WORST_CASE(Omega(n^1),?) proof of /export/starexec/sandbox/benchmark/theBenchmark.trs # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 45.8 s] (2) CpxRelTRS (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 4 ms] (4) TRS for Loop Detection (5) DecreasingLoopProof [LOWER BOUND(ID), 5 ms] (6) BEST (7) proven lower bound (8) LowerBoundPropagationProof [FINISHED, 0 ms] (9) BOUNDS(n^1, INF) (10) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__PRIMES -> c(A__SIEVE(a__from(s(s(0)))), A__FROM(s(s(0)))) A__PRIMES -> c1 A__FROM(z0) -> c2(MARK(z0)) A__FROM(z0) -> c3 A__HEAD(cons(z0, z1)) -> c4(MARK(z0)) A__HEAD(z0) -> c5 A__TAIL(cons(z0, z1)) -> c6(MARK(z1)) A__TAIL(z0) -> c7 A__IF(true, z0, z1) -> c8(MARK(z0)) A__IF(false, z0, z1) -> c9(MARK(z1)) A__IF(z0, z1, z2) -> c10 A__FILTER(s(s(z0)), cons(z1, z2)) -> c11(A__IF(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))), MARK(z0)) A__FILTER(s(s(z0)), cons(z1, z2)) -> c12(A__IF(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))), MARK(z1)) A__FILTER(z0, z1) -> c13 A__SIEVE(cons(z0, z1)) -> c14(MARK(z0)) A__SIEVE(z0) -> c15 MARK(primes) -> c16(A__PRIMES) MARK(sieve(z0)) -> c17(A__SIEVE(mark(z0)), MARK(z0)) MARK(from(z0)) -> c18(A__FROM(mark(z0)), MARK(z0)) MARK(head(z0)) -> c19(A__HEAD(mark(z0)), MARK(z0)) MARK(tail(z0)) -> c20(A__TAIL(mark(z0)), MARK(z0)) MARK(if(z0, z1, z2)) -> c21(A__IF(mark(z0), z1, z2), MARK(z0)) MARK(filter(z0, z1)) -> c22(A__FILTER(mark(z0), mark(z1)), MARK(z0)) MARK(filter(z0, z1)) -> c23(A__FILTER(mark(z0), mark(z1)), MARK(z1)) MARK(s(z0)) -> c24(MARK(z0)) MARK(0) -> c25 MARK(cons(z0, z1)) -> c26(MARK(z0)) MARK(true) -> c27 MARK(false) -> c28 MARK(divides(z0, z1)) -> c29(MARK(z0)) MARK(divides(z0, z1)) -> c30(MARK(z1)) The (relative) TRS S consists of the following rules: a__primes -> a__sieve(a__from(s(s(0)))) a__primes -> primes a__from(z0) -> cons(mark(z0), from(s(z0))) a__from(z0) -> from(z0) a__head(cons(z0, z1)) -> mark(z0) a__head(z0) -> head(z0) a__tail(cons(z0, z1)) -> mark(z1) a__tail(z0) -> tail(z0) a__if(true, z0, z1) -> mark(z0) a__if(false, z0, z1) -> mark(z1) a__if(z0, z1, z2) -> if(z0, z1, z2) a__filter(s(s(z0)), cons(z1, z2)) -> a__if(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))) a__filter(z0, z1) -> filter(z0, z1) a__sieve(cons(z0, z1)) -> cons(mark(z0), filter(z0, sieve(z1))) a__sieve(z0) -> sieve(z0) mark(primes) -> a__primes mark(sieve(z0)) -> a__sieve(mark(z0)) mark(from(z0)) -> a__from(mark(z0)) mark(head(z0)) -> a__head(mark(z0)) mark(tail(z0)) -> a__tail(mark(z0)) mark(if(z0, z1, z2)) -> a__if(mark(z0), z1, z2) mark(filter(z0, z1)) -> a__filter(mark(z0), mark(z1)) mark(s(z0)) -> s(mark(z0)) mark(0) -> 