeroError if1(false, z0, z1, z2, z3, z4) -> if2(z0, z1, z2, z3, z4) if2(true, z0, z1, z2, z3) -> div2(minus(z0, z1), z1, z3) if2(false, z0, z1, z2, z3) -> z2 inc(0) -> 0 inc(s(z0)) -> s(inc(z0)) le(s(z0), 0) -> false le(0, z0) -> true le(s(z0), s(z1)) -> le(z0, z1) minus(z0, 0) -> z0 minus(0, z0) -> 0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(z0, z1) -> plusIter(z0, z1, 0) plusIter(z0, z1, z2) -> ifPlus(le(z0, z2), z0, z1, z2) ifPlus(true, z0, z1, z2) -> z1 ifPlus(false, z0, z1, z2) -> plusIter(z0, s(z1), s(z2)) a -> c a -> d Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (4) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: DIV(z0, z1) -> c1(DIV2(z0, z1, 0)) DIV2(z0, z1, z2) -> c2(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), LE(z1, 0)) DIV2(z0, z1, z2) -> c3(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), LE(z1, z0)) DIV2(z0, z1, z2) -> c4(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), PLUS(z2, 0)) DIV2(z0, z1, z2) -> c5(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), INC(z2)) IF1(true, z0, z1, z2, z3, z4) -> c6 IF1(false, z0, z1, z2, z3, z4) -> c7(IF2(z0, z1, z2, z3, z4)) IF2(true, z0, z1, z2, z3) -> c8(DIV2(minus(z0, z1), z1, z3), MINUS(z0, z1)) IF2(false, z0, z1, z2, z3) -> c9 INC(0) -> c10 INC(s(z0)) -> c11(INC(z0)) LE(s(z0), 0) -> c12 LE(0, z0) -> c13 LE(s(z0), s(z1)) -> c14(LE(z0, z1)) MINUS(z0, 0) -> c15 MINUS(0, z0) -> c16 MINUS(s(z0), s(z1)) -> c17(MINUS(z0, z1)) PLUS(z0, z1) -> c18(PLUSITER(z0, z1, 0)) PLUSITER(z0, z1, z2) -> c19(IFPLUS(le(z0, z2), z0, z1, z2), LE(z0, z2)) IFPLUS(true, z0, z1, z2) -> c20 IFPLUS(false, z0, z1, z2) -> c21(PLUSITER(z0, s(z1), s(z2))) A -> c22 A -> c23 The (relative) TRS S consists of the following rules: div(z0, z1) -> div2(z0, z1, 0) div2(z0, z1, z2) -> if1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)) if1(true, z0, z1, z2, z3, z4) -> divZeroError if1(false, z0, z1, z2, z3, z4) -> if2(z0, z1, z2, z3, z4) if2(true, z0, z1, z2, z3) -> div2(minus(z0, z1), z1, z3) if2(false, z0, z1, z2, z3) -> z2 inc(0) -> 0 inc(s(z0)) -> s(inc(z0)) le(s(z0), 0) -> false le(0, z0) -> true le(s(z0), s(z1)) -> le(z0, z1) minus(z0, 0) -> z0 minus(0, z0) -> 0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(z0, z1) -> plusIter(z0, z1, 0) plusIter(z0, z1, z2) -> ifPlus(le(z0, z2), z0, z1, z2) ifPlus(true, z0, z1, z2) -> z1 ifPlus(false, z0, z1, z2) -> plusIter(z0, s(z1), s(z2)) a -> c a -> d Rewrite Strategy: INNERMOST ---------------------------------------- (5) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence MINUS(s(z0), s(z1)) ->^+ c17(MINUS(z0, z1)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z0 / s(z0), z1 / s(z1)]. The result substitution is [ ]. ---------------------------------------- (6) Complex Obligation (BEST) ---------------------------------------- (7) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: DIV(z0, z1) -> c1(DIV2(z0, z1, 0)) DIV2(z0, z1, z2) -> c2(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), LE(z1, 0)) DIV2(z0, z1, z2) -> c3(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), LE(z1, z0)) DIV2(z0, z1, z2) -> c4(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), PLUS(z2, 0)) DIV2(z0, z1, z2) -> c5(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), INC(z2)) IF1(true, z0, z1, z2, z3, z4) -> c6 