WORST_CASE(Omega(n^1),?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 999 ms] (2) CpxRelTRS (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (4) TRS for Loop Detection (5) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (6) BEST (7) proven lower bound (8) LowerBoundPropagationProof [FINISHED, 0 ms] (9) BOUNDS(n^1, INF) (10) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: SUM(cons(s(z0), z1), cons(z2, z3)) -> c(SUM(cons(z0, z1), cons(s(z2), z3))) SUM(cons(0, z0), z1) -> c1(SUM(z0, z1)) SUM(nil, z0) -> c2 EMPTY(nil) -> c3 EMPTY(cons(z0, z1)) -> c4 TAIL(nil) -> c5 TAIL(cons(z0, z1)) -> c6 HEAD(cons(z0, z1)) -> c7 WEIGHT(z0) -> c8(IF(empty(z0), empty(tail(z0)), z0), EMPTY(z0)) WEIGHT(z0) -> c9(IF(empty(z0), empty(tail(z0)), z0), EMPTY(tail(z0)), TAIL(z0)) IF(true, z0, z1) -> c10 IF(false, z0, z1) -> c11(IF2(z0, z1)) IF2(true, z0) -> c12(HEAD(z0)) IF2(false, z0) -> c13(WEIGHT(sum(z0, cons(0, tail(tail(z0))))), SUM(z0, cons(0, tail(tail(z0)))), TAIL(tail(z0)), TAIL(z0)) The (relative) TRS S consists of the following rules: sum(cons(s(z0), z1), cons(z2, z3)) -> sum(cons(z0, z1), cons(s(z2), z3)) sum(cons(0, z0), z1) -> sum(z0, z1) sum(nil, z0) -> z0 empty(nil) -> true empty(cons(z0, z1)) -> false tail(nil) -> nil tail(cons(z0, z1)) -> z1 head(cons(z0, z1)) -> z0 weight(z0) -> if(empty(z0), empty(tail(z0)), z0) if(true, z0, z1) -> weight_undefined_error if(false, z0, z1) -> if2(z0, z1) if2(true, z0) -> head(z0) if2(false, z0) -> weight(sum(z0, cons(0, tail(tail(z0))))) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: SUM(cons(s(z0), z1), cons(z2, z3)) -> c(SUM(cons(z0, z1), cons(s(z2), z3))) SUM(cons(0, z0), z1) -> c1(SUM(z0, z1)) SUM(nil, z0) -> c2 EMPTY(nil) -> c3 EMPTY(cons(z0, z1)) -> c4 TAIL(nil) -> c5 TAIL(cons(z0, z1)) -> c6 HEAD(cons(z0, z1)) -> c7 WEIGHT(z0) -> c8(IF(empty(z0), empty(tail(z0)), z0), EMPTY(z0)) WEIGHT(z0) -> c9(IF(empty(z0), empty(tail(z0)), z0), EMPTY(tail(z0)), TAIL(z0)) IF(true, z0, z1) -> c10 IF(false, z0, z1) -> c11(IF2(z0, z1)) IF2(true, z0) -> c12(HEAD(z0)) IF2(false, z0) -> c13(WEIGHT(sum(z0, cons(0, tail(tail(z0))))), SUM(z0, cons(0, tail(tail(z0)))), TAIL(tail(z0)), TAIL(z0)) The (relative) TRS S consists of the following rules: sum(cons(s(z0), z1), cons(z2, z3)) -> sum(cons(z0, z1), cons(s(z2), z3)) sum(cons(0, z0), z1) -> sum(z0, z1) sum(nil, z0) -> z0 empty(nil) -> true empty(cons(z0, z1)) -> false tail(nil) -> nil tail(cons(z0, z1)) -> z1 head(cons(z0, z1)) -> z0 weight(z0) -> if(empty(z0), empty(tail(z0)), z0) if(true, z0, z1) -> weight_undefined_error if(false, z0, z1) -> if2(z0, z1) if2(true, z0) -> head(z0) if2(false, z0) -> weight(sum(z0, cons(0, tail(tail(z0))))) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (4) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: SUM(cons(s(z0), z1), cons(z2, z3)) -> c(SUM(cons(z0, z1), cons(s(z2), z3))) SUM(cons(0, z0), z1) -> c1(SUM(z0, z1)) SUM(nil, z0) -> c2 EMPTY(nil) -> c3 EMPTY(cons(z0, z1)) -> c4 TAIL(nil) -> c5 TAIL(cons(z0, z1)) -> c6 HEAD(cons(z0, z1)) -> c7 WEIGHT(z0) -> c8(IF(empty(z0), empty(tail(z0)), z0), EMPTY(z0)) WEIGHT(z0) -> c9(IF(empty(z0), empty(tail(z0)), z0), EMPTY(tail(z0)), TAIL(z0)) IF(true, z0, z1) -> c10 IF(false, z0, z1) -> c11(IF2(z0, z1)) IF2(true, z0) -> c12(HEAD(z0)) IF2(false, z0) -> c13(WEIGHT(sum(z0, cons(0, tail(tail(z0))))), SUM(z0, cons(0, tail(tail(z0)))), TAIL(tail(z0)), TAIL(z0)) The (relative) TRS S consists