WORST_CASE(Omega(n^1),?) proof of /export/starexec/sandbox/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 1113 ms] (2) CpxRelTRS (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (4) TRS for Loop Detection (5) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (6) BEST (7) proven lower bound (8) LowerBoundPropagationProof [FINISHED, 0 ms] (9) BOUNDS(n^1, INF) (10) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__FILTER(cons(z0, z1), 0, z2) -> c A__FILTER(cons(z0, z1), s(z2), z3) -> c1(MARK(z0)) A__FILTER(z0, z1, z2) -> c2 A__SIEVE(cons(0, z0)) -> c3 A__SIEVE(cons(s(z0), z1)) -> c4(MARK(z0)) A__SIEVE(z0) -> c5 A__NATS(z0) -> c6(MARK(z0)) A__NATS(z0) -> c7 A__ZPRIMES -> c8(A__SIEVE(a__nats(s(s(0)))), A__NATS(s(s(0)))) A__ZPRIMES -> c9 MARK(filter(z0, z1, z2)) -> c10(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z0)) MARK(filter(z0, z1, z2)) -> c11(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z1)) MARK(filter(z0, z1, z2)) -> c12(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z2)) MARK(sieve(z0)) -> c13(A__SIEVE(mark(z0)), MARK(z0)) MARK(nats(z0)) -> c14(A__NATS(mark(z0)), MARK(z0)) MARK(zprimes) -> c15(A__ZPRIMES) MARK(cons(z0, z1)) -> c16(MARK(z0)) MARK(0) -> c17 MARK(s(z0)) -> c18(MARK(z0)) The (relative) TRS S consists of the following rules: a__filter(cons(z0, z1), 0, z2) -> cons(0, filter(z1, z2, z2)) a__filter(cons(z0, z1), s(z2), z3) -> cons(mark(z0), filter(z1, z2, z3)) a__filter(z0, z1, z2) -> filter(z0, z1, z2) a__sieve(cons(0, z0)) -> cons(0, sieve(z0)) a__sieve(cons(s(z0), z1)) -> cons(s(mark(z0)), sieve(filter(z1, z0, z0))) a__sieve(z0) -> sieve(z0) a__nats(z0) -> cons(mark(z0), nats(s(z0))) a__nats(z0) -> nats(z0) a__zprimes -> a__sieve(a__nats(s(s(0)))) a__zprimes -> zprimes mark(filter(z0, z1, z2)) -> a__filter(mark(z0), mark(z1), mark(z2)) mark(sieve(z0)) -> a__sieve(mark(z0)) mark(nats(z0)) -> a__nats(mark(z0)) mark(zprimes) -> a__zprimes mark(cons(z0, z1)) -> cons(mark(z0), z1) mark(0) -> 0 mark(s(z0)) -> s(mark(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__FILTER(cons(z0, z1), 0, z2) -> c A__FILTER(cons(z0, z1), s(z2), z3) -> c1(MARK(z0)) A__FILTER(z0, z1, z2) -> c2 A__SIEVE(cons(0, z0)) -> c3 A__SIEVE(cons(s(z0), z1)) -> c4(MARK(z0)) A__SIEVE(z0) -> c5 A__NATS(z0) -> c6(MARK(z0)) A__NATS(z0) -> c7 A__ZPRIMES -> c8(A__SIEVE(a__nats(s(s(0)))), A__NATS(s(s(0)))) A__ZPRIMES -> c9 MARK(filter(z0, z1, z2)) -> c10(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z0)) MARK(filter(z0, z1, z2)) -> c11(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z1)) MARK(filter(z0, z1, z2)) -> c12(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z2)) MARK(sieve(z0)) -> c13(A__SIEVE(mark(z0)), MARK(z0)) MARK(nats(z0)) -> c14(A__NATS(mark(z0)), MARK(z0)) MARK(zprimes) -> c15(A__ZPRIMES) MARK(cons(z0, z1)) -> c16(MARK(z0)) MARK(0) -> c17 MARK(s(z0)) -> c18(MARK(z0)) The (relative) TRS S consists of the following rules: a__filter(cons(z0, z1), 