0 mark(cons(z0, z1)) -> cons(mark(z0), z1) mark(true) -> true mark(false) -> false mark(divides(z0, z1)) -> divides(mark(z0), mark(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__PRIMES -> c(A__SIEVE(a__from(s(s(0)))), A__FROM(s(s(0)))) A__PRIMES -> c1 A__FROM(z0) -> c2(MARK(z0)) A__FROM(z0) -> c3 A__HEAD(cons(z0, z1)) -> c4(MARK(z0)) A__HEAD(z0) -> c5 A__TAIL(cons(z0, z1)) -> c6(MARK(z1)) A__TAIL(z0) -> c7 A__IF(true, z0, z1) -> c8(MARK(z0)) A__IF(false, z0, z1) -> c9(MARK(z1)) A__IF(z0, z1, z2) -> c10 A__FILTER(s(s(z0)), cons(z1, z2)) -> c11(A__IF(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))), MARK(z0)) A__FILTER(s(s(z0)), cons(z1, z2)) -> c12(A__IF(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))), MARK(z1)) A__FILTER(z0, z1) -> c13 A__SIEVE(cons(z0, z1)) -> c14(MARK(z0)) A__SIEVE(z0) -> c15 MARK(primes) -> c16(A__PRIMES) MARK(sieve(z0)) -> c17(A__SIEVE(mark(z0)), MARK(z0)) MARK(from(z0)) -> c18(A__FROM(mark(z0)), MARK(z0)) MARK(head(z0)) -> c19(A__HEAD(mark(z0)), MARK(z0)) MARK(tail(z0)) -> c20(A__TAIL(mark(z0)), MARK(z0)) MARK(if(z0, z1, z2)) -> c21(A__IF(mark(z0), z1, z2), MARK(z0)) MARK(filter(z0, z1)) -> c22(A__FILTER(mark(z0), mark(z1)), MARK(z0)) MARK(filter(z0, z1)) -> c23(A__FILTER(mark(z0), mark(z1)), MARK(z1)) MARK(s(z0)) -> c24(MARK(z0)) MARK(0) -> c25 MARK(cons(z0, z1)) -> c26(MARK(z0)) MARK(true) -> c27 MARK(false) -> c28 MARK(divides(z0, z1)) -> c29(MARK(z0)) MARK(divides(z0, z1)) -> c30(MARK(z1)) The (relative) TRS S consists of the following rules: a__primes -> a__sieve(a__from(s(s(0)))) a__primes -> primes a__from(z0) -> cons(mark(z0), from(s(z0))) a__from(z0) -> from(z0) a__head(cons(z0, z1)) -> mark(z0) a__head(z0) -> head(z0) a__tail(cons(z0, z1)) -> mark(z1) a__tail(z0) -> tail(z0) a__if(true, z0, z1) -> mark(z0) a__if(false, z0, z1) -> mark(z1) a__if(z0, z1, z2) -> if(z0, z1, z2) a__filter(s(s(z0)), cons(z1, z2)) -> a__if(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))) a__filter(z0, z1) -> filter(z0, z1) a__sieve(cons(z0, z1)) -> cons(mark(z0), filter(z0, sieve(z1))) a__sieve(z0) -> sieve(z0) mark(primes) -> a__primes mark(sieve(z0)) -> a__sieve(mark(z0)) mark(from(z0)) -> a__from(mark(z0)) mark(head(z0)) -> a__head(mark(z0)) mark(tail(z0)) -> a__tail(mark(z0)) mark(if(z0, z1, z2)) -> a__if(mark(z0), z1, z2) mark(filter(z0, z1)) -> a__filter(mark(z0), mark(z1)) mark(s(z0)) -> s(mark(z0)) mark(0) -> 0 mark(cons(z0, z1)) -> cons(mark(z0), z1) mark(true) -> true mark(false) -> false