of the following rules: sum(cons(s(z0), z1), cons(z2, z3)) -> sum(cons(z0, z1), cons(s(z2), z3)) sum(cons(0, z0), z1) -> sum(z0, z1) sum(nil, z0) -> z0 empty(nil) -> true empty(cons(z0, z1)) -> false tail(nil) -> nil tail(cons(z0, z1)) -> z1 head(cons(z0, z1)) -> z0 weight(z0) -> if(empty(z0), empty(tail(z0)), z0) if(true, z0, z1) -> weight_undefined_error if(false, z0, z1) -> if2(z0, z1) if2(true, z0) -> head(z0) if2(false, z0) -> weight(sum(z0, cons(0, tail(tail(z0))))) Rewrite Strategy: INNERMOST ---------------------------------------- (5) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence SUM(cons(s(z0), z1), cons(z2, z3)) ->^+ c(SUM(cons(z0, z1), cons(s(z2), z3))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z0 / s(z0)]. The result substitution is [z2 / s(z2)]. ---------------------------------------- (6) Complex Obligation (BEST) ---------------------------------------- (7) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: SUM(cons(s(z0), z1), cons(z2, z3)) -> c(SUM(cons(z0, z1), cons(s(z2), z3))) SUM(cons(0, z0), z1) -> c1(SUM(z0, z1)) SUM(nil, z0) -> c2 EMPTY(nil) -> c3 EMPTY(cons(z0, z1)) -> c4 TAIL(nil) -> c5 TAIL(cons(z0, z1)) -> c6 HEAD(cons(z0, z1)) -> c7 WEIGHT(z0) -> c8(IF(empty(z0), empty(tail(z0)), z0), EMPTY(z0)) WEIGHT(z0) -> c9(IF(empty(z0), empty(tail(z0)), z0), EMPTY(tail(z0)), TAIL(z0)) IF(true, z0, z1) -> c10 IF(false, z0, z1) -> c11(IF2(z0, z1)) IF2(true, z0) -> c12(HEAD(z0)) IF2(false, z0) -> c13(WEIGHT(sum(z0, cons(0, tail(tail(z0))))), SUM(z0, cons(0, tail(tail(z0)))), TAIL(tail(z0)), TAIL(z0)) The (relative) TRS S consists of the following rules: sum(cons(s(z0), z1), cons(z2, z3)) -> sum(cons(z0, z1), cons(s(z2), z3)) sum(cons(0, z0), z1) -> sum(z0, z1) sum(nil, z0) -> z0 empty(nil) -> true empty(cons(z0, z1)) -> false tail(nil) -> nil tail(cons(z0, z1)) -> z1 head(cons(z0, z1)) -> z0 weight(z0) -> if(empty(z0), empty(tail(z0)), z0) if(true, z0, z1) -> weight_undefined_error if(false, z0, z1) -> if2(z0, z1) if2(true, z0) -> head(z0) if2(false, z0) -> weight(sum(z0, cons(0, tail(tail(z0))))) Rewrite Strategy: INNERMOST ---------------------------------------- (8) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (9) BOUNDS(n^1, INF) ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: SUM(cons(s(z0), z1), cons(z2, z3)) -> c(SUM(cons(z0, z1), cons(s(z2), z3))) SUM(cons(0, z0), z1) -> c1(SUM(z0, z1)) SUM(nil, z0) -> c2 EMPTY(nil) -> c3 EMPTY(cons(z0, z1)) -> c4 TAIL(nil) -> c5 TAIL(cons(z0, z1)) -> c6 HEAD(cons(z0, z1)) -> c7 WEIGHT(z0) -> c8(IF(empty(z0), empty(tail(z0)), z0), EMPTY(z0)) WEIGHT(z0) -> c9(IF(empty(z0), empty(tail(z0)), z0), EMPTY(tail(z0)), TAIL(z0)) IF(true, z0, z1) -> c10 IF(false, z0, z1) -> c11(IF2(z0, z1)) IF2(true, z0) -> c12(HEAD(z0)) IF2(false, z0) -> c13(WEIGHT(sum(z0, cons(0, tail(tail(z0))))), SUM(z0, cons(0, tail(tail(z0)))), TAIL(tail(z0)), TAIL(z0)) The (relative) TRS S consists of the following rules: sum(cons(s(z0), z1), cons(z2, z3)) -> sum(cons(z0, z1), cons(s(z2), z3)) sum(cons(0, z0), z1) -> sum(z0, z1) sum(nil, z0) -> z0 empty(nil) -> true empty(cons(z0, z1)) -> false tail(nil) -> nil tail(cons(z0, z1)) -> z1 head(cons(z0, z1)) -> z0 weight(z0) -> if(empty(z0), empty(tail(z0)), z0) if(true, z0, z1) -> weight_undefined_error if(false, z0, z1) -> if2(z0, z1) if2(true, z0) -> head(z0) if2(false, z0) -> weight(sum(z0, cons(0, tail(tail(z0))))) Rewrite Strategy: INNERMOST