WORST_CASE(Omega(n^1),?) proof of /export/starexec/sandbox/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 9624 ms] (2) CpxRelTRS (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (4) TRS for Loop Detection (5) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (6) BEST (7) proven lower bound (8) LowerBoundPropagationProof [FINISHED, 0 ms] (9) BOUNDS(n^1, INF) (10) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LE(0, z0) -> c LE(s(z0), 0) -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) INC(0) -> c3 INC(s(z0)) -> c4(INC(z0)) MINUS(0, z0) -> c5 MINUS(z0, 0) -> c6 MINUS(s(z0), s(z1)) -> c7(MINUS(z0, z1)) QUOT(0, s(z0)) -> c8 QUOT(s(z0), s(z1)) -> c9(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) LOG(z0) -> c10(LOG2(z0, 0)) LOG2(z0, z1) -> c11(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), LE(z0, 0)) LOG2(z0, z1) -> c12(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), LE(z0, s(0))) LOG2(z0, z1) -> c13(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), INC(z1)) IF(true, z0, z1, z2) -> c14 IF(false, z0, z1, z2) -> c15(IF2(z0, z1, z2)) IF2(true, z0, s(z1)) -> c16 IF2(false, z0, z1) -> c17(LOG2(quot(z0, s(s(0))), z1), QUOT(z0, s(s(0)))) The (relative) TRS S consists of the following rules: le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0) -> 0 inc(s(z0)) -> s(inc(z0)) minus(0, z0) -> 0 minus(z0, 0) -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) quot(0, s(z0)) -> 0 quot(s(z0), s(z1)) -> s(quot(minus(z0, z1), s(z1))) log(z0) -> log2(z0, 0) log2(z0, z1) -> if(le(z0, 0), le(z0, s(0)), z0, inc(z1)) if(true, z0, z1, z2) -> log_undefined if(false, z0, z1, z2) -> if2(z0, z1, z2) if2(true, z0, s(z1)) -> z1 if2(false, z0, z1) -> log2(quot(z0, s(s(0))), z1) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LE(0, z0) -> c LE(s(z0), 0) -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) INC(0) -> c3 INC(s(z0)) -> c4(INC(z0)) MINUS(0, z0) -> c5 MINUS(z0, 0) -> c6 MINUS(s(z0), s(z1)) -> c7(MINUS(z0, z1)) QUOT(0, s(z0)) -> c8 QUOT(s(z0), s(z1)) -> c9(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) LOG(z0) -> c10(LOG2(z0, 0)) LOG2(z0, z1) -> c11(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), LE(z0, 0)) LOG2(z0, z1) -> c12(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), LE(z0, s(0))) LOG2(z0, z1) -> c13(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), INC(z1)) IF(true, z0, z1, z2) -> c14 IF(false, z0, z1, z2) -> c15(IF2(z0, z1, z2)) IF2(true, z0, s(z1)) -> c16 IF2(false, z0, z1) -> c17(LOG2(quot(z0, s(s(0))), z1), QUOT(z0, s(s(0)))) The (relative) TRS S consists of the following rules: le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0) -> 0 inc(s(z0)) -> s(inc(z0)) minus(0, z0) -> 0 minus(z0, 0) -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) quot(0, s(z0)) -> 0 quot(s(z0), s(z1)) -> s(quot(minus(z0, z1), s(z1))) log(z0) -> log2(z0, 0) log2(z0, z1) -> if(le(z0, 0), le(z0, s(0)), z0, inc(z1)) if(true, z0, z1, z2) -> log_undefined if(false, z0, z1, z2) -> if2(z0, z1, z2) if2(true, z0, s(z1)) -> z1 if2(false, z0, z1) -> log2(quot(z0, s(s(0))), z1) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (4) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LE(0, z0) -> c LE(s(z0), 0) -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) INC(0) -> c3 INC(s(z0)) -> c4(INC(z0)) MINUS(0, z0) -> c5 MINUS(z0, 0) -> c6 MINUS(s(z0), s(z1)) -> c7(MINUS(z0, z1)) QUOT(0, s(z0)) -> c8 QUOT(s(z0), s(z1)) -> c9(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) LOG(z0) -> c10(LOG2(z0, 0)) LOG2(z0, z1) -> c11(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), LE(z0, 0)) LOG2(z0, z1) -> c12(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), LE(z0, s(0))) LOG2(z0, z1) -> c13(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), INC(z1)) IF(true, z0, z1, z2) -> c14 IF(false, z0, z1, z2) -> c15(IF2(z0, z1, z2)) IF2(true, z0, s(z1)) -> c16 