IF1(false, z0, z1, z2, z3, z4) -> c7(IF2(z0, z1, z2, z3, z4)) IF2(true, z0, z1, z2, z3) -> c8(DIV2(minus(z0, z1), z1, z3), MINUS(z0, z1)) IF2(false, z0, z1, z2, z3) -> c9 INC(0) -> c10 INC(s(z0)) -> c11(INC(z0)) LE(s(z0), 0) -> c12 LE(0, z0) -> c13 LE(s(z0), s(z1)) -> c14(LE(z0, z1)) MINUS(z0, 0) -> c15 MINUS(0, z0) -> c16 MINUS(s(z0), s(z1)) -> c17(MINUS(z0, z1)) PLUS(z0, z1) -> c18(PLUSITER(z0, z1, 0)) PLUSITER(z0, z1, z2) -> c19(IFPLUS(le(z0, z2), z0, z1, z2), LE(z0, z2)) IFPLUS(true, z0, z1, z2) -> c20 IFPLUS(false, z0, z1, z2) -> c21(PLUSITER(z0, s(z1), s(z2))) A -> c22 A -> c23 The (relative) TRS S consists of the following rules: div(z0, z1) -> div2(z0, z1, 0) div2(z0, z1, z2) -> if1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)) if1(true, z0, z1, z2, z3, z4) -> divZeroError if1(false, z0, z1, z2, z3, z4) -> if2(z0, z1, z2, z3, z4) if2(true, z0, z1, z2, z3) -> div2(minus(z0, z1), z1, z3) if2(false, z0, z1, z2, z3) -> z2 inc(0) -> 0 inc(s(z0)) -> s(inc(z0)) le(s(z0), 0) -> false le(0, z0) -> true le(s(z0), s(z1)) -> le(z0, z1) minus(z0, 0) -> z0 minus(0, z0) -> 0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(z0, z1) -> plusIter(z0, z1, 0) plusIter(z0, z1, z2) -> ifPlus(le(z0, z2), z0, z1, z2) ifPlus(true, z0, z1, z2) -> z1 ifPlus(false, z0, z1, z2) -> plusIter(z0, s(z1), s(z2)) a -> c a -> d Rewrite Strategy: INNERMOST ---------------------------------------- (8) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (9) BOUNDS(n^1, INF) ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: DIV(z0, z1) -> c1(DIV2(z0, z1, 0)) DIV2(z0, z1, z2) -> c2(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), LE(z1, 0)) DIV2(z0, z1, z2) -> c3(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), LE(z1, z0)) DIV2(z0, z1, z2) -> c4(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), PLUS(z2, 0)) DIV2(z0, z1, z2) -> c5(IF1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)), INC(z2)) IF1(true, z0, z1, z2, z3, z4) -> c6 IF1(false, z0, z1, z2, z3, z4) -> c7(IF2(z0, z1, z2, z3, z4)) IF2(true, z0, z1, z2, z3) -> c8(DIV2(minus(z0, z1), z1, z3), MINUS(z0, z1)) IF2(false, z0, z1, z2, z3) -> c9 INC(0) -> c10 INC(s(z0)) -> c11(INC(z0)) LE(s(z0), 0) -> c12 LE(0, z0) -> c13 LE(s(z0), s(z1)) -> c14(LE(z0, z1)) MINUS(z0, 0) -> c15 MINUS(0, z0) -> c16 MINUS(s(z0), s(z1)) -> c17(MINUS(z0, z1)) PLUS(z0, z1) -> c18(PLUSITER(z0, z1, 0)) PLUSITER(z0, z1, z2) -> c19(IFPLUS(le(z0, z2), z0, z1, z2), LE(z0, z2)) IFPLUS(true, z0, z1, z2) -> c20 IFPLUS(false, z0, z1, z2) -> c21(PLUSITER(z0, s(z1), s(z2))) A -> c22 A -> c23 The (relative) TRS S consists of the following rules: div(z0, z1) -> div2(z0, z1, 0) div2(z0, z1, z2) -> if1(le(z1, 0), le(z1, z0), z0, z1, plus(z2, 0), inc(z2)) if1(true, z0, z1, z2, z3, z4) -> divZeroError if1(false, z0, z1, z2, z3, z4) -> if2(z0, z1, z2, z3, z4) if2(true, z0, z1, z2, z3) -> div2(minus(z0, z1), z1, z3) if2(false, z0, z1, z2, z3) -> z2 inc(0) -> 0 inc(s(z0)) -> s(inc(z0)) le(s(z0), 0) -> false le(0, z0) -> true le(s(z0), s(z1)) -> le(z0, z1) minus(z0, 0) -> z0 minus(0, z0) -> 0 minus(s(z0), s(z1)) -> minus(z0, z1) plus(z0, z1) -> plusIter(z0, z1, 0) plusIter(z0, z1, z2) -> ifPlus(le(z0, z2), z0, z1, z2) ifPlus(true, z0, z1, z2) -> z1 ifPlus(false, z0, z1, z2) -> plusIter(z0, s(z1), s(z2)) a -> c a -> d Rewrite Strategy: INNERMOST