WORST_CASE(Omega(n^3),O(n^3)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^3, n^3). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 275 ms] (2) CpxRelTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 6 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 83 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 292 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 143 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 34 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 89 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 53 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 380 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 34 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 843 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 49 ms] (58) CpxRNTS (59) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 1915 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 459 ms] (64) CpxRNTS (65) ResultPropagationProof [UPPER BOUND(ID), 3 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 540 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 32 ms] (70) CpxRNTS (71) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (72) CpxRNTS (73) IntTrsBoundProof [UPPER BOUND(ID), 379 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (76) CpxRNTS (77) FinalProof [FINISHED, 0 ms] (78) BOUNDS(1, n^3) (79) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (80) CpxRelTRS (81) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (82) typed CpxTrs (83) OrderProof [LOWER BOUND(ID), 17 ms] (84) typed CpxTrs (85) RewriteLemmaProof [LOWER BOUND(ID), 260 ms] (86) BEST (87) proven lower bound (88) LowerBoundPropagationProof [FINISHED, 0 ms] (89) BOUNDS(n^1, INF) (90) typed CpxTrs (91) RewriteLemmaProof [LOWER BOUND(ID), 130 ms] (92) typed CpxTrs (93) RewriteLemmaProof [LOWER BOUND(ID), 34 ms] (94) typed CpxTrs (95) RewriteLemmaProof [LOWER BOUND(ID), 55 ms] (96) typed CpxTrs (97) RewriteLemmaProof [LOWER BOUND(ID), 102 ms] (98) typed CpxTrs (99) RewriteLemmaProof [LOWER BOUND(ID), 464 ms] (100) proven lower bound (101) LowerBoundPropagationProof [FINISHED, 0 ms] (102) BOUNDS(n^3, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^3, n^3). The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) SQR(0) -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0) -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0, z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0, z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 The (relative) TRS S consists of the following rules: terms(z0) -> cons(recip(sqr(z0))) sqr(0) -> 0 sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0) -> 0 dbl(s(z0)) -> s(s(dbl(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0, z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^3, n^3). The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) SQR(0) -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0) -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0, z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0, z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 The (relative) TRS S consists of the following rules: terms(z0) -> cons(recip(sqr(z0))) sqr(0) -> 0 sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0) -> 0 dbl(s(z0)) -> s(s(dbl(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0, z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) [1] SQR(0) -> c1 [1] SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) [1] SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) [1] DBL(0) -> c4 [1] DBL(s(z0)) -> c5(DBL(z0)) [1] ADD(0, z0) -> c6 [1] ADD(s(z0), z1) -> c7(ADD(z0, z1)) [1] FIRST(0, z0) -> c8 [1] FIRST(s(z0), cons(z1)) -> c9 [1] terms(z0) -> cons(recip(sqr(z0))) [0] sqr(0) -> 0 [0] sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) [0] dbl(0) -> 0 [0] dbl(s(z0)) -> s(s(dbl(z0))) [0] add(0, z0) -> z0 [0] add(s(z0), z1) -> s(add(z0, z1)) [0] first(0, z0) -> nil [0] first(s(z0), cons(z1)) -> cons(z1) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) [1] SQR(0) -> c1 [1] SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) [1] SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) [1] DBL(0) -> c4 [1] DBL(s(z0)) -> c5(DBL(z0)) [1] ADD(0, z0) -> c6 [1] ADD(s(z0), z1) -> c7(ADD(z0, z1)) [1] FIRST(0, z0) -> c8 [1] FIRST(s(z0), cons(z1)) -> c9 [1] terms(z0) -> cons(recip(sqr(z0))) [0] sqr(0) -> 0 [0] sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) [0] dbl(0) -> 0 [0] dbl(s(z0)) -> s(s(dbl(z0))) [0] add(0, z0) -> z0 [0] add(s(z0), z1) -> s(add(z0, z1)) [0] first(0, z0) -> nil [0] first(s(z0), cons(z1)) -> cons(z1) [0] The TRS has the following type information: TERMS :: 0:s -> c c :: c1:c2:c3 -> c SQR :: 0:s -> c1:c2:c3 0 :: 0:s c1 :: c1:c2:c3 s :: 0:s -> 0:s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0:s -> 0:s -> c6:c7 sqr :: 0:s -> 0:s dbl :: 0:s -> 0:s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0:s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0:s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0:s -> cons:nil recip :: 0:s -> recip add :: 0:s -> 0:s -> 0:s first :: 0:s -> cons:nil -> cons:nil nil :: cons:nil Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: TERMS_1 SQR_1 DBL_1 ADD_2 FIRST_2 (c) The following functions are completely defined: terms_1 sqr_1 dbl_1 add_2 first_2 Due to the following rules being added: terms(v0) -> nil [0] sqr(v0) -> 0 [0] dbl(v0) -> 0 [0] add(v0, v1) -> 0 [0] first(v0, v1) -> nil [0] And the following fresh constants: const, const1 ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) [1] SQR(0) -> c1 [1] SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) [1] SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) [1] DBL(0) -> c4 [1] DBL(s(z0)) -> c5(DBL(z0)) [1] ADD(0, z0) -> c6 [1] ADD(s(z0), z1) -> c7(ADD(z0, z1)) [1] FIRST(0, z0) -> c8 [1] FIRST(s(z0), cons(z1)) -> c9 [1] terms(z0) -> cons(recip(sqr(z0))) [0] sqr(0) -> 0 [0] sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) [0] dbl(0) -> 0 [0] dbl(s(z0)) -> s(s(dbl(z0))) [0] add(0, z0) -> z0 [0] add(s(z0), z1) -> s(add(z0, z1)) [0] first(0, z0) -> nil [0] first(s(z0), cons(z1)) -> cons(z1) [0] terms(v0) -> nil [0] sqr(v0) -> 0 [0] dbl(v0) -> 0 [0] add(v0, v1) -> 0 [0] first(v0, v1) -> nil [0] The TRS has the following type information: TERMS :: 0:s -> c c :: c1:c2:c3 -> c SQR :: 0:s -> c1:c2:c3 0 :: 0:s c1 :: c1:c2:c3 s :: 0:s -> 0:s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0:s -> 0:s -> c6:c7 sqr :: 0:s -> 0:s dbl :: 0:s -> 0:s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0:s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0:s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0:s -> cons:nil recip :: 0:s -> recip add :: 0:s -> 0:s -> 0:s first :: 0:s -> cons:nil -> cons:nil nil :: cons:nil const :: c const1 :: recip Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) [1] SQR(0) -> c1 [1] SQR(s(0)) -> c2(ADD(0, 0), SQR(0)) [1] SQR(s(0)) -> c2(ADD(0, 0), SQR(0)) [1] SQR(s(s(z0'))) -> c2(ADD(s(add(sqr(z0'), dbl(z0'))), s(s(dbl(z0')))), SQR(s(z0'))) [1] SQR(s(s(z0'))) -> c2(ADD(s(add(sqr(z0'), dbl(z0'))), 0), SQR(s(z0'))) [1] SQR(s(0)) -> c2(ADD(0, 0), SQR(0)) [1] SQR(s(s(z0''))) -> c2(ADD(0, s(s(dbl(z0'')))), SQR(s(z0''))) [1] SQR(s(z0)) -> c2(ADD(0, 0), SQR(z0)) [1] SQR(s(0)) -> c3(ADD(0, 0), DBL(0)) [1] SQR(s(0)) -> c3(ADD(0, 0), DBL(0)) [1] SQR(s(s(z01))) -> c3(ADD(s(add(sqr(z01), dbl(z01))), s(s(dbl(z01)))), DBL(s(z01))) [1] SQR(s(s(z01))) -> c3(ADD(s(add(sqr(z01), dbl(z01))), 0), DBL(s(z01))) [1] SQR(s(0)) -> c3(ADD(0, 0), DBL(0)) [1] SQR(s(s(z02))) -> c3(ADD(0, s(s(dbl(z02)))), DBL(s(z02))) [1] SQR(s(z0)) -> c3(ADD(0, 0), DBL(z0)) [1] DBL(0) -> c4 [1] DBL(s(z0)) -> c5(DBL(z0)) [1] ADD(0, z0) -> c6 [1] ADD(s(z0), z1) -> c7(ADD(z0, z1)) [1] FIRST(0, z0) -> c8 [1] FIRST(s(z0), cons(z1)) -> c9 [1] terms(z0) -> cons(recip(sqr(z0))) [0] sqr(0) -> 0 [0] sqr(s(0)) -> s(add(0, 0)) [0] sqr(s(0)) -> s(add(0, 0)) [0] sqr(s(s(z03))) -> s(add(s(add(sqr(z03), dbl(z03))), s(s(dbl(z03))))) [0] sqr(s(s(z03))) -> s(add(s(add(sqr(z03), dbl(z03))), 0)) [0] sqr(s(0)) -> s(add(0, 0)) [0] sqr(s(s(z04))) -> s(add(0, s(s(dbl(z04))))) [0] sqr(s(z0)) -> s(add(0, 0)) [0] dbl(0) -> 0 [0] dbl(s(z0)) -> s(s(dbl(z0))) [0] add(0, z0) -> z0 [0] add(s(z0), z1) -> s(add(z0, z1)) [0] first(0, z0) -> nil [0] first(s(z0), cons(z1)) -> cons(z1) [0] terms(v0) -> nil [0] sqr(v0) -> 0 [0] dbl(v0) -> 0 [0] add(v0, v1) -> 0 [0] first(v0, v1) -> nil [0] The TRS has the following type information: TERMS :: 0:s -> c c :: c1:c2:c3 -> c SQR :: 0:s -> c1:c2:c3 0 :: 0:s c1 :: c1:c2:c3 s :: 0:s -> 0:s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0:s -> 0:s -> c6:c7 sqr :: 0:s -> 0:s dbl :: 0:s -> 0:s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0:s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0:s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0:s -> cons:nil recip :: 0:s -> recip add :: 0:s -> 0:s -> 0:s first :: 0:s -> cons:nil -> cons:nil nil :: cons:nil const :: c const1 :: recip Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 c1 => 0 c4 => 0 c6 => 0 c8 => 0 c9 => 1 nil => 0 const => 0 const1 => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z0 >= 0, z = 0, z' = z0 ADD(z, z') -{ 1 }-> 1 + ADD(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 }-> 1 + DBL(z0) :|: z = 1 + z0, z0 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 FIRST(z, z') -{ 1 }-> 0 :|: z0 >= 0, z = 0, z' = z0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z0) :|: z = 1 + z0, z0 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(z0) :|: z = 1 + z0, z0 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z0''))) + SQR(1 + z0'') :|: z = 1 + (1 + z0''), z0'' >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z02))) + DBL(1 + z02) :|: z = 1 + (1 + z02), z02 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z0'), dbl(z0')), 0) + SQR(1 + z0') :|: z = 1 + (1 + z0'), z0' >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z0'), dbl(z0')), 1 + (1 + dbl(z0'))) + SQR(1 + z0') :|: z = 1 + (1 + z0'), z0' >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z01), dbl(z01)), 0) + DBL(1 + z01) :|: z = 1 + (1 + z01), z01 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z01), dbl(z01)), 1 + (1 + dbl(z01))) + DBL(1 + z01) :|: z = 1 + (1 + z01), z01 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z0) :|: z = z0, z0 >= 0 add(z, z') -{ 0 }-> z0 :|: z0 >= 0, z = 0, z' = z0 add(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 add(z, z') -{ 0 }-> 1 + add(z0, z1) :|: z1 >= 0, z = 1 + z0, z' = z1, z0 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z0)) :|: z = 1 + z0, z0 >= 0 first(z, z') -{ 0 }-> 0 :|: z0 >= 0, z = 0, z' = z0 first(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 first(z, z') -{ 0 }-> 1 + z1 :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + z0, z0 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z04))) :|: z04 >= 0, z = 1 + (1 + z04) sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z03), dbl(z03)), 0) :|: z = 1 + (1 + z03), z03 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z03), dbl(z03)), 1 + (1 + dbl(z03))) :|: z = 1 + (1 + z03), z03 >= 0 terms(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 terms(z) -{ 0 }-> 1 + (1 + sqr(z0)) :|: z = z0, z0 >= 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { DBL } { FIRST } { ADD } { first } { dbl } { add } { sqr } { SQR } { terms } { TERMS } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {DBL}, {FIRST}, {ADD}, {first}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {DBL}, {FIRST}, {ADD}, {first}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: DBL after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {DBL}, {FIRST}, {ADD}, {first}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: ?, size: O(n^1) [z] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: DBL after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 }-> 1 + DBL(z - 1) :|: z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + DBL(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + DBL(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + DBL(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {FIRST}, {ADD}, {first}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + ADD(0, 0) + s :|: s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 0) + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {FIRST}, {ADD}, {first}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: FIRST after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + ADD(0, 0) + s :|: s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 0) + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {FIRST}, {ADD}, {first}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: ?, size: O(1) [1] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: FIRST after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + ADD(0, 0) + s :|: s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 0) + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {ADD}, {first}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + ADD(0, 0) + s :|: s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 0) + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {ADD}, {first}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: ADD after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + ADD(0, 0) + s :|: s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 0) + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {ADD}, {first}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: ?, size: O(n^1) [z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: ADD after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 }-> 1 + ADD(z - 1, z') :|: z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + ADD(0, 0) + s :|: s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 0) + s2 :|: s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(0) :|: z = 1 + 0 SQR(z) -{ 1 }-> 1 + ADD(0, 0) + SQR(z - 1) :|: z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {first}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {first}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: first after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {first}, {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: first after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: dbl after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {dbl}, {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: ?, size: O(n^1) [2*z] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: dbl after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + s1 :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(0, 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + s'' :|: s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 0) + SQR(1 + (z - 2)) :|: z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + s' :|: s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) + SQR(1 + (z - 2)) :|: z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + dbl(z - 1)) :|: z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 0) :|: z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), dbl(z - 2)), 1 + (1 + dbl(z - 2))) :|: z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s11), 0) + SQR(1 + (z - 2)) :|: s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s14), 1 + (1 + s15)) + s' :|: s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s16), 0) + s'' :|: s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s9), 1 + (1 + s10)) + SQR(1 + (z - 2)) :|: s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + s22)) :|: s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s19), 1 + (1 + s20)) :|: s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s21), 0) :|: s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: add after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s11), 0) + SQR(1 + (z - 2)) :|: s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s14), 1 + (1 + s15)) + s' :|: s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s16), 0) + s'' :|: s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s9), 1 + (1 + s10)) + SQR(1 + (z - 2)) :|: s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + s22)) :|: s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s19), 1 + (1 + s20)) :|: s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s21), 0) :|: s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {add}, {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: add after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s11), 0) + SQR(1 + (z - 2)) :|: s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s14), 1 + (1 + s15)) + s' :|: s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s16), 0) + s'' :|: s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s9), 1 + (1 + s10)) + SQR(1 + (z - 2)) :|: s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + add(z - 1, z') :|: z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z = 1 + 0 sqr(z) -{ 0 }-> 1 + add(0, 0) :|: z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(0, 1 + (1 + s22)) :|: s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s19), 1 + (1 + s20)) :|: s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s21), 0) :|: s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s11), 0) + SQR(1 + (z - 2)) :|: s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s14), 1 + (1 + s15)) + s' :|: s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s16), 0) + s'' :|: s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s9), 1 + (1 + s10)) + SQR(1 + (z - 2)) :|: s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s19), 1 + (1 + s20)) :|: s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s21), 0) :|: s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 3 + 8*z + 6*z^2 ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s11), 0) + SQR(1 + (z - 2)) :|: s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s14), 1 + (1 + s15)) + s' :|: s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s16), 0) + s'' :|: s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s9), 1 + (1 + s10)) + SQR(1 + (z - 2)) :|: s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s19), 1 + (1 + s20)) :|: s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s21), 0) :|: s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {sqr}, {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: ?, size: O(n^2) [3 + 8*z + 6*z^2] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s11), 0) + SQR(1 + (z - 2)) :|: s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s14), 1 + (1 + s15)) + s' :|: s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + z }-> 1 + ADD(1 + add(sqr(z - 2), s16), 0) + s'' :|: s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 }-> 1 + ADD(1 + add(sqr(z - 2), s9), 1 + (1 + s10)) + SQR(1 + (z - 2)) :|: s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s19), 1 + (1 + s20)) :|: s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + add(1 + add(sqr(z - 2), s21), 0) :|: s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + sqr(z)) :|: z >= 0 Function symbols to be analyzed: {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] ---------------------------------------- (59) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s29 }-> 1 + s30 + SQR(1 + (z - 2)) :|: s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s32 }-> 1 + s33 + SQR(1 + (z - 2)) :|: s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: SQR after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s29 }-> 1 + s30 + SQR(1 + (z - 2)) :|: s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s32 }-> 1 + s33 + SQR(1 + (z - 2)) :|: s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {SQR}, {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: ?, size: INF ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: SQR after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 36 + 74*z + 48*z^2 + 12*z^3 ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 2 }-> 1 + s13 + SQR(1 + (z - 2)) :|: s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s29 }-> 1 + s30 + SQR(1 + (z - 2)) :|: s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s32 }-> 1 + s33 + SQR(1 + (z - 2)) :|: s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 2 }-> 1 + s4 + SQR(0) :|: s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 2 }-> 1 + s5 + SQR(z - 1) :|: s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 1 }-> 1 + SQR(z) :|: z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF ---------------------------------------- (65) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: terms after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 5 + 8*z + 6*z^2 ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {terms}, {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: ?, size: O(n^2) [5 + 8*z + 6*z^2] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: terms after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [5 + 8*z + 6*z^2] ---------------------------------------- (71) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [5 + 8*z + 6*z^2] ---------------------------------------- (73) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: TERMS after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: {TERMS} Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [5 + 8*z + 6*z^2] TERMS: runtime: ?, size: INF ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: TERMS after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 37 + 74*z + 48*z^2 + 12*z^3 ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: ADD(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 ADD(z, z') -{ 1 + z }-> 1 + s8 :|: s8 >= 0, s8 <= z - 1, z' >= 0, z - 1 >= 0 DBL(z) -{ 1 }-> 0 :|: z = 0 DBL(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 1 :|: z' - 1 >= 0, z - 1 >= 0 FIRST(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 SQR(z) -{ 1 }-> 0 :|: z = 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s13 + s51 :|: s51 >= 0, s51 <= inf2, s12 >= 0, s12 <= 2 * (z - 2), s13 >= 0, s13 <= 0, z - 2 >= 0 SQR(z) -{ 2 + z }-> 1 + s18 + s1 :|: s17 >= 0, s17 <= 2 * (z - 2), s18 >= 0, s18 <= 0, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s29 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s30 + s49 :|: s49 >= 0, s49 <= inf'', s28 >= 0, s28 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s29 >= 0, s29 <= s28 + s9, s30 >= 0, s30 <= 1 + s29, s9 >= 0, s9 <= 2 * (z - 2), s10 >= 0, s10 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 1 + s32 + 14*z + 12*z^2 + 12*z^3 }-> 1 + s33 + s50 :|: s50 >= 0, s50 <= inf1, s31 >= 0, s31 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s32 >= 0, s32 <= s31 + s11, s33 >= 0, s33 <= 1 + s32, s11 >= 0, s11 <= 2 * (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s35 + z }-> 1 + s36 + s' :|: s34 >= 0, s34 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s35 >= 0, s35 <= s34 + s14, s36 >= 0, s36 <= 1 + s35, s14 >= 0, s14 <= 2 * (z - 2), s15 >= 0, s15 <= 2 * (z - 2), s' >= 0, s' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 3 + s38 + z }-> 1 + s39 + s'' :|: s37 >= 0, s37 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s38 >= 0, s38 <= s37 + s16, s39 >= 0, s39 <= 1 + s38, s16 >= 0, s16 <= 2 * (z - 2), s'' >= 0, s'' <= 1 + (z - 2), z - 2 >= 0 SQR(z) -{ 38 }-> 1 + s4 + s48 :|: s48 >= 0, s48 <= inf', s4 >= 0, s4 <= 0, z = 1 + 0 SQR(z) -{ 14*z + 12*z^2 + 12*z^3 }-> 1 + s5 + s52 :|: s52 >= 0, s52 <= inf3, s5 >= 0, s5 <= 0, z - 1 >= 0 SQR(z) -{ 3 }-> 1 + s6 + s :|: s6 >= 0, s6 <= 0, s >= 0, s <= 0, z = 1 + 0 SQR(z) -{ 2 + z }-> 1 + s7 + s2 :|: s7 >= 0, s7 <= 0, s2 >= 0, s2 <= z - 1, z - 1 >= 0 TERMS(z) -{ 37 + 74*z + 48*z^2 + 12*z^3 }-> 1 + s47 :|: s47 >= 0, s47 <= inf, z >= 0 add(z, z') -{ 0 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 add(z, z') -{ 0 }-> 1 + s27 :|: s27 >= 0, s27 <= z - 1 + z', z' >= 0, z - 1 >= 0 dbl(z) -{ 0 }-> 0 :|: z = 0 dbl(z) -{ 0 }-> 0 :|: z >= 0 dbl(z) -{ 0 }-> 1 + (1 + s23) :|: s23 >= 0, s23 <= 2 * (z - 1), z - 1 >= 0 first(z, z') -{ 0 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 first(z, z') -{ 0 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 sqr(z) -{ 0 }-> 0 :|: z = 0 sqr(z) -{ 0 }-> 0 :|: z >= 0 sqr(z) -{ 0 }-> 1 + s24 :|: s24 >= 0, s24 <= 0 + 0, z = 1 + 0 sqr(z) -{ 0 }-> 1 + s25 :|: s25 >= 0, s25 <= 0 + (1 + (1 + s22)), s22 >= 0, s22 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s26 :|: s26 >= 0, s26 <= 0 + 0, z - 1 >= 0 sqr(z) -{ 0 }-> 1 + s43 :|: s41 >= 0, s41 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s42 >= 0, s42 <= s41 + s19, s43 >= 0, s43 <= 1 + s42 + (1 + (1 + s20)), s19 >= 0, s19 <= 2 * (z - 2), s20 >= 0, s20 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 0 }-> 1 + s46 :|: s44 >= 0, s44 <= 6 * ((z - 2) * (z - 2)) + 8 * (z - 2) + 3, s45 >= 0, s45 <= s44 + s21, s46 >= 0, s46 <= 1 + s45 + 0, s21 >= 0, s21 <= 2 * (z - 2), z - 2 >= 0 terms(z) -{ 0 }-> 0 :|: z >= 0 terms(z) -{ 0 }-> 1 + (1 + s40) :|: s40 >= 0, s40 <= 6 * (z * z) + 8 * z + 3, z >= 0 Function symbols to be analyzed: Previous analysis results are: DBL: runtime: O(n^1) [1 + z], size: O(n^1) [z] FIRST: runtime: O(1) [1], size: O(1) [1] ADD: runtime: O(n^1) [1 + z], size: O(n^1) [z] first: runtime: O(1) [0], size: O(n^1) [z'] dbl: runtime: O(1) [0], size: O(n^1) [2*z] add: runtime: O(1) [0], size: O(n^1) [z + z'] sqr: runtime: O(1) [0], size: O(n^2) [3 + 8*z + 6*z^2] SQR: runtime: O(n^3) [36 + 74*z + 48*z^2 + 12*z^3], size: INF terms: runtime: O(1) [0], size: O(n^2) [5 + 8*z + 6*z^2] TERMS: runtime: O(n^3) [37 + 74*z + 48*z^2 + 12*z^3], size: INF ---------------------------------------- (77) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (78) BOUNDS(1, n^3) ---------------------------------------- (79) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (80) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 The (relative) TRS S consists of the following rules: terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Rewrite Strategy: INNERMOST ---------------------------------------- (81) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (82) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 ---------------------------------------- (83) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: SQR, ADD, sqr, dbl, DBL, add They will be analysed ascendingly in the following order: ADD < SQR sqr < SQR dbl < SQR DBL < SQR dbl < sqr add < sqr ---------------------------------------- (84) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: ADD, SQR, sqr, dbl, DBL, add They will be analysed ascendingly in the following order: ADD < SQR sqr < SQR dbl < SQR DBL < SQR dbl < sqr add < sqr ---------------------------------------- (85) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) Induction Base: ADD(gen_0':s9_10(0), gen_0':s9_10(b)) ->_R^Omega(1) c6 Induction Step: ADD(gen_0':s9_10(+(n14_10, 1)), gen_0':s9_10(b)) ->_R^Omega(1) c7(ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b))) ->_IH c7(gen_c6:c711_10(c15_10)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (86) Complex Obligation (BEST) ---------------------------------------- (87) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: ADD, SQR, sqr, dbl, DBL, add They will be analysed ascendingly in the following order: ADD < SQR sqr < SQR dbl < SQR DBL < SQR dbl < sqr add < sqr ---------------------------------------- (88) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (89) BOUNDS(n^1, INF) ---------------------------------------- (90) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Lemmas: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: dbl, SQR, sqr, DBL, add They will be analysed ascendingly in the following order: sqr < SQR dbl < SQR DBL < SQR dbl < sqr add < sqr ---------------------------------------- (91) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: dbl(gen_0':s9_10(n602_10)) -> gen_0':s9_10(*(2, n602_10)), rt in Omega(0) Induction Base: dbl(gen_0':s9_10(0)) ->_R^Omega(0) 0' Induction Step: dbl(gen_0':s9_10(+(n602_10, 1))) ->_R^Omega(0) s(s(dbl(gen_0':s9_10(n602_10)))) ->_IH s(s(gen_0':s9_10(*(2, c603_10)))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (92) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Lemmas: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) dbl(gen_0':s9_10(n602_10)) -> gen_0':s9_10(*(2, n602_10)), rt in Omega(0) Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: DBL, SQR, sqr, add They will be analysed ascendingly in the following order: sqr < SQR DBL < SQR add < sqr ---------------------------------------- (93) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: DBL(gen_0':s9_10(n934_10)) -> gen_c4:c512_10(n934_10), rt in Omega(1 + n934_10) Induction Base: DBL(gen_0':s9_10(0)) ->_R^Omega(1) c4 Induction Step: DBL(gen_0':s9_10(+(n934_10, 1))) ->_R^Omega(1) c5(DBL(gen_0':s9_10(n934_10))) ->_IH c5(gen_c4:c512_10(c935_10)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (94) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Lemmas: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) dbl(gen_0':s9_10(n602_10)) -> gen_0':s9_10(*(2, n602_10)), rt in Omega(0) DBL(gen_0':s9_10(n934_10)) -> gen_c4:c512_10(n934_10), rt in Omega(1 + n934_10) Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: add, SQR, sqr They will be analysed ascendingly in the following order: sqr < SQR add < sqr ---------------------------------------- (95) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: add(gen_0':s9_10(n1310_10), gen_0':s9_10(b)) -> gen_0':s9_10(+(n1310_10, b)), rt in Omega(0) Induction Base: add(gen_0':s9_10(0), gen_0':s9_10(b)) ->_R^Omega(0) gen_0':s9_10(b) Induction Step: add(gen_0':s9_10(+(n1310_10, 1)), gen_0':s9_10(b)) ->_R^Omega(0) s(add(gen_0':s9_10(n1310_10), gen_0':s9_10(b))) ->_IH s(gen_0':s9_10(+(b, c1311_10))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (96) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Lemmas: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) dbl(gen_0':s9_10(n602_10)) -> gen_0':s9_10(*(2, n602_10)), rt in Omega(0) DBL(gen_0':s9_10(n934_10)) -> gen_c4:c512_10(n934_10), rt in Omega(1 + n934_10) add(gen_0':s9_10(n1310_10), gen_0':s9_10(b)) -> gen_0':s9_10(+(n1310_10, b)), rt in Omega(0) Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: sqr, SQR They will be analysed ascendingly in the following order: sqr < SQR ---------------------------------------- (97) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sqr(gen_0':s9_10(n2387_10)) -> gen_0':s9_10(*(n2387_10, n2387_10)), rt in Omega(0) Induction Base: sqr(gen_0':s9_10(0)) ->_R^Omega(0) 0' Induction Step: sqr(gen_0':s9_10(+(n2387_10, 1))) ->_R^Omega(0) s(add(sqr(gen_0':s9_10(n2387_10)), dbl(gen_0':s9_10(n2387_10)))) ->_IH s(add(gen_0':s9_10(*(c2388_10, c2388_10)), dbl(gen_0':s9_10(n2387_10)))) ->_L^Omega(0) s(add(gen_0':s9_10(*(n2387_10, n2387_10)), gen_0':s9_10(*(2, n2387_10)))) ->_L^Omega(0) s(gen_0':s9_10(+(*(n2387_10, n2387_10), *(2, n2387_10)))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (98) Obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Lemmas: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) dbl(gen_0':s9_10(n602_10)) -> gen_0':s9_10(*(2, n602_10)), rt in Omega(0) DBL(gen_0':s9_10(n934_10)) -> gen_c4:c512_10(n934_10), rt in Omega(1 + n934_10) add(gen_0':s9_10(n1310_10), gen_0':s9_10(b)) -> gen_0':s9_10(+(n1310_10, b)), rt in Omega(0) sqr(gen_0':s9_10(n2387_10)) -> gen_0':s9_10(*(n2387_10, n2387_10)), rt in Omega(0) Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: SQR ---------------------------------------- (99) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: SQR(gen_0':s9_10(n2856_10)) -> *13_10, rt in Omega(n2856_10 + n2856_10^3) Induction Base: SQR(gen_0':s9_10(0)) Induction Step: SQR(gen_0':s9_10(+(n2856_10, 1))) ->_R^Omega(1) c2(ADD(sqr(gen_0':s9_10(n2856_10)), dbl(gen_0':s9_10(n2856_10))), SQR(gen_0':s9_10(n2856_10))) ->_L^Omega(0) c2(ADD(gen_0':s9_10(*(n2856_10, n2856_10)), dbl(gen_0':s9_10(n2856_10))), SQR(gen_0':s9_10(n2856_10))) ->_L^Omega(0) c2(ADD(gen_0':s9_10(*(n2856_10, n2856_10)), gen_0':s9_10(*(2, n2856_10))), SQR(gen_0':s9_10(n2856_10))) ->_L^Omega(1 + n2856_10^2) c2(gen_c6:c711_10(*(n2856_10, n2856_10)), SQR(gen_0':s9_10(n2856_10))) ->_IH c2(gen_c6:c711_10(*(n2856_10, n2856_10)), *13_10) We have rt in Omega(n^3) and sz in O(n). Thus, we have irc_R in Omega(n^3). ---------------------------------------- (100) Obligation: Proved the lower bound n^3 for the following obligation: Innermost TRS: Rules: TERMS(z0) -> c(SQR(z0)) SQR(0') -> c1 SQR(s(z0)) -> c2(ADD(sqr(z0), dbl(z0)), SQR(z0)) SQR(s(z0)) -> c3(ADD(sqr(z0), dbl(z0)), DBL(z0)) DBL(0') -> c4 DBL(s(z0)) -> c5(DBL(z0)) ADD(0', z0) -> c6 ADD(s(z0), z1) -> c7(ADD(z0, z1)) FIRST(0', z0) -> c8 FIRST(s(z0), cons(z1)) -> c9 terms(z0) -> cons(recip(sqr(z0))) sqr(0') -> 0' sqr(s(z0)) -> s(add(sqr(z0), dbl(z0))) dbl(0') -> 0' dbl(s(z0)) -> s(s(dbl(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) first(0', z0) -> nil first(s(z0), cons(z1)) -> cons(z1) Types: TERMS :: 0':s -> c c :: c1:c2:c3 -> c SQR :: 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c6:c7 -> c1:c2:c3 -> c1:c2:c3 ADD :: 0':s -> 0':s -> c6:c7 sqr :: 0':s -> 0':s dbl :: 0':s -> 0':s c3 :: c6:c7 -> c4:c5 -> c1:c2:c3 DBL :: 0':s -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 FIRST :: 0':s -> cons:nil -> c8:c9 c8 :: c8:c9 cons :: recip -> cons:nil c9 :: c8:c9 terms :: 0':s -> cons:nil recip :: 0':s -> recip add :: 0':s -> 0':s -> 0':s first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_10 :: c hole_0':s2_10 :: 0':s hole_c1:c2:c33_10 :: c1:c2:c3 hole_c6:c74_10 :: c6:c7 hole_c4:c55_10 :: c4:c5 hole_c8:c96_10 :: c8:c9 hole_cons:nil7_10 :: cons:nil hole_recip8_10 :: recip gen_0':s9_10 :: Nat -> 0':s gen_c1:c2:c310_10 :: Nat -> c1:c2:c3 gen_c6:c711_10 :: Nat -> c6:c7 gen_c4:c512_10 :: Nat -> c4:c5 Lemmas: ADD(gen_0':s9_10(n14_10), gen_0':s9_10(b)) -> gen_c6:c711_10(n14_10), rt in Omega(1 + n14_10) dbl(gen_0':s9_10(n602_10)) -> gen_0':s9_10(*(2, n602_10)), rt in Omega(0) DBL(gen_0':s9_10(n934_10)) -> gen_c4:c512_10(n934_10), rt in Omega(1 + n934_10) add(gen_0':s9_10(n1310_10), gen_0':s9_10(b)) -> gen_0':s9_10(+(n1310_10, b)), rt in Omega(0) sqr(gen_0':s9_10(n2387_10)) -> gen_0':s9_10(*(n2387_10, n2387_10)), rt in Omega(0) Generator Equations: gen_0':s9_10(0) <=> 0' gen_0':s9_10(+(x, 1)) <=> s(gen_0':s9_10(x)) gen_c1:c2:c310_10(0) <=> c1 gen_c1:c2:c310_10(+(x, 1)) <=> c2(c6, gen_c1:c2:c310_10(x)) gen_c6:c711_10(0) <=> c6 gen_c6:c711_10(+(x, 1)) <=> c7(gen_c6:c711_10(x)) gen_c4:c512_10(0) <=> c4 gen_c4:c512_10(+(x, 1)) <=> c5(gen_c4:c512_10(x)) The following defined symbols remain to be analysed: SQR ---------------------------------------- (101) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (102) BOUNDS(n^3, INF)