IF2(false, z0, z1) -> c17(LOG2(quot(z0, s(s(0))), z1), QUOT(z0, s(s(0)))) The (relative) TRS S consists of the following rules: le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0) -> 0 inc(s(z0)) -> s(inc(z0)) minus(0, z0) -> 0 minus(z0, 0) -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) quot(0, s(z0)) -> 0 quot(s(z0), s(z1)) -> s(quot(minus(z0, z1), s(z1))) log(z0) -> log2(z0, 0) log2(z0, z1) -> if(le(z0, 0), le(z0, s(0)), z0, inc(z1)) if(true, z0, z1, z2) -> log_undefined if(false, z0, z1, z2) -> if2(z0, z1, z2) if2(true, z0, s(z1)) -> z1 if2(false, z0, z1) -> log2(quot(z0, s(s(0))), z1) Rewrite Strategy: INNERMOST ---------------------------------------- (5) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence INC(s(z0)) ->^+ c4(INC(z0)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z0 / s(z0)]. The result substitution is [ ]. ---------------------------------------- (6) Complex Obligation (BEST) ---------------------------------------- (7) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LE(0, z0) -> c LE(s(z0), 0) -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) INC(0) -> c3 INC(s(z0)) -> c4(INC(z0)) MINUS(0, z0) -> c5 MINUS(z0, 0) -> c6 MINUS(s(z0), s(z1)) -> c7(MINUS(z0, z1)) QUOT(0, s(z0)) -> c8 QUOT(s(z0), s(z1)) -> c9(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) LOG(z0) -> c10(LOG2(z0, 0)) LOG2(z0, z1) -> c11(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), LE(z0, 0)) LOG2(z0, z1) -> c12(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), LE(z0, s(0))) LOG2(z0, z1) -> c13(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), INC(z1)) IF(true, z0, z1, z2) -> c14 IF(false, z0, z1, z2) -> c15(IF2(z0, z1, z2)) IF2(true, z0, s(z1)) -> c16 IF2(false, z0, z1) -> c17(LOG2(quot(z0, s(s(0))), z1), QUOT(z0, s(s(0)))) The (relative) TRS S consists of the following rules: le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0) -> 0 inc(s(z0)) -> s(inc(z0)) minus(0, z0) -> 0 minus(z0, 0) -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) quot(0, s(z0)) -> 0 quot(s(z0), s(z1)) -> s(quot(minus(z0, z1), s(z1))) log(z0) -> log2(z0, 0) log2(z0, z1) -> if(le(z0, 0), le(z0, s(0)), z0, inc(z1)) if(true, z0, z1, z2) -> log_undefined if(false, z0, z1, z2) -> if2(z0, z1, z2) if2(true, z0, s(z1)) -> z1 if2(false, z0, z1) -> log2(quot(z0, s(s(0))), z1) Rewrite Strategy: INNERMOST ---------------------------------------- (8) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (9) BOUNDS(n^1, INF) ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: LE(0, z0) -> c LE(s(z0), 0) -> c1 LE(s(z0), s(z1)) -> c2(LE(z0, z1)) INC(0) -> c3 INC(s(z0)) -> c4(INC(z0)) MINUS(0, z0) -> c5 MINUS(z0, 0) -> c6 MINUS(s(z0), s(z1)) -> c7(MINUS(z0, z1)) QUOT(0, s(z0)) -> c8 QUOT(s(z0), s(z1)) -> c9(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1)) LOG(z0) -> c10(LOG2(z0, 0)) LOG2(z0, z1) -> c11(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), LE(z0, 0)) LOG2(z0, z1) -> c12(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), LE(z0, s(0))) LOG2(z0, z1) -> c13(IF(le(z0, 0), le(z0, s(0)), z0, inc(z1)), INC(z1)) IF(true, z0, z1, z2) -> c14 IF(false, z0, z1, z2) -> c15(IF2(z0, z1, z2)) IF2(true, z0, s(z1)) -> c16 IF2(false, z0, z1) -> c17(LOG2(quot(z0, s(s(0))), z1), QUOT(z0, s(s(0)))) The (relative) TRS S consists of the following rules: le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0) -> 0 inc(s(z0)) -> s(inc(z0)) minus(0, z0) -> 0 minus(z0, 0) -> z0 minus(s(z0), s(z1)) -> minus(z0, z1) quot(0, s(z0)) -> 0 quot(s(z0), s(z1)) -> s(quot(minus(z0, z1), s(z1))) log(z0) -> log2(z0, 0) log2(z0, z1) -> if(le(z0, 0), le(z0, s(0)), z0, inc(z1)) if(true, z0, z1, z2) -> log_undefined if(false, z0, z1, z2) -> if2(z0, z1, z2) if2(true, z0, s(z1)) -> z1 if2(false, z0, z1) -> log2(quot(z0, s(s(0))), z1) Rewrite Strategy: INNERMOST