mark(divides(z0, z1)) -> divides(mark(z0), mark(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (4) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__PRIMES -> c(A__SIEVE(a__from(s(s(0)))), A__FROM(s(s(0)))) A__PRIMES -> c1 A__FROM(z0) -> c2(MARK(z0)) A__FROM(z0) -> c3 A__HEAD(cons(z0, z1)) -> c4(MARK(z0)) A__HEAD(z0) -> c5 A__TAIL(cons(z0, z1)) -> c6(MARK(z1)) A__TAIL(z0) -> c7 A__IF(true, z0, z1) -> c8(MARK(z0)) A__IF(false, z0, z1) -> c9(MARK(z1)) A__IF(z0, z1, z2) -> c10 A__FILTER(s(s(z0)), cons(z1, z2)) -> c11(A__IF(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))), MARK(z0)) A__FILTER(s(s(z0)), cons(z1, z2)) -> c12(A__IF(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))), MARK(z1)) A__FILTER(z0, z1) -> c13 A__SIEVE(cons(z0, z1)) -> c14(MARK(z0)) A__SIEVE(z0) -> c15 MARK(primes) -> c16(A__PRIMES) MARK(sieve(z0)) -> c17(A__SIEVE(mark(z0)), MARK(z0)) MARK(from(z0)) -> c18(A__FROM(mark(z0)), MARK(z0)) MARK(head(z0)) -> c19(A__HEAD(mark(z0)), MARK(z0)) MARK(tail(z0)) -> c20(A__TAIL(mark(z0)), MARK(z0)) MARK(if(z0, z1, z2)) -> c21(A__IF(mark(z0), z1, z2), MARK(z0)) MARK(filter(z0, z1)) -> c22(A__FILTER(mark(z0), mark(z1)), MARK(z0)) MARK(filter(z0, z1)) -> c23(A__FILTER(mark(z0), mark(z1)), MARK(z1)) MARK(s(z0)) -> c24(MARK(z0)) MARK(0) -> c25 MARK(cons(z0, z1)) -> c26(MARK(z0)) MARK(true) -> c27 MARK(false) -> c28 MARK(divides(z0, z1)) -> c29(MARK(z0)) MARK(divides(z0, z1)) -> c30(MARK(z1)) The (relative) TRS S consists of the following rules: a__primes -> a__sieve(a__from(s(s(0)))) a__primes -> primes a__from(z0) -> cons(mark(z0), from(s(z0))) a__from(z0) -> from(z0) a__head(cons(z0, z1)) -> mark(z0) a__head(z0) -> head(z0) a__tail(cons(z0, z1)) -> mark(z1) a__tail(z0) -> tail(z0) a__if(true, z0, z1) -> mark(z0) a__if(false, z0, z1) -> mark(z1) a__if(z0, z1, z2) -> if(z0, z1, z2) a__filter(s(s(z0)), cons(z1, z2)) -> a__if(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))) a__filter(z0, z1) -> filter(z0, z1) a__sieve(cons(z0, z1)) -> cons(mark(z0), filter(z0, sieve(z1))) a__sieve(z0) -> sieve(z0) mark(primes) -> a__primes mark(sieve(z0)) -> a__sieve(mark(z0)) mark(from(z0)) -> a__from(mark(z0)) mark(head(z0)) -> a__head(mark(z0)) mark(tail(z0)) -> a__tail(mark(z0)) mark(if(z0, z1, z2)) -> a__if(mark(z0), z1, z2) mark(filter(z0, z1)) -> a__filter(mark(z0), mark(z1)) mark(s(z0)) -> s(mark(z0)) mark(0) -> 0 mark(cons(z0, z1)) -> cons(mark(z0), z1) mark(true) -> true mark(false) -> false mark(divides(z0, z1)) -> divides(mark(z0), mark(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence MARK(divides(z0, z1)) ->^+ c29(MARK(z0)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [z0 / divides(z0, z1)]. The result substitution is [ ]. ---------------------------------------- (6) Complex Obligation (BEST) ---------------------------------------- (7) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__PRIMES -> c(A__SIEVE(a__from(s(s(0)))), A__FROM(s(s(0)))) A__PRIMES -> c1 A__FROM(z0) -> c2(MARK(z0)) A__FROM(z0) -> c3 A__HEAD(cons(z0, z1)) -> c4(MARK(z0)) A__HEAD(z0) -> c5 A__TAIL(cons(z0, z1)) -> c6(MARK(z1)) A__TAIL(z0) -> c7 A__IF(true, z0, z1) -> c8(MARK(z0)) A__IF(false, z0, z1) -> c9(MARK(z1)) A__IF(z0, z1, z2) -> c10 A__FILTER(s(s(z0)), cons(z1, z2)) -> c11(A__IF(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))), MARK(z0)) A__FILTER(s(s(z0)), cons(z1, z2)) -> c12(A__IF(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))), MARK(z1)) A__FILTER(z0, z1) -> c13 A__SIEVE(cons(z0, z1)) -> c14(MARK(z0)) A__SIEVE(z0) -> c15 MARK(primes) -> c16(A__PRIMES) MARK(sieve(z0)) -> c17(A__SIEVE(mark(z0)), MARK(z0)) MARK(from(z0)) -> c18(A__FROM(mark(z0)), MARK(z0)) MARK(head(z0)) -> c19(A__HEAD(mark(z0)), MARK(z0)) MARK(tail(z0)) -> c20(A__TAIL(mark(z0)), MARK(z0)) MARK(if(z0, z1, z2)) -> c21(A__IF(mark(z0), z1, z2), MARK(z0)) MARK(filter(z0, z1)) -> c22(A__FILTER(mark(z0), mark(z1)), MARK(z0)) MARK(filter(z0, z1)) -> c23(A__FILTER(mark(z0), mark(z1)), MARK(z1)) MARK(s(z0)) -> c24(MARK(z0)) MARK(0) -> c25 MARK(cons(z0, z1)) -> c26(MARK(z0)) MARK(true) -> c27 MARK(false) -> c28 MARK(divides(z0, z1)) -> c29(MARK(z0)) MARK(divides(z0, z1)) -> c30(MARK(z1)) The (relative) TRS S consists of the following rules: a__primes -> a__sieve(a__from(s(s(0)))) a__primes -> primes a__from(z0) -> cons(mark(z0), from(s(z0))) a__from(z0) -> from(z0) a__head(cons(z0, z1)) -> mark(z0) a__head(z0) -> head(z0) a__tail(cons(z0, z1)) -> mark(z1) a__tail(z0) -> tail(z0) a__if(true, z0, z1) -> mark(z0) a__if(false, z0, z1) -> mark(z1) a__if(z0, z1, z2) -> if(z0, z1, z2) a__filter(s(s(z0)), cons(z1, z2)) -> a__if(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))) a__filter(z0, z1) -> filter(z0, z1) a__sieve(cons(z0, z1)) -> cons(mark(z0), filter(z0, sieve(z1))) a__sieve(z0) -> sieve(z0) mark(primes) -> a__primes mark(sieve(z0)) -> a__sieve(mark(z0)) mark(from(z0)) -> a__from(mark(z0)) mark(head(z0)) -> a__head(mark(z0)) mark(tail(z0)) -> a__tail(mark(z0)) mark(if(z0, z1, z2)) -> a__if(mark(z0), z1, z2) mark(filter(z0, z1)) -> a__filter(mark(z0), mark(z1)) mark(s(z0)) -> s(mark(z0)) mark(0) -> 0 mark(cons(z0, z1)) -> cons(mark(z0), z1) mark(true) -> true mark(false) -> false