0, z2) -> cons(0, filter(z1, z2, z2)) a__filter(cons(z0, z1), s(z2), z3) -> cons(mark(z0), filter(z1, z2, z3)) a__filter(z0, z1, z2) -> filter(z0, z1, z2) a__sieve(cons(0, z0)) -> cons(0, sieve(z0)) a__sieve(cons(s(z0), z1)) -> cons(s(mark(z0)), sieve(filter(z1, z0, z0))) a__sieve(z0) -> sieve(z0) a__nats(z0) -> cons(mark(z0), nats(s(z0))) a__nats(z0) -> nats(z0) a__zprimes -> a__sieve(a__nats(s(s(0)))) a__zprimes -> zprimes mark(filter(z0, z1, z2)) -> a__filter(mark(z0), mark(z1), mark(z2)) mark(sieve(z0)) -> a__sieve(mark(z0)) mark(nats(z0)) -> a__nats(mark(z0)) mark(zprimes) -> a__zprimes mark(cons(z0, z1)) -> cons(mark(z0), z1) mark(0) -> 0 mark(s(z0)) -> s(mark(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (4) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__FILTER(cons(z0, z1), 0, z2) -> c A__FILTER(cons(z0, z1), s(z2), z3) -> c1(MARK(z0)) A__FILTER(z0, z1, z2) -> c2 A__SIEVE(cons(0, z0)) -> c3 A__SIEVE(cons(s(z0), z1)) -> c4(MARK(z0)) A__SIEVE(z0) -> c5 A__NATS(z0) -> c6(MARK(z0)) A__NATS(z0) -> c7 A__ZPRIMES -> c8(A__SIEVE(a__nats(s(s(0)))), A__NATS(s(s(0)))) A__ZPRIMES -> c9 MARK(filter(z0, z1, z2)) -> c10(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z0)) MARK(filter(z0, z1, z2)) -> c11(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z1)) MARK(filter(z0, z1, z2)) -> c12(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z2)) MARK(sieve(z0)) -> c13(A__SIEVE(mark(z0)), MARK(z0)) MARK(nats(z0)) -> c14(A__NATS(mark(z0)), MARK(z0)) MARK(zprimes) -> c15(A__ZPRIMES) MARK(cons(z0, z1)) -> c16(MARK(z0)) MARK(0) -> c17 MARK(s(z0)) -> c18(MARK(z0)) The (relative) TRS S consists of the following rules: a__filter(cons(z0, z1), 0, z2) -> cons(0, filter(z1, z2, z2)) a__filter(cons(z0, z1), s(z2), z3) -> cons(mark(z0), filter(z1, z2, z3)) a__filter(z0, z1, z2) -> filter(z0, z1, z2) a__sieve(cons(0, z0)) -> cons(0, sieve(z0)) a__sieve(cons(s(z0), z1)) -> cons(s(mark(z0)), sieve(filter(z1, z0, z0))) a__sieve(z0) -> sieve(z0) a__nats(z0) -> cons(mark(z0), nats(s(z0))) a__nats(z0) -> nats(z0) a__zprimes -> a__sieve(a__nats(s(s(0)))) a__zprimes -> zprimes mark(filter(z0, z1, z2)) -> a__filter(mark(z0), mark(z1), mark(z2)) mark(sieve(z0)) -> a__sieve(mark(z0)) mark(nats(z0)) -> a__nats(mark(z0)) mark(zprimes) -> a__zprimes mark(cons(z0, z1)) -> cons(mark(z0), z1) mark(0) -> 0 mark(s(z0)) -> s(mark(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence MARK(cons(z0, z1)) ->^+ c16(MARK(z0)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z0 / cons(z0, z1)]. The result substitution is [ ]. ---------------------------------------- (6) Complex Obligation (BEST) ---------------------------------------- (7) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__FILTER(cons(z0, z1), 0, z2) -> c A__FILTER(cons(z0, z1), s(z2), z3) -> c1(MARK(z0)) A__FILTER(z0, z1, z2) -> c2 A__SIEVE(cons(0, z0)) -> c3 A__SIEVE(cons(s(z0), z1)) -> c4(MARK(z0)) A__SIEVE(z0) -> c5 A__NATS(z0) -> c6(MARK(z0)) A__NATS(z0) -> c7 A__ZPRIMES -> c8(A__SIEVE(a__nats(s(s(0)))), A__NATS(s(s(0)))) A__ZPRIMES -> c9 MARK(filter(z0, z1, z2)) -> c10(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z0)) MARK(filter(z0, z1, z2)) -> c11(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z1)) MARK(filter(z0, z1, z2)) -> c12(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z2)) MARK(sieve(z0)) -> c13(A__SIEVE(mark(z0)), MARK(z0)) MARK(nats(z0)) -> c14(A__NATS(mark(z0)), MARK(z0)) MARK(zprimes) -> c15(A__ZPRIMES) MARK(cons(z0, z1)) -> c16(MARK(z0)) MARK(0) -> c17 MARK(s(z0)) -> c18(MARK(z0)) The (relative) TRS S consists of the following rules: a__filter(cons(z0, z1), 0, z2) -> cons(0, filter(z1, z2, z2)) a__filter(cons(z0, z1), s(z2), z3) -> cons(mark(z0), filter(z1, z2, z3)) a__filter(z0, z1, z2) -> filter(z0, z1, z2) a__sieve(cons(0, z0)) -> cons(0, sieve(z0)) a__sieve(cons(s(z0), z1)) -> cons(s(mark(z0)), sieve(filter(z1, z0, z0))) a__sieve(z0) -> sieve(z0) a__nats(z0) -> cons(mark(z0), nats(s(z0))) a__nats(z0) -> nats(z0) a__zprimes -> a__sieve(a__nats(s(s(0)))) a__zprimes -> zprimes mark(filter(z0, z1, z2)) -> a__filter(mark(z0), mark(z1), mark(z2)) mark(sieve(z0)) -> a__sieve(mark(z0)) mark(nats(z0)) -> a__nats(mark(z0)) mark(zprimes) -> a__zprimes mark(cons(z0, z1)) -> cons(mark(z0), z1) mark(0) -> 0 mark(s(z0)) -> s(mark(z0)) Rewrite Strategy: INNERMOST ---------------------------------------- (8) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (9) BOUNDS(n^1, INF) ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__FILTER(cons(z0, z1), 0, z2) -> c A__FILTER(cons(z0, z1), s(z2), z3) -> c1(MARK(z0)) A__FILTER(z0, z1, z2) -> c2 A__SIEVE(cons(0, z0)) -> c3 A__SIEVE(cons(s(z0), z1)) -> c4(MARK(z0)) A__SIEVE(z0) -> c5 A__NATS(z0) -> c6(MARK(z0)) A__NATS(z0) -> c7 A__ZPRIMES -> c8(A__SIEVE(a__nats(s(s(0)))), A__NATS(s(s(0)))) A__ZPRIMES -> c9 MARK(filter(z0, z1, z2)) -> c10(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z0)) MARK(filter(z0, z1, z2)) -> c11(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z1)) MARK(filter(z0, z1, z2)) -> c12(A__FILTER(mark(z0), mark(z1), mark(z2)), MARK(z2)) MARK(sieve(z0)) -> c13(A__SIEVE(mark(z0)), MARK(z0)) MARK(nats(z0)) -> c14(A__NATS(mark(z0)), MARK(z0)) MARK(zprimes) -> c15(A__ZPRIMES) MARK(cons(z0, z1)) -> c16(MARK(z0)) MARK(0) -> c17 MARK(s(z0)) -> c18(MARK(z0)) The (relative) TRS S consists of the following rules: a__filter(cons(z0, z1), 0, z2) -> cons(0, filter(z1, z2, z2)) a__filter(cons(z0, z1), s(z2), z3) -> cons(mark(z0), filter(z1, z2, z3)) a__filter(z0, z1, z2) -> filter(z0, z1, z2) a__sieve(cons(0, z0)) -> cons(0, sieve(z0)) a__sieve(cons(s(z0), z1)) -> cons(s(mark(z0)), sieve(filter(z1, z0, z0))) a__sieve(z0) -> sieve(z0) a__nats(z0) -> cons(mark(z0), nats(s(z0))) a__nats(z0) -> nats(z0) a__zprimes -> a__sieve(a__nats(s(s(0)))) a__zprimes -> zprimes mark(filter(z0, z1, z2)) -> a__filter(mark(z0), mark(z1), mark(z2)) mark(sieve(z0)) -> a__sieve(mark(z0)) mark(nats(z0)) -> a__nats(mark(z0)) mark(zprimes) -> a__zprimes mark(cons(z0, z1)) -> cons(mark(z0), z1) mark(0) -> 0 mark(s(z0)) -> s(mark(z0)) Rewrite Strategy: INNERMOST