WORST_CASE(Omega(n^3),O(n^3)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^3, n^3). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 360 ms] (2) CpxRelTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 180 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 87 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 151 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 83 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 160 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 25 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 273 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 5 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 754 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 58 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 2116 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 418 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 529 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (58) CpxRNTS (59) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 480 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (64) CpxRNTS (65) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 1951 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 109 ms] (70) CpxRNTS (71) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (72) CpxRNTS (73) IntTrsBoundProof [UPPER BOUND(ID), 1624 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 8 ms] (76) CpxRNTS (77) FinalProof [FINISHED, 0 ms] (78) BOUNDS(1, n^3) (79) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (80) CpxRelTRS (81) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (82) typed CpxTrs (83) OrderProof [LOWER BOUND(ID), 0 ms] (84) typed CpxTrs (85) RewriteLemmaProof [LOWER BOUND(ID), 312 ms] (86) BEST (87) proven lower bound (88) LowerBoundPropagationProof [FINISHED, 0 ms] (89) BOUNDS(n^1, INF) (90) typed CpxTrs (91) RewriteLemmaProof [LOWER BOUND(ID), 93 ms] (92) typed CpxTrs (93) RewriteLemmaProof [LOWER BOUND(ID), 35 ms] (94) typed CpxTrs (95) RewriteLemmaProof [LOWER BOUND(ID), 69 ms] (96) typed CpxTrs (97) RewriteLemmaProof [LOWER BOUND(ID), 68 ms] (98) typed CpxTrs (99) RewriteLemmaProof [LOWER BOUND(ID), 537 ms] (100) BEST (101) proven lower bound (102) LowerBoundPropagationProof [FINISHED, 0 ms] (103) BOUNDS(n^3, INF) (104) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^3, n^3). The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0) -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0) -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0, z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0, z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 The (relative) TRS S consists of the following rules: terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0) -> 0 sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0) -> 0 dbl(s(z0)) -> s(s(dbl(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^3, n^3). The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0) -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0) -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0, z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0, z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 The (relative) TRS S consists of the following rules: terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0) -> 0 sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0) -> 0 dbl(s(z0)) -> s(s(dbl(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) [1] TERMS(z0) -> c1 [1] SQR(0) -> c2 [1] SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) [1] SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) [1] DBL(0) -> c5 [1] DBL(s(z0)) -> c6(DBL(z0)) [1] ADD(0, z0) -> c7 [1] ADD(s(z0), z1) -> c8(ADD(z0, z1)) [1] FIRST(0, z0) -> c9 [1] FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) [1] FIRST(z0, z1) -> c11 [1] ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) [1] ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) [1] ACTIVATE(z0) -> c14 [1] terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) [0] terms(z0) -> n__terms(z0) [0] sqr(0) -> 0 [0] sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) [0] dbl(0) -> 0 [0] dbl(s(z0)) -> s(s(dbl(z0))) [0] add(0, z0) -> z0 [0] add(s(z0), z1) -> s(add(z0, z1)) [0] first(0, z0) -> nil [0] first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) [0] first(z0, z1) -> n__first(z0, z1) [0] activate(n__terms(z0)) -> terms(z0) [0] activate(n__first(z0, z1)) -> first(z0, z1) [0] activate(z0) -> z0 [0] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) [1] TERMS(z0) -> c1 [1] SQR(0) -> c2 [1] SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) [1] SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) [1] DBL(0) -> c5 [1] DBL(s(z0)) -> c6(DBL(z0)) [1] ADD(0, z0) -> c7 [1] ADD(s(z0), z1) -> c8(ADD(z0, z1)) [1] FIRST(0, z0) -> c9 [1] FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) [1] FIRST(z0, z1) -> c11 [1] ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) [1] ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) [1] ACTIVATE(z0) -> c14 [1] terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) [0] terms(z0) -> n__terms(z0) [0] sqr(0) -> 0 [0] sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) [0] dbl(0) -> 0 [0] dbl(s(z0)) -> s(s(dbl(z0))) [0] add(0, z0) -> z0 [0] add(s(z0), z1) -> s(add(z0, z1)) [0] first(0, z0) -> nil [0] first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) [0] first(z0, z1) -> n__first(z0, z1) [0] activate(n__terms(z0)) -> terms(z0) [0] activate(n__first(z0, z1)) -> first(z0, z1) [0] activate(z0) -> z0 [0] The TRS has the following type information: TERMS :: 0:s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0:s -> c2:c3:c4 c1 :: c:c1 0 :: 0:s c2 :: c2:c3:c4 s :: 0:s -> 0:s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0:s -> 0:s -> c7:c8 sqr :: 0:s -> 0:s dbl :: 0:s -> 0:s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0:s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0:s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0:s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0:s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0:s -> cons:n__terms:n__first:nil recip :: 0:s -> recip add :: 0:s -> 0:s -> 0:s first :: 0:s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: TERMS_1 SQR_1 DBL_1 ADD_2 FIRST_2 ACTIVATE_1 (c) The following functions are completely defined: terms_1 sqr_1 dbl_1 add_2 first_2 activate_1 Due to the following rules being added: terms(v0) -> nil [0] sqr(v0) -> 0 [0] dbl(v0) -> 0 [0] add(v0, v1) -> 0 [0] first(v0, v1) -> nil [0] activate(v0) -> nil [0] And the following fresh constants: const ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) [1] TERMS(z0) -> c1 [1] SQR(0) -> c2 [1] SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) [1] SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) [1] DBL(0) -> c5 [1] DBL(s(z0)) -> c6(DBL(z0)) [1] ADD(0, z0) -> c7 [1] ADD(s(z0), z1) -> c8(ADD(z0, z1)) [1] FIRST(0, z0) -> c9 [1] FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) [1] FIRST(z0, z1) -> c11 [1] ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) [1] ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) [1] ACTIVATE(z0) -> c14 [1] terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) [0] terms(z0) -> n__terms(z0) [0] sqr(0) -> 0 [0] sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) [0] dbl(0) -> 0 [0] dbl(s(z0)) -> s(s(dbl(z0))) [0] add(0, z0) -> z0 [0] add(s(z0), z1) -> s(add(z0, z1)) [0] first(0, z0) -> nil [0] first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) [0] first(z0, z1) -> n__first(z0, z1) [0] activate(n__terms(z0)) -> terms(z0) [0] activate(n__first(z0, z1)) -> first(z0, z1) [0] activate(z0) -> z0 [0] terms(v0) -> nil [0] sqr(v0) -> 0 [0] dbl(v0) -> 0 [0] add(v0, v1) -> 0 [0] first(v0, v1) -> nil [0] activate(v0) -> nil [0] The TRS has the following type information: TERMS :: 0:s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0:s -> c2:c3:c4 c1 :: c:c1 0 :: 0:s c2 :: c2:c3:c4 s :: 0:s -> 0:s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0:s -> 0:s -> c7:c8 sqr :: 0:s -> 0:s dbl :: 0:s -> 0:s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0:s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0:s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0:s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0:s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0:s -> cons:n__terms:n__first:nil recip :: 0:s -> recip add :: 0:s -> 0:s -> 0:s first :: 0:s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil const :: recip Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) [1] TERMS(z0) -> c1 [1] SQR(0) -> c2 [1] SQR(s(0)) -> c3(ADD(0, 0), SQR(0)) [1] SQR(s(0)) -> c3(ADD(0, 0), SQR(0)) [1] SQR(s(s(z0'))) -> c3(ADD(s(add(sqr(z0'), dbl(z0'))), s(s(dbl(z0')))), SQR(s(z0'))) [1] SQR(s(s(z0'))) -> c3(ADD(s(add(sqr(z0'), dbl(z0'))), 0), SQR(s(z0'))) [1] SQR(s(0)) -> c3(ADD(0, 0), SQR(0)) [1] SQR(s(s(z0''))) -> c3(ADD(0, s(s(dbl(z0'')))), SQR(s(z0''))) [1] SQR(s(z0)) -> c3(ADD(0, 0), SQR(z0)) [1] SQR(s(0)) -> c4(ADD(0, 0), DBL(0)) [1] SQR(s(0)) -> c4(ADD(0, 0), DBL(0)) [1] SQR(s(s(z01))) -> c4(ADD(s(add(sqr(z01), dbl(z01))), s(s(dbl(z01)))), DBL(s(z01))) [1] SQR(s(s(z01))) -> c4(ADD(s(add(sqr(z01), dbl(z01))), 0), DBL(s(z01))) [1] SQR(s(0)) -> c4(ADD(0, 0), DBL(0)) [1] SQR(s(s(z02))) -> c4(ADD(0, s(s(dbl(z02)))), DBL(s(z02))) [1] SQR(s(z0)) -> c4(ADD(0, 0), DBL(z0)) [1] DBL(0) -> c5 [1] DBL(s(z0)) -> c6(DBL(z0)) [1] ADD(0, z0) -> c7 [1] ADD(s(z0), z1) -> c8(ADD(z0, z1)) [1] FIRST(0, z0) -> c9 [1] FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) [1] FIRST(z0, z1) -> c11 [1] ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) [1] ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) [1] ACTIVATE(z0) -> c14 [1] terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) [0] terms(z0) -> n__terms(z0) [0] sqr(0) -> 0 [0] sqr(s(0)) -> s(add(0, 0)) [0] sqr(s(0)) -> s(add(0, 0)) [0] sqr(s(s(z03))) -> s(add(s(add(sqr(z03), dbl(z03))), s(s(dbl(z03))))) [0] sqr(s(s(z03))) -> s(add(s(add(sqr(z03), dbl(z03))), 0)) [0] sqr(s(0)) -> s(add(0, 0)) [0] sqr(s(s(z04))) -> s(add(0, s(s(dbl(z04))))) [0] sqr(s(z0)) -> s(add(0, 0)) [0] dbl(0) -> 0 [0] dbl(s(z0)) -> s(s(dbl(z0))) [0] add(0, z0) -> z0 [0] add(s(z0), z1) -> s(add(z0, z1)) [0] first(0, z0) -> nil [0] first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) [0] first(z0, z1) -> n__first(z0, z1) [0] activate(n__terms(z0)) -> terms(z0) [0] activate(n__first(z0, z1)) -> first(z0, z1) [0] activate(z0) -> z0 [0] terms(v0) -> nil [0] sqr(v0) -> 0 [0] dbl(v0) -> 0 [0] add(v0, v1) -> 0 [0] first(v0, v1) -> nil [0] activate(v0) -> nil [0] The TRS has the following type information: TERMS :: 0:s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0:s -> c2:c3:c4 c1 :: c:c1 0 :: 0:s c2 :: c2:c3:c4 s :: 0:s -> 0:s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0:s -> 0:s -> c7:c8 sqr :: 0:s -> 0:s dbl :: 0:s -> 0:s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0:s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0:s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0:s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0:s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0:s -> cons:n__terms:n__first:nil recip :: 0:s -> recip add :: 0:s -> 0:s -> 0:s first :: 0:s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil const :: recip Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: c1 => 0 0 => 0 c2 => 0 c5 => 0 c7 => 0 c9 => 1 c11 => 0 c14 => 0 nil => 0 const => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z = z0, z0 >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z0) :|: z = 1 + z0, z0 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z0 >= 0, z = 0, z' = z0 ADD(z, z') -{ 1 }-> 1 + ADD(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 }-> 1 + DBL(z0) :|: z = 1 + z0, z0 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z0 >= 0, z = 0, z' = z0 FIRST(z, z') -{ 1 }-> 0 :|: z = z0, z1 >= 0, z' = z1, z0 >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z = 1 + z0, z0 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z0) :|: z = 1 + z0, z0 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(z0) :|: z = 1 + z0, z0 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z0''))) + SQR(1 + z0'') :|: z = 1 + (1 + z0''), z0'' >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z02))) + DBL(1 + z02) :|: z = 1 + (1 + z02), z02 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z0'), dbl(z0')), 0) + SQR(1 + z0') :|: z = 1 + (1 + z0'), z0' >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z0'), dbl(z0')), 1 + (1 + dbl(z0'))) + SQR(1 + z0') :|: z = 1 + (1 + z0'), z0' >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z01), dbl(z01)), 0) + DBL(1 + z01) :|: z = 1 + (1 + z01), z01 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z01), dbl(z01)), 1 + (1 + dbl(z01))) + DBL(1 + z01) :|: z = 1 + (1 + z01), z01 >= 0 TERMS(z) -{ 1 }-> 0 :|: z = z0, z0 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z0) :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> z0 :|: z = z0, z0 >= 0 activate(z) -{ 0 }-> terms(z0) :|: z = 1 + z0, z0 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 add(z, z') -{ 0 }-> z0 :|: z0 >= 0, z = 0, z' = z0 add(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 add(z, z') -{ 0 }-> 1 + add(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z0)) :|: z = 1 + z0, z0 >= 0 first(z, z') -{ 0 }-> 0 :|: z0 >= 0, z = 0, z' = z0 first(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 first(z, z') -{ 0 }-> 1 + z0 + z1 :|: z = z0, z1 >= 0, z' = z1, z0 >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + z0 + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z = 1 + z0, z0 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + z0, z0 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z04))) :|: z04 >= 0, z = 1 + (1 + z04) sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z03), dbl(z03)), 0) :|: z = 1 + (1 + z03), z03 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z03), dbl(z03)), 1 + (1 + dbl(z03))) :|: z = 1 + (1 + z03), z03 >= 0 terms(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 terms(z) -{ 0 }-> 1 + z0 :|: z = z0, z0 >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z0)) + (1 + (1 + z0)) :|: z = z0, z0 >= 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { DBL } { ADD } { dbl } { add } { sqr } { SQR } { terms } { TERMS } { first, activate } { FIRST, ACTIVATE } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {DBL}, {ADD}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {DBL}, {ADD}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: DBL after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {DBL}, {ADD}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: ?, size: O(n^1) [z] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: DBL after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {ADD}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + ADD(0, 0) + s :|: s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 0) + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {ADD}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: ADD after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + ADD(0, 0) + s :|: s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 0) + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {ADD}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: ?, size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: ADD after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + ADD(0, 0) + s :|: s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 0) + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: dbl after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: ?, size: O(n^1) [2*z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: dbl after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {add}, {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s11), 0) + SQR(1 + (z - 2)) :|: s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s14), 1 + (1 + s15)) + s' :|: s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s16), 0) + s'' :|: s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s9), 1 + (1 + s10)) + SQR(1 + (z - 2)) :|: s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + s22)) :|: s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s19), 1 + (1 + s20)) :|: s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s21), 0) :|: s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {add}, {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: add after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s11), 0) + SQR(1 + (z - 2)) :|: s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s14), 1 + (1 + s15)) + s' :|: s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s16), 0) + s'' :|: s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s9), 1 + (1 + s10)) + SQR(1 + (z - 2)) :|: s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + s22)) :|: s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s19), 1 + (1 + s20)) :|: s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s21), 0) :|: s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {add}, {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: add after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s11), 0) + SQR(1 + (z - 2)) :|: s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s14), 1 + (1 + s15)) + s' :|: s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s16), 0) + s'' :|: s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s9), 1 + (1 + s10)) + SQR(1 + (z - 2)) :|: s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + s22)) :|: s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s19), 1 + (1 + s20)) :|: s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s21), 0) :|: s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s11), 0) + SQR(1 + (z - 2)) :|: s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s14), 1 + (1 + s15)) + s' :|: s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s16), 0) + s'' :|: s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s9), 1 + (1 + s10)) + SQR(1 + (z - 2)) :|: s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s19), 1 + (1 + s20)) :|: s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s21), 0) :|: s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 3 + 8*z + 6*z^2 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s11), 0) + SQR(1 + (z - 2)) :|: s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s14), 1 + (1 + s15)) + s' :|: s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s16), 0) + s'' :|: s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s9), 1 + (1 + s10)) + SQR(1 + (z - 2)) :|: s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s19), 1 + (1 + s20)) :|: s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s21), 0) :|: s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {sqr}, {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: ?, size: O(n^2) [3 + 8*z + 6*z^2] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s11), 0) + SQR(1 + (z - 2)) :|: s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s14), 1 + (1 + s15)) + s' :|: s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s16), 0) + s'' :|: s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s9), 1 + (1 + s10)) + SQR(1 + (z - 2)) :|: s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s19), 1 + (1 + s20)) :|: s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s21), 0) :|: s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s29 }-> 1 + s30 + SQR(1 + (z - 2)) :|: s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s32 }-> 1 + s33 + SQR(1 + (z - 2)) :|: s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: SQR after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s29 }-> 1 + s30 + SQR(1 + (z - 2)) :|: s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s32 }-> 1 + s33 + SQR(1 + (z - 2)) :|: s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {SQR}, {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: ?, size: INF ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: SQR after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 36 + 74*z + 48*z^2 + 12*z^3 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s29 }-> 1 + s30 + SQR(1 + (z - 2)) :|: s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s32 }-> 1 + s33 + SQR(1 + (z - 2)) :|: s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: terms after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 8 + 10*z + 6*z^2 ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {terms}, {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: ?, size: O(n^2) [8 + 10*z + 6*z^2] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: terms after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> terms(z - 1) :|: z - 1 >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [8 + 10*z + 6*z^2] ---------------------------------------- (59) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 activate(z) -{ 0 }-> s53 :|: s53 >= 0, s53 <= 10 * (z - 1) + 6 * ((z - 1) * (z - 1)) + 8, z - 1 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [8 + 10*z + 6*z^2] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: TERMS after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 activate(z) -{ 0 }-> s53 :|: s53 >= 0, s53 <= 10 * (z - 1) + 6 * ((z - 1) * (z - 1)) + 8, z - 1 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {TERMS}, {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [8 + 10*z + 6*z^2] TERMS: runtime: ?, size: INF ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: TERMS after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 38 + 74*z + 48*z^2 + 12*z^3 ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 }-> 1 + TERMS(z - 1) :|: z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 activate(z) -{ 0 }-> s53 :|: s53 >= 0, s53 <= 10 * (z - 1) + 6 * ((z - 1) * (z - 1)) + 8, z - 1 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [8 + 10*z + 6*z^2] TERMS: runtime: O(n^3) [38 + 74*z + 48*z^2 + 12*z^3], size: INF ---------------------------------------- (65) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s54 :|: s54 >= 0, s54 <= inf4, z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 activate(z) -{ 0 }-> s53 :|: s53 >= 0, s53 <= 10 * (z - 1) + 6 * ((z - 1) * (z - 1)) + 8, z - 1 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [8 + 10*z + 6*z^2] TERMS: runtime: O(n^3) [38 + 74*z + 48*z^2 + 12*z^3], size: INF ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: first after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s54 :|: s54 >= 0, s54 <= inf4, z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 activate(z) -{ 0 }-> s53 :|: s53 >= 0, s53 <= 10 * (z - 1) + 6 * ((z - 1) * (z - 1)) + 8, z - 1 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {first,activate}, {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [8 + 10*z + 6*z^2] TERMS: runtime: O(n^3) [38 + 74*z + 48*z^2 + 12*z^3], size: INF first: runtime: ?, size: INF activate: runtime: ?, size: INF ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: first after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed RUNTIME bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s54 :|: s54 >= 0, s54 <= inf4, z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 activate(z) -{ 0 }-> s53 :|: s53 >= 0, s53 <= 10 * (z - 1) + 6 * ((z - 1) * (z - 1)) + 8, z - 1 >= 0 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> first(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + activate(z2)) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [8 + 10*z + 6*z^2] TERMS: runtime: O(n^3) [38 + 74*z + 48*z^2 + 12*z^3], size: INF first: runtime: O(1) [0], size: INF activate: runtime: O(1) [0], size: INF ---------------------------------------- (71) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s54 :|: s54 >= 0, s54 <= inf4, z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 activate(z) -{ 0 }-> s53 :|: s53 >= 0, s53 <= 10 * (z - 1) + 6 * ((z - 1) * (z - 1)) + 8, z - 1 >= 0 activate(z) -{ 0 }-> s56 :|: s56 >= 0, s56 <= inf6, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + s55) :|: s55 >= 0, s55 <= inf5, z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [8 + 10*z + 6*z^2] TERMS: runtime: O(n^3) [38 + 74*z + 48*z^2 + 12*z^3], size: INF first: runtime: O(1) [0], size: INF activate: runtime: O(1) [0], size: INF ---------------------------------------- (73) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: FIRST after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? Computed SIZE bound using CoFloCo for: ACTIVATE after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s54 :|: s54 >= 0, s54 <= inf4, z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 activate(z) -{ 0 }-> s53 :|: s53 >= 0, s53 <= 10 * (z - 1) + 6 * ((z - 1) * (z - 1)) + 8, z - 1 >= 0 activate(z) -{ 0 }-> s56 :|: s56 >= 0, s56 <= inf6, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + s55) :|: s55 >= 0, s55 <= inf5, z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {FIRST,ACTIVATE} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [8 + 10*z + 6*z^2] TERMS: runtime: O(n^3) [38 + 74*z + 48*z^2 + 12*z^3], size: INF first: runtime: O(1) [0], size: INF activate: runtime: O(1) [0], size: INF FIRST: runtime: ?, size: INF ACTIVATE: runtime: ?, size: INF ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: FIRST after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 4 + 16*z' + 12*z'^2 + 12*z'^3 Computed RUNTIME bound using KoAT for: ACTIVATE after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 7 + 30*z + 24*z^2 + 24*z^3 ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: ACTIVATE(z) -{ 1 }-> 0 :|: z >= 0 ACTIVATE(z) -{ 1 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s54 :|: s54 >= 0, s54 <= inf4, z - 1 >= 0 ACTIVATE(z) -{ 1 }-> 1 + FIRST(z0, z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z >= 0 FIRST(z, z') -{ 1 }-> 1 + ACTIVATE(z2) :|: z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 0 :|: z >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 activate(z) -{ 0 }-> s53 :|: s53 >= 0, s53 <= 10 * (z - 1) + 6 * ((z - 1) * (z - 1)) + 8, z - 1 >= 0 activate(z) -{ 0 }-> s56 :|: s56 >= 0, s56 <= inf6, z1 >= 0, z0 >= 0, z = 1 + z0 + z1 activate(z) -{ 0 }-> z :|: z >= 0 activate(z) -{ 0 }-> 0 :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + z + z' :|: z' >= 0, z >= 0 first(z, z') -{ 0 }-> 1 + z1 + (1 + (z - 1) + s55) :|: s55 >= 0, s55 <= inf5, z1 >= 0, z' = 1 + z1 + z2, z - 1 >= 0, z2 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + z :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) + (1 + (1 + z)) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [8 + 10*z + 6*z^2] TERMS: runtime: O(n^3) [38 + 74*z + 48*z^2 + 12*z^3], size: INF first: runtime: O(1) [0], size: INF activate: runtime: O(1) [0], size: INF FIRST: runtime: O(n^3) [4 + 16*z' + 12*z'^2 + 12*z'^3], size: INF ACTIVATE: runtime: O(n^3) [7 + 30*z + 24*z^2 + 24*z^3], size: INF ---------------------------------------- (77) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (78) BOUNDS(1, n^3) ---------------------------------------- (79) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (80) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0') -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0', z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0', z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 The (relative) TRS S consists of the following rules: terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (81) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (82) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0') -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0', z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0', z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Types: TERMS :: 0':s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0':s -> c2:c3:c4 c1 :: c:c1 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0':s -> 0':s -> c7:c8 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0':s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0':s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0':s -> cons:n__terms:n__first:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil hole_c:c11_15 :: c:c1 hole_0':s2_15 :: 0':s hole_c2:c3:c43_15 :: c2:c3:c4 hole_c7:c84_15 :: c7:c8 hole_c5:c65_15 :: c5:c6 hole_c9:c10:c116_15 :: c9:c10:c11 hole_cons:n__terms:n__first:nil7_15 :: cons:n__terms:n__first:nil hole_recip8_15 :: recip hole_c12:c13:c149_15 :: c12:c13:c14 gen_0':s10_15 :: Nat -> 0':s gen_c2:c3:c411_15 :: Nat -> c2:c3:c4 gen_c7:c812_15 :: Nat -> c7:c8 gen_c5:c613_15 :: Nat -> c5:c6 gen_cons:n__terms:n__first:nil14_15 :: Nat -> cons:n__terms:n__first:nil ---------------------------------------- (83) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: SQR, ADD, sqr, dbl, DBL, ACTIVATE, add, activate They will be analysed ascendingly in the following order: ADD < SQR sqr < SQR dbl < SQR DBL < SQR dbl < sqr add < sqr ---------------------------------------- (84) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0') -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0', z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0', z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Types: TERMS :: 0':s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0':s -> c2:c3:c4 c1 :: c:c1 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0':s -> 0':s -> c7:c8 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0':s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0':s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0':s -> cons:n__terms:n__first:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil hole_c:c11_15 :: c:c1 hole_0':s2_15 :: 0':s hole_c2:c3:c43_15 :: c2:c3:c4 hole_c7:c84_15 :: c7:c8 hole_c5:c65_15 :: c5:c6 hole_c9:c10:c116_15 :: c9:c10:c11 hole_cons:n__terms:n__first:nil7_15 :: cons:n__terms:n__first:nil hole_recip8_15 :: recip hole_c12:c13:c149_15 :: c12:c13:c14 gen_0':s10_15 :: Nat -> 0':s gen_c2:c3:c411_15 :: Nat -> c2:c3:c4 gen_c7:c812_15 :: Nat -> c7:c8 gen_c5:c613_15 :: Nat -> c5:c6 gen_cons:n__terms:n__first:nil14_15 :: Nat -> cons:n__terms:n__first:nil Generator Equations: gen_0':s10_15(0) <=> 0' gen_0':s10_15(+(x, 1)) <=> s(gen_0':s10_15(x)) gen_c2:c3:c411_15(0) <=> c2 gen_c2:c3:c411_15(+(x, 1)) <=> c3(c7, gen_c2:c3:c411_15(x)) gen_c7:c812_15(0) <=> c7 gen_c7:c812_15(+(x, 1)) <=> c8(gen_c7:c812_15(x)) gen_c5:c613_15(0) <=> c5 gen_c5:c613_15(+(x, 1)) <=> c6(gen_c5:c613_15(x)) gen_cons:n__terms:n__first:nil14_15(0) <=> n__terms(0') gen_cons:n__terms:n__first:nil14_15(+(x, 1)) <=> cons(recip(0'), gen_cons:n__terms:n__first:nil14_15(x)) The following defined symbols remain to be analysed: ADD, SQR, sqr, dbl, DBL, ACTIVATE, add, activate They will be analysed ascendingly in the following order: ADD < SQR sqr < SQR dbl < SQR DBL < SQR dbl < sqr add < sqr ---------------------------------------- (85) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ADD(gen_0':s10_15(n16_15), gen_0':s10_15(b)) -> gen_c7:c812_15(n16_15), rt in Omega(1 + n16_15) Induction Base: ADD(gen_0':s10_15(0), gen_0':s10_15(b)) ->_R^Omega(1) c7 Induction Step: ADD(gen_0':s10_15(+(n16_15, 1)), gen_0':s10_15(b)) ->_R^Omega(1) c8(ADD(gen_0':s10_15(n16_15), gen_0':s10_15(b))) ->_IH c8(gen_c7:c812_15(c17_15)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (86) Complex Obligation (BEST) ---------------------------------------- (87) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0') -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0', z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0', z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Types: TERMS :: 0':s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0':s -> c2:c3:c4 c1 :: c:c1 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0':s -> 0':s -> c7:c8 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0':s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0':s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0':s -> cons:n__terms:n__first:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil hole_c:c11_15 :: c:c1 hole_0':s2_15 :: 0':s hole_c2:c3:c43_15 :: c2:c3:c4 hole_c7:c84_15 :: c7:c8 hole_c5:c65_15 :: c5:c6 hole_c9:c10:c116_15 :: c9:c10:c11 hole_cons:n__terms:n__first:nil7_15 :: cons:n__terms:n__first:nil hole_recip8_15 :: recip hole_c12:c13:c149_15 :: c12:c13:c14 gen_0':s10_15 :: Nat -> 0':s gen_c2:c3:c411_15 :: Nat -> c2:c3:c4 gen_c7:c812_15 :: Nat -> c7:c8 gen_c5:c613_15 :: Nat -> c5:c6 gen_cons:n__terms:n__first:nil14_15 :: Nat -> cons:n__terms:n__first:nil Generator Equations: gen_0':s10_15(0) <=> 0' gen_0':s10_15(+(x, 1)) <=> s(gen_0':s10_15(x)) gen_c2:c3:c411_15(0) <=> c2 gen_c2:c3:c411_15(+(x, 1)) <=> c3(c7, gen_c2:c3:c411_15(x)) gen_c7:c812_15(0) <=> c7 gen_c7:c812_15(+(x, 1)) <=> c8(gen_c7:c812_15(x)) gen_c5:c613_15(0) <=> c5 gen_c5:c613_15(+(x, 1)) <=> c6(gen_c5:c613_15(x)) gen_cons:n__terms:n__first:nil14_15(0) <=> n__terms(0') gen_cons:n__terms:n__first:nil14_15(+(x, 1)) <=> cons(recip(0'), gen_cons:n__terms:n__first:nil14_15(x)) The following defined symbols remain to be analysed: ADD, SQR, sqr, dbl, DBL, ACTIVATE, add, activate They will be analysed ascendingly in the following order: ADD < SQR sqr < SQR dbl < SQR DBL < SQR dbl < sqr add < sqr ---------------------------------------- (88) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (89) BOUNDS(n^1, INF) ---------------------------------------- (90) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0') -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0', z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0', z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Types: TERMS :: 0':s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0':s -> c2:c3:c4 c1 :: c:c1 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0':s -> 0':s -> c7:c8 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0':s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0':s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0':s -> cons:n__terms:n__first:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil hole_c:c11_15 :: c:c1 hole_0':s2_15 :: 0':s hole_c2:c3:c43_15 :: c2:c3:c4 hole_c7:c84_15 :: c7:c8 hole_c5:c65_15 :: c5:c6 hole_c9:c10:c116_15 :: c9:c10:c11 hole_cons:n__terms:n__first:nil7_15 :: cons:n__terms:n__first:nil hole_recip8_15 :: recip hole_c12:c13:c149_15 :: c12:c13:c14 gen_0':s10_15 :: Nat -> 0':s gen_c2:c3:c411_15 :: Nat -> c2:c3:c4 gen_c7:c812_15 :: Nat -> c7:c8 gen_c5:c613_15 :: Nat -> c5:c6 gen_cons:n__terms:n__first:nil14_15 :: Nat -> cons:n__terms:n__first:nil Lemmas: ADD(gen_0':s10_15(n16_15), gen_0':s10_15(b)) -> gen_c7:c812_15(n16_15), rt in Omega(1 + n16_15) Generator Equations: gen_0':s10_15(0) <=> 0' gen_0':s10_15(+(x, 1)) <=> s(gen_0':s10_15(x)) gen_c2:c3:c411_15(0) <=> c2 gen_c2:c3:c411_15(+(x, 1)) <=> c3(c7, gen_c2:c3:c411_15(x)) gen_c7:c812_15(0) <=> c7 gen_c7:c812_15(+(x, 1)) <=> c8(gen_c7:c812_15(x)) gen_c5:c613_15(0) <=> c5 gen_c5:c613_15(+(x, 1)) <=> c6(gen_c5:c613_15(x)) gen_cons:n__terms:n__first:nil14_15(0) <=> n__terms(0') gen_cons:n__terms:n__first:nil14_15(+(x, 1)) <=> cons(recip(0'), gen_cons:n__terms:n__first:nil14_15(x)) The following defined symbols remain to be analysed: dbl, SQR, sqr, DBL, ACTIVATE, add, activate They will be analysed ascendingly in the following order: sqr < SQR dbl < SQR DBL < SQR dbl < sqr add < sqr ---------------------------------------- (91) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: dbl(gen_0':s10_15(n750_15)) -> gen_0':s10_15(*(2, n750_15)), rt in Omega(0) Induction Base: dbl(gen_0':s10_15(0)) ->_R^Omega(0) 0' Induction Step: dbl(gen_0':s10_15(+(n750_15, 1))) ->_R^Omega(0) s(s(dbl(gen_0':s10_15(n750_15)))) ->_IH s(s(gen_0':s10_15(*(2, c751_15)))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (92) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0') -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0', z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0', z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Types: TERMS :: 0':s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0':s -> c2:c3:c4 c1 :: c:c1 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0':s -> 0':s -> c7:c8 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0':s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0':s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0':s -> cons:n__terms:n__first:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil hole_c:c11_15 :: c:c1 hole_0':s2_15 :: 0':s hole_c2:c3:c43_15 :: c2:c3:c4 hole_c7:c84_15 :: c7:c8 hole_c5:c65_15 :: c5:c6 hole_c9:c10:c116_15 :: c9:c10:c11 hole_cons:n__terms:n__first:nil7_15 :: cons:n__terms:n__first:nil hole_recip8_15 :: recip hole_c12:c13:c149_15 :: c12:c13:c14 gen_0':s10_15 :: Nat -> 0':s gen_c2:c3:c411_15 :: Nat -> c2:c3:c4 gen_c7:c812_15 :: Nat -> c7:c8 gen_c5:c613_15 :: Nat -> c5:c6 gen_cons:n__terms:n__first:nil14_15 :: Nat -> cons:n__terms:n__first:nil Lemmas: ADD(gen_0':s10_15(n16_15), gen_0':s10_15(b)) -> gen_c7:c812_15(n16_15), rt in Omega(1 + n16_15) dbl(gen_0':s10_15(n750_15)) -> gen_0':s10_15(*(2, n750_15)), rt in Omega(0) Generator Equations: gen_0':s10_15(0) <=> 0' gen_0':s10_15(+(x, 1)) <=> s(gen_0':s10_15(x)) gen_c2:c3:c411_15(0) <=> c2 gen_c2:c3:c411_15(+(x, 1)) <=> c3(c7, gen_c2:c3:c411_15(x)) gen_c7:c812_15(0) <=> c7 gen_c7:c812_15(+(x, 1)) <=> c8(gen_c7:c812_15(x)) gen_c5:c613_15(0) <=> c5 gen_c5:c613_15(+(x, 1)) <=> c6(gen_c5:c613_15(x)) gen_cons:n__terms:n__first:nil14_15(0) <=> n__terms(0') gen_cons:n__terms:n__first:nil14_15(+(x, 1)) <=> cons(recip(0'), gen_cons:n__terms:n__first:nil14_15(x)) The following defined symbols remain to be analysed: DBL, SQR, sqr, ACTIVATE, add, activate They will be analysed ascendingly in the following order: sqr < SQR DBL < SQR add < sqr ---------------------------------------- (93) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: DBL(gen_0':s10_15(n1130_15)) -> gen_c5:c613_15(n1130_15), rt in Omega(1 + n1130_15) Induction Base: DBL(gen_0':s10_15(0)) ->_R^Omega(1) c5 Induction Step: DBL(gen_0':s10_15(+(n1130_15, 1))) ->_R^Omega(1) c6(DBL(gen_0':s10_15(n1130_15))) ->_IH c6(gen_c5:c613_15(c1131_15)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (94) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0') -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0', z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0', z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Types: TERMS :: 0':s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0':s -> c2:c3:c4 c1 :: c:c1 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0':s -> 0':s -> c7:c8 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0':s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0':s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0':s -> cons:n__terms:n__first:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil hole_c:c11_15 :: c:c1 hole_0':s2_15 :: 0':s hole_c2:c3:c43_15 :: c2:c3:c4 hole_c7:c84_15 :: c7:c8 hole_c5:c65_15 :: c5:c6 hole_c9:c10:c116_15 :: c9:c10:c11 hole_cons:n__terms:n__first:nil7_15 :: cons:n__terms:n__first:nil hole_recip8_15 :: recip hole_c12:c13:c149_15 :: c12:c13:c14 gen_0':s10_15 :: Nat -> 0':s gen_c2:c3:c411_15 :: Nat -> c2:c3:c4 gen_c7:c812_15 :: Nat -> c7:c8 gen_c5:c613_15 :: Nat -> c5:c6 gen_cons:n__terms:n__first:nil14_15 :: Nat -> cons:n__terms:n__first:nil Lemmas: ADD(gen_0':s10_15(n16_15), gen_0':s10_15(b)) -> gen_c7:c812_15(n16_15), rt in Omega(1 + n16_15) dbl(gen_0':s10_15(n750_15)) -> gen_0':s10_15(*(2, n750_15)), rt in Omega(0) DBL(gen_0':s10_15(n1130_15)) -> gen_c5:c613_15(n1130_15), rt in Omega(1 + n1130_15) Generator Equations: gen_0':s10_15(0) <=> 0' gen_0':s10_15(+(x, 1)) <=> s(gen_0':s10_15(x)) gen_c2:c3:c411_15(0) <=> c2 gen_c2:c3:c411_15(+(x, 1)) <=> c3(c7, gen_c2:c3:c411_15(x)) gen_c7:c812_15(0) <=> c7 gen_c7:c812_15(+(x, 1)) <=> c8(gen_c7:c812_15(x)) gen_c5:c613_15(0) <=> c5 gen_c5:c613_15(+(x, 1)) <=> c6(gen_c5:c613_15(x)) gen_cons:n__terms:n__first:nil14_15(0) <=> n__terms(0') gen_cons:n__terms:n__first:nil14_15(+(x, 1)) <=> cons(recip(0'), gen_cons:n__terms:n__first:nil14_15(x)) The following defined symbols remain to be analysed: ACTIVATE, SQR, sqr, add, activate They will be analysed ascendingly in the following order: sqr < SQR add < sqr ---------------------------------------- (95) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: add(gen_0':s10_15(n1574_15), gen_0':s10_15(b)) -> gen_0':s10_15(+(n1574_15, b)), rt in Omega(0) Induction Base: add(gen_0':s10_15(0), gen_0':s10_15(b)) ->_R^Omega(0) gen_0':s10_15(b) Induction Step: add(gen_0':s10_15(+(n1574_15, 1)), gen_0':s10_15(b)) ->_R^Omega(0) s(add(gen_0':s10_15(n1574_15), gen_0':s10_15(b))) ->_IH s(gen_0':s10_15(+(b, c1575_15))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (96) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0') -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0', z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0', z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Types: TERMS :: 0':s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0':s -> c2:c3:c4 c1 :: c:c1 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0':s -> 0':s -> c7:c8 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0':s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0':s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0':s -> cons:n__terms:n__first:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil hole_c:c11_15 :: c:c1 hole_0':s2_15 :: 0':s hole_c2:c3:c43_15 :: c2:c3:c4 hole_c7:c84_15 :: c7:c8 hole_c5:c65_15 :: c5:c6 hole_c9:c10:c116_15 :: c9:c10:c11 hole_cons:n__terms:n__first:nil7_15 :: cons:n__terms:n__first:nil hole_recip8_15 :: recip hole_c12:c13:c149_15 :: c12:c13:c14 gen_0':s10_15 :: Nat -> 0':s gen_c2:c3:c411_15 :: Nat -> c2:c3:c4 gen_c7:c812_15 :: Nat -> c7:c8 gen_c5:c613_15 :: Nat -> c5:c6 gen_cons:n__terms:n__first:nil14_15 :: Nat -> cons:n__terms:n__first:nil Lemmas: ADD(gen_0':s10_15(n16_15), gen_0':s10_15(b)) -> gen_c7:c812_15(n16_15), rt in Omega(1 + n16_15) dbl(gen_0':s10_15(n750_15)) -> gen_0':s10_15(*(2, n750_15)), rt in Omega(0) DBL(gen_0':s10_15(n1130_15)) -> gen_c5:c613_15(n1130_15), rt in Omega(1 + n1130_15) add(gen_0':s10_15(n1574_15), gen_0':s10_15(b)) -> gen_0':s10_15(+(n1574_15, b)), rt in Omega(0) Generator Equations: gen_0':s10_15(0) <=> 0' gen_0':s10_15(+(x, 1)) <=> s(gen_0':s10_15(x)) gen_c2:c3:c411_15(0) <=> c2 gen_c2:c3:c411_15(+(x, 1)) <=> c3(c7, gen_c2:c3:c411_15(x)) gen_c7:c812_15(0) <=> c7 gen_c7:c812_15(+(x, 1)) <=> c8(gen_c7:c812_15(x)) gen_c5:c613_15(0) <=> c5 gen_c5:c613_15(+(x, 1)) <=> c6(gen_c5:c613_15(x)) gen_cons:n__terms:n__first:nil14_15(0) <=> n__terms(0') gen_cons:n__terms:n__first:nil14_15(+(x, 1)) <=> cons(recip(0'), gen_cons:n__terms:n__first:nil14_15(x)) The following defined symbols remain to be analysed: sqr, SQR, activate They will be analysed ascendingly in the following order: sqr < SQR ---------------------------------------- (97) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sqr(gen_0':s10_15(n2933_15)) -> gen_0':s10_15(*(n2933_15, n2933_15)), rt in Omega(0) Induction Base: sqr(gen_0':s10_15(0)) ->_R^Omega(0) 0' Induction Step: sqr(gen_0':s10_15(+(n2933_15, 1))) ->_R^Omega(0) s(add(sqr(gen_0':s10_15(n2933_15)), dbl(gen_0':s10_15(n2933_15)))) ->_IH s(add(gen_0':s10_15(*(c2934_15, c2934_15)), dbl(gen_0':s10_15(n2933_15)))) ->_L^Omega(0) s(add(gen_0':s10_15(*(n2933_15, n2933_15)), gen_0':s10_15(*(2, n2933_15)))) ->_L^Omega(0) s(gen_0':s10_15(+(*(n2933_15, n2933_15), *(2, n2933_15)))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (98) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0') -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0', z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0', z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Types: TERMS :: 0':s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0':s -> c2:c3:c4 c1 :: c:c1 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0':s -> 0':s -> c7:c8 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0':s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0':s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0':s -> cons:n__terms:n__first:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil hole_c:c11_15 :: c:c1 hole_0':s2_15 :: 0':s hole_c2:c3:c43_15 :: c2:c3:c4 hole_c7:c84_15 :: c7:c8 hole_c5:c65_15 :: c5:c6 hole_c9:c10:c116_15 :: c9:c10:c11 hole_cons:n__terms:n__first:nil7_15 :: cons:n__terms:n__first:nil hole_recip8_15 :: recip hole_c12:c13:c149_15 :: c12:c13:c14 gen_0':s10_15 :: Nat -> 0':s gen_c2:c3:c411_15 :: Nat -> c2:c3:c4 gen_c7:c812_15 :: Nat -> c7:c8 gen_c5:c613_15 :: Nat -> c5:c6 gen_cons:n__terms:n__first:nil14_15 :: Nat -> cons:n__terms:n__first:nil Lemmas: ADD(gen_0':s10_15(n16_15), gen_0':s10_15(b)) -> gen_c7:c812_15(n16_15), rt in Omega(1 + n16_15) dbl(gen_0':s10_15(n750_15)) -> gen_0':s10_15(*(2, n750_15)), rt in Omega(0) DBL(gen_0':s10_15(n1130_15)) -> gen_c5:c613_15(n1130_15), rt in Omega(1 + n1130_15) add(gen_0':s10_15(n1574_15), gen_0':s10_15(b)) -> gen_0':s10_15(+(n1574_15, b)), rt in Omega(0) sqr(gen_0':s10_15(n2933_15)) -> gen_0':s10_15(*(n2933_15, n2933_15)), rt in Omega(0) Generator Equations: gen_0':s10_15(0) <=> 0' gen_0':s10_15(+(x, 1)) <=> s(gen_0':s10_15(x)) gen_c2:c3:c411_15(0) <=> c2 gen_c2:c3:c411_15(+(x, 1)) <=> c3(c7, gen_c2:c3:c411_15(x)) gen_c7:c812_15(0) <=> c7 gen_c7:c812_15(+(x, 1)) <=> c8(gen_c7:c812_15(x)) gen_c5:c613_15(0) <=> c5 gen_c5:c613_15(+(x, 1)) <=> c6(gen_c5:c613_15(x)) gen_cons:n__terms:n__first:nil14_15(0) <=> n__terms(0') gen_cons:n__terms:n__first:nil14_15(+(x, 1)) <=> cons(recip(0'), gen_cons:n__terms:n__first:nil14_15(x)) The following defined symbols remain to be analysed: SQR, activate ---------------------------------------- (99) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: SQR(gen_0':s10_15(n3490_15)) -> *15_15, rt in Omega(n3490_15 + n3490_15^3) Induction Base: SQR(gen_0':s10_15(0)) Induction Step: SQR(gen_0':s10_15(+(n3490_15, 1))) ->_R^Omega(1) c3(ADD(sqr(gen_0':s10_15(n3490_15)), dbl(gen_0':s10_15(n3490_15))), SQR(gen_0':s10_15(n3490_15))) ->_L^Omega(0) c3(ADD(gen_0':s10_15(*(n3490_15, n3490_15)), dbl(gen_0':s10_15(n3490_15))), SQR(gen_0':s10_15(n3490_15))) ->_L^Omega(0) c3(ADD(gen_0':s10_15(*(n3490_15, n3490_15)), gen_0':s10_15(*(2, n3490_15))), SQR(gen_0':s10_15(n3490_15))) ->_L^Omega(1 + n3490_15^2) c3(gen_c7:c812_15(*(n3490_15, n3490_15)), SQR(gen_0':s10_15(n3490_15))) ->_IH c3(gen_c7:c812_15(*(n3490_15, n3490_15)), *15_15) We have rt in Omega(n^3) and sz in O(n). Thus, we have irc_R in Omega(n^3). ---------------------------------------- (100) Complex Obligation (BEST) ---------------------------------------- (101) Obligation: Proved the lower bound n^3 for the following obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0') -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0', z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0', z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Types: TERMS :: 0':s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0':s -> c2:c3:c4 c1 :: c:c1 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0':s -> 0':s -> c7:c8 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0':s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0':s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0':s -> cons:n__terms:n__first:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil hole_c:c11_15 :: c:c1 hole_0':s2_15 :: 0':s hole_c2:c3:c43_15 :: c2:c3:c4 hole_c7:c84_15 :: c7:c8 hole_c5:c65_15 :: c5:c6 hole_c9:c10:c116_15 :: c9:c10:c11 hole_cons:n__terms:n__first:nil7_15 :: cons:n__terms:n__first:nil hole_recip8_15 :: recip hole_c12:c13:c149_15 :: c12:c13:c14 gen_0':s10_15 :: Nat -> 0':s gen_c2:c3:c411_15 :: Nat -> c2:c3:c4 gen_c7:c812_15 :: Nat -> c7:c8 gen_c5:c613_15 :: Nat -> c5:c6 gen_cons:n__terms:n__first:nil14_15 :: Nat -> cons:n__terms:n__first:nil Lemmas: ADD(gen_0':s10_15(n16_15), gen_0':s10_15(b)) -> gen_c7:c812_15(n16_15), rt in Omega(1 + n16_15) dbl(gen_0':s10_15(n750_15)) -> gen_0':s10_15(*(2, n750_15)), rt in Omega(0) DBL(gen_0':s10_15(n1130_15)) -> gen_c5:c613_15(n1130_15), rt in Omega(1 + n1130_15) add(gen_0':s10_15(n1574_15), gen_0':s10_15(b)) -> gen_0':s10_15(+(n1574_15, b)), rt in Omega(0) sqr(gen_0':s10_15(n2933_15)) -> gen_0':s10_15(*(n2933_15, n2933_15)), rt in Omega(0) Generator Equations: gen_0':s10_15(0) <=> 0' gen_0':s10_15(+(x, 1)) <=> s(gen_0':s10_15(x)) gen_c2:c3:c411_15(0) <=> c2 gen_c2:c3:c411_15(+(x, 1)) <=> c3(c7, gen_c2:c3:c411_15(x)) gen_c7:c812_15(0) <=> c7 gen_c7:c812_15(+(x, 1)) <=> c8(gen_c7:c812_15(x)) gen_c5:c613_15(0) <=> c5 gen_c5:c613_15(+(x, 1)) <=> c6(gen_c5:c613_15(x)) gen_cons:n__terms:n__first:nil14_15(0) <=> n__terms(0') gen_cons:n__terms:n__first:nil14_15(+(x, 1)) <=> cons(recip(0'), gen_cons:n__terms:n__first:nil14_15(x)) The following defined symbols remain to be analysed: SQR, activate ---------------------------------------- (102) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (103) BOUNDS(n^3, INF) ---------------------------------------- (104) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) TERMS(z0) -> c1 SQR(0') -> c2 SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c4(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c5 DBL(s(z0)) -> c6(DBL(z0)) ADD(0', z0) -> c7 ADD(s(z0), z1) -> c8(ADD(z0, z1)) FIRST(0', z0) -> c9 FIRST(s(z0), cons(z1, z2)) -> c10(ACTIVATE(z2)) FIRST(z0, z1) -> c11 ACTIVATE(n__terms(z0)) -> c12(TERMS(z0)) ACTIVATE(n__first(z0, z1)) -> c13(FIRST(z0, z1)) ACTIVATE(z0) -> c14 terms(z0) -> cons(recip(sqr(z0)), n__terms(s(z0))) terms(z0) -> n__terms(z0) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) activate(n__terms(z0)) -> terms(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(z0) -> z0 Types: TERMS :: 0':s -> c:c1 c :: c2:c3:c4 -> c:c1 SQR :: 0':s -> c2:c3:c4 c1 :: c:c1 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c7:c8 -> c2:c3:c4 -> c2:c3:c4 ADD :: 0':s -> 0':s -> c7:c8 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c4 :: c7:c8 -> c5:c6 -> c2:c3:c4 DBL :: 0':s -> c5:c6 c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 c7 :: c7:c8 c8 :: c7:c8 -> c7:c8 FIRST :: 0':s -> cons:n__terms:n__first:nil -> c9:c10:c11 c9 :: c9:c10:c11 cons :: recip -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c10 :: c12:c13:c14 -> c9:c10:c11 ACTIVATE :: cons:n__terms:n__first:nil -> c12:c13:c14 c11 :: c9:c10:c11 n__terms :: 0':s -> cons:n__terms:n__first:nil c12 :: c:c1 -> c12:c13:c14 n__first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil c13 :: c9:c10:c11 -> c12:c13:c14 c14 :: c12:c13:c14 terms :: 0':s -> cons:n__terms:n__first:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil nil :: cons:n__terms:n__first:nil activate :: cons:n__terms:n__first:nil -> cons:n__terms:n__first:nil hole_c:c11_15 :: c:c1 hole_0':s2_15 :: 0':s hole_c2:c3:c43_15 :: c2:c3:c4 hole_c7:c84_15 :: c7:c8 hole_c5:c65_15 :: c5:c6 hole_c9:c10:c116_15 :: c9:c10:c11 hole_cons:n__terms:n__first:nil7_15 :: cons:n__terms:n__first:nil hole_recip8_15 :: recip hole_c12:c13:c149_15 :: c12:c13:c14 gen_0':s10_15 :: Nat -> 0':s gen_c2:c3:c411_15 :: Nat -> c2:c3:c4 gen_c7:c812_15 :: Nat -> c7:c8 gen_c5:c613_15 :: Nat -> c5:c6 gen_cons:n__terms:n__first:nil14_15 :: Nat -> cons:n__terms:n__first:nil Lemmas: ADD(gen_0':s10_15(n16_15), gen_0':s10_15(b)) -> gen_c7:c812_15(n16_15), rt in Omega(1 + n16_15) dbl(gen_0':s10_15(n750_15)) -> gen_0':s10_15(*(2, n750_15)), rt in Omega(0) DBL(gen_0':s10_15(n1130_15)) -> gen_c5:c613_15(n1130_15), rt in Omega(1 + n1130_15) add(gen_0':s10_15(n1574_15), gen_0':s10_15(b)) -> gen_0':s10_15(+(n1574_15, b)), rt in Omega(0) sqr(gen_0':s10_15(n2933_15)) -> gen_0':s10_15(*(n2933_15, n2933_15)), rt in Omega(0) SQR(gen_0':s10_15(n3490_15)) -> *15_15, rt in Omega(n3490_15 + n3490_15^3) Generator Equations: gen_0':s10_15(0) <=> 0' gen_0':s10_15(+(x, 1)) <=> s(gen_0':s10_15(x)) gen_c2:c3:c411_15(0) <=> c2 gen_c2:c3:c411_15(+(x, 1)) <=> c3(c7, gen_c2:c3:c411_15(x)) gen_c7:c812_15(0) <=> c7 gen_c7:c812_15(+(x, 1)) <=> c8(gen_c7:c812_15(x)) gen_c5:c613_15(0) <=> c5 gen_c5:c613_15(+(x, 1)) <=> c6(gen_c5:c613_15(x)) gen_cons:n__terms:n__first:nil14_15(0) <=> n__terms(0') gen_cons:n__terms:n__first:nil14_15(+(x, 1)) <=> cons(recip(0'), gen_cons:n__terms:n__first:nil14_15(x)) The following defined symbols remain to be analysed: activate