mark(divides(z0, z1)) -> divides(mark(z0), mark(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (8) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (9) BOUNDS(n^1, INF) ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: A__PRIMES -> c(A__SIEVE(a__from(s(s(0)))), A__FROM(s(s(0)))) A__PRIMES -> c1 A__FROM(z0) -> c2(MARK(z0)) A__FROM(z0) -> c3 A__HEAD(cons(z0, z1)) -> c4(MARK(z0)) A__HEAD(z0) -> c5 A__TAIL(cons(z0, z1)) -> c6(MARK(z1)) A__TAIL(z0) -> c7 A__IF(true, z0, z1) -> c8(MARK(z0)) A__IF(false, z0, z1) -> c9(MARK(z1)) A__IF(z0, z1, z2) -> c10 A__FILTER(s(s(z0)), cons(z1, z2)) -> c11(A__IF(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))), MARK(z0)) A__FILTER(s(s(z0)), cons(z1, z2)) -> c12(A__IF(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))), MARK(z1)) A__FILTER(z0, z1) -> c13 A__SIEVE(cons(z0, z1)) -> c14(MARK(z0)) A__SIEVE(z0) -> c15 MARK(primes) -> c16(A__PRIMES) MARK(sieve(z0)) -> c17(A__SIEVE(mark(z0)), MARK(z0)) MARK(from(z0)) -> c18(A__FROM(mark(z0)), MARK(z0)) MARK(head(z0)) -> c19(A__HEAD(mark(z0)), MARK(z0)) MARK(tail(z0)) -> c20(A__TAIL(mark(z0)), MARK(z0)) MARK(if(z0, z1, z2)) -> c21(A__IF(mark(z0), z1, z2), MARK(z0)) MARK(filter(z0, z1)) -> c22(A__FILTER(mark(z0), mark(z1)), MARK(z0)) MARK(filter(z0, z1)) -> c23(A__FILTER(mark(z0), mark(z1)), MARK(z1)) MARK(s(z0)) -> c24(MARK(z0)) MARK(0) -> c25 MARK(cons(z0, z1)) -> c26(MARK(z0)) MARK(true) -> c27 MARK(false) -> c28 MARK(divides(z0, z1)) -> c29(MARK(z0)) MARK(divides(z0, z1)) -> c30(MARK(z1)) The (relative) TRS S consists of the following rules: a__primes -> a__sieve(a__from(s(s(0)))) a__primes -> primes a__from(z0) -> cons(mark(z0), from(s(z0))) a__from(z0) -> from(z0) a__head(cons(z0, z1)) -> mark(z0) a__head(z0) -> head(z0) a__tail(cons(z0, z1)) -> mark(z1) a__tail(z0) -> tail(z0) a__if(true, z0, z1) -> mark(z0) a__if(false, z0, z1) -> mark(z1) a__if(z0, z1, z2) -> if(z0, z1, z2) a__filter(s(s(z0)), cons(z1, z2)) -> a__if(divides(s(s(mark(z0))), mark(z1)), filter(s(s(z0)), z2), cons(z1, filter(z0, sieve(z1)))) a__filter(z0, z1) -> filter(z0, z1) a__sieve(cons(z0, z1)) -> cons(mark(z0), filter(z0, sieve(z1))) a__sieve(z0) -> sieve(z0) mark(primes) -> a__primes mark(sieve(z0)) -> a__sieve(mark(z0)) mark(from(z0)) -> a__from(mark(z0)) mark(head(z0)) -> a__head(mark(z0)) mark(tail(z0)) -> a__tail(mark(z0)) mark(if(z0, z1, z2)) -> a__if(mark(z0), z1, z2) mark(filter(z0, z1)) -> a__filter(mark(z0), mark(z1)) mark(s(z0)) -> s(mark(z0)) mark(0) -> 0 mark(cons(z0, z1)) -> cons(mark(z0), z1) mark(true) -> true mark(false) -> false mark(divides(z0, z1)) -> divides(mark(z0), mark(z1)) Rewrite Strategy